
Use Parallel Backtracking Algorithm to solve matching 
problem

by Chunxiao (Ian) Li

Supervised by Professor Ilias Kotsireas, Physics & Computer Science, WLU

March 9th, 2016

Use Parallel Backtracking Algorithm to solve matching

problem

by Chunxiao (Ian) Li

Supervised by Professor Ilias Kotsireas, Physics & Computer Science, WLU

March 9th, 2016

Problem Description

Given n files (usually n = 2, 3 or 4) of 2D matrices of integers where
all of the files have k columns, and a target number lambda λ.

We want to find combinations of n rows (1 row from each file) where

F 1
r1,c1 + F 2

r2,c1 + . . . + Fn
rn,c1 = λ

F 1
r1,c2 + F 2

r2,c2 + . . . + Fn
rn,c2 = λ

. . .
F 1
r1,ck + F 2

r2,ck + . . . + Fn
rn,ck = λ

We denote a possible solution by [r1, r2, . . . , rn], where r1, r2, . . . , rn
are the line numbers, and such solution is called a matching.

1 Approaches

1.1 Brute force approach

A straight forward brute force approach will be generating all combina-
tions of rows and verify if any of the combinations are valid. However
this is really inefficient where for four files with a, b, c, d rows respec-
tively and k columns, there are a∗b∗c∗d combination of rows and each
combination will take 3k summations to verify, where the run time will
be O(3k(a∗ b∗ c∗d)), this doesn’t seem too bad until when a, b, c, d are
1 million lines each!

1.2 Backtracking approach

Generally speaking backtracking is Depth First Search(DFS) with tree
pruning technique. Where we incrementally builds candidates to the
solutions, and abandons each partial candidate c (”backtracks”) as
soon as it determines that c cannot possibly be completed to a valid
solution.

1. Pruning in n-way matching:

At column one (root level, currentDepth = 0) we find all combina-
tions of rows that have first column numbers adding up to λ, each
combination will form a tree branch from the root, at each iteration
we choose one of the branches from current level and proceed to
the next column only using rows involved in that combination and
temporarily ignoring invalid ones.

On top of this we can still do better, observing the nature of the
files, although there can be millions of rows in a file, number of dif-
ferent numbers are only around 10-30, we can then take advantage
of this property using BIN method.

2. BIN:

The idea of BIN is a preprocessing that groups all the rows that
have same number at column = currentDepth of the search tree
together. We have now translated the problem from “finding combi-
nation of rows” to “finding combination of numbers”. And this avoids
doing repetitive calculation when few thousand lines have the same
number at a certain column.

Above is an example of an instance of the problem with two input files
and λ = 100.

[10 : [1, 2, 4], 90 : [1, 4]] at level 1 means:

A1,1, A2,1, A4,1 = 10
B1,1, B4,1 = 90.

and

[1, 1], [1, 4], [2, 1], [2, 4], [4, 1], [4, 4] are possible solutions(matches).

2 Implementation

2.1 An approach using C++ Template

A backtrack implementation was introduced [1] which uses templates
that allow the program to use any STL container to store the decision
tree. The template arguments allow you to specify your data type (int,
enum, etc.), the container that stores the decision tree (vector, c array,
etc.), and the user-defined function that evaluates the decision tree’s
correctness.

This approach is great however it won’t fit for our case, the implemen-
tation with templates described in the paper has one limitation that
the domain size of each level must be same, which does not hold in
our case, because each time we visit a level, we have distinct sets of
rows. However this approach inspired me in understanding the nature
of backtracking.

3 Serial vs Parallel

3.1 Serial Farming:

This backtracking approach can be simply implemented on a serial
program that runs on one processor by traversing the search tree in
DFS manner. However as we traverse along one of the branches, we
can also traverse along another without two of them interfering each
other, and thus we advance the serial program to a parallel version
using multiple processors. (ranging from few processors to hundreds
of them)

3.2 Parallel version with MPI:

Naive parallel version:

The naive version works as following:

1. We have a Dispatcher process that dispatches jobs to Worker pro-
cesses.

2. Dispatcher process has a list of idle Workers that are waiting for
jobs.

3. Dispatcher process starts by BIN-ing the first column and initializing
the root level of the search tree.

4. Dispatcher sends one of the combinations (branch) to an idle
Worker.

5. Dispatcher keeps listening to Worker process for completion signal.

6. Dispatcher adds the completed Worker process to idle list.

7. Repeat until the root is empty and idle list is full again.

Problems with the naive version:

1. When number of branches from root is smaller than the number of
Workers given, since we are giving one branch to a Worker, there
will be Workers with no jobs to execute and have to wait till the
end of the program terminates, another way of saying this is we are
wasting lot of resources.

2. Due to the nature of the input files, the numbers of branches are
Gaussian distributed both globally and locally. And this will cause
the same problem as the first one, after root is empty, there will
eventually be Workers idling and others busying, and in practice the
there can be hundreds of processors waiting for days!

Parallel with load balancing:

The load-balancing version works as following:

1. We have a Dispatcher process that dispatches jobs to Worker pro-
cesses.

2. Dispatcher process has a list of idle Workers that are waiting for
jobs.

3. Dispatcher process starts by BIN-ing the first column and initializing
the root level of the search tree.

4. Dispatcher sends one of the combinations (branch) to an idle
Worker.

5. Dispatcher keeps listening to Worker process for completion signal.
6. Dispatcher adds the completed Worker process to idle list.
7. Repeat until the root is empty.
8. while idle list is not full, Dispatcher randomly associate a busy pro-

cess with an idle process, and the idle process will send a request
to the busy one, if the busy one still have some branches left, it
donate half of its top level branch to the idle one.

9. repeat until idle list is full again.

4 Performance

Above figure describes the relation between number of processors
used and time the program took to exhaustively search two different
sets of files. This proves the algorithm is efficient.

References

[1] Roger Labbe. Solving Combinatorial Problems with STL and

Backtracking.
http://www.drdobbs.com/cpp/

solving-combinatorial-problems-with-stl/184401194

This poster has been realised with LATEX using Lars Nummendal A0 poster template


