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Abstract

Relational databases rely on schemas, allowing data to be sepa-
rated into entities. Data is broken down into a structured form,
and loaded into databases where it can be analyzed and stored
[4]. But the very nature of data is not structured, and relational
databases, can manage unstructured data in small sets before
having the need to scale up, requiring a costly investment in more
powerful servers and licenses [1].

A large matrix was computed consisting of 62 columns and more
than 10 million rows of non-negative integer data. Its output was
separated into separate files for portability, having a total file size
of more than 1.5 terabytes.
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Figure 1: The inserting hurdle for large datasets

Loading data into a relational database management system is te-
dious, and a time consuming. The project’s aim is to use open
cluster frameworks in order to eliminate the time consuming in-
serting hurdle, and efficiently find a matching between various
files given a total for the match.

1) Selecting a Framework

Network clusters can be used for processing various jobs in paral-

lel. Servers in the cluster work in unison, allowing for data redun-

dancy and redirection of work; in the event that a server is taken
offline [2].
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1.1) Hadoop

Apache Hadoop consists of 3 main functions, Hadoop core, the
main engine running Hadoop, a storage system known as Hadoop
Distributed File System (HDFS), and a processing frame-

work, MapReduce [1].
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Figure 2: Hadoop processing cycle [5]

e HDFS works by splitting files into large blocks, distributing
them across nodes in a network cluster and spreading them
across a cluster to be used through out [1].

e MapReduce is a model for processing data, it first Maps the da-
ta by sorting, and filtering, then Reducing it into a summary. The
implementation is separated into 2 tasks, and computed in par-
allel. Hadoop heavily uses the hard disk to perform it’s computa-
tions [1].

1.2) Spark

Spark was developed to provide a more versatile engine than Ha-
doop, with a focus on computing performance, development
speed, and diverse support for various programming languages.
Many data sources can be read by Spark, and separated into Resil-
ient Distributed Datasets (RDDs) [5].

Flle,
Database,
HDFS

Data Source —»

Figure 3: Spark life cycle

Spark processes RDDs through set operations, applying a series
of transformations, followed by actions. Transformations are used
to manipulate, and reduce a data set, whereas actions are used
for analyzing the reduced set. Once an action has been per-
formed, data can be further transformed, and other actions can
be applied. Spark core is capable of efficiently managing memory,
and performs faster than Hadoop core [5].

2) Matching

There exists two rows in the separate files where the sum of each
overlapping columns is equal to some given A.

(a; +b;)=A... (a,+b,) =\, aand b are files

The following procedure was implemented using Spark, and run
on various sizes of data [2]:

e Create mappings to use for each row in the RDD
e Spark core infers the schema, and maps it to its respective file
e The data is stored as a temporary “table”

e Using Spark SQL a matching is performed to find where the re-
sult exists within the two files

Efficiency for a 2-way matching using Apache Spark using 1 mas-
ter node and only 3 worker nodes is summarized below:
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Figure 4: Spark 2-way matching efficiency
As the volume of data increases, the job will require scaling, in or-
der to effectively determine a 2-way match with a very large data
set.

Another challenge appears as the number of files increases.
Finding a match between 3 or more files requires a different algo-
rithm. The proposed solution relies on A.

If a match exists between n files with k columns, then there is

some row in each of the n files where a sum exists that is equal to
A.

For example, for a 3-way matching, there are 3 files with k col-
umns.
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If all the values of the rows in f; are greater than zero, then the
sum of the columns in the row in f; and f,, which sum with a row
in f3 to yield A, will be less than A.

(fro+ 1) <A (fri+ ) <A (fo+ for) <A

Then there must be a range of integers less than A, in which the
immediate sum of f;; and f;; falls within, which can be used to
further reduce the RDD to a smaller set

a<PB<A
and
(fr,1 +f21) € [a,B] ... (Fri +f2) € [a,B] ... (Fii + To) € [0, B]

Once reduced, this new RDD can be matched against f5 in order to

find the rows from 4, f,, and f; who’s individual column sum is
A.

A similar approach can be taken with a 4-way matching algorithm,
where two sets of files are reduced by range, and their resulting
RDDs are summed to equal A, and their rows are returned.

Conclusion

e Relational databases require too much structure, and cannot be
efficiently used for handling unstructured data.

e Hadoop, and Spark can both be used to analyze large unstruc-
tured data sets, harnessing the power of a cluster, Spark is (10x-
100x)[3] faster than Hadoop

e 2 Way matching can be performed relatively quickly with
Apache Spark on small sets of data

e Next steps include optimizing the matching algorithm, to work
quickly on larger data sets, and implementing the 3+ matching
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