
Abstract

Relational databases rely on schemas, allowing data to be sepa-

rated into entities. Data is broken down into a structured form,

and loaded into databases where it can be analyzed and stored

[4]. But the very nature of data is not structured, and relational

databases, can manage unstructured data in small sets before

having the need to scale up, requiring a costly investment in more

powerful servers and licenses [1].

A large matrix was computed consisting of 62 columns and more

than 10 million rows of non-negative integer data. Its output was

separated into separate files for portability, having a total file size

of more than 1.5 terabytes.

Loading data into a relational database management system is te-

dious, and a time consuming. The project’s aim is to use open

cluster frameworks in order to eliminate the time consuming in-

serting hurdle, and efficiently find a matching between various

files given a total for the match.

1) Selecting a Framework
Network clusters can be used for processing various jobs in paral-

lel. Servers in the cluster work in unison, allowing for data redun-

dancy and redirection of work; in the event that a server is taken

offline [2].

1.1) Hadoop

Apache Hadoop consists of 3 main functions, Hadoop core, the

main engine running Hadoop, a storage system known as Hadoop

Distributed File System (HDFS), and a processing frame-

work, MapReduce [1].

 HDFS works by splitting files into large blocks, distributing

them across nodes in a network cluster and spreading them

across a cluster to be used through out [1].

 MapReduce is a model for processing data, it first Maps the da-

ta by sorting, and filtering, then Reducing it into a summary. The

implementation is separated into 2 tasks, and computed in par-

allel. Hadoop heavily uses the hard disk to perform it’s computa-

tions [1].

1.2) Spark

Spark was developed to provide a more versatile engine than Ha-

doop, with a focus on computing performance, development

speed, and diverse support for various programming languages.

Many data sources can be read by Spark, and separated into Resil-

ient Distributed Datasets (RDDs) [5].

Spark processes RDDs through set operations, applying a series

of transformations, followed by actions. Transformations are used

to manipulate, and reduce a data set, whereas actions are used

for analyzing the reduced set. Once an action has been per-

formed, data can be further transformed, and other actions can

be applied. Spark core is capable of efficiently managing memory,

and performs faster than Hadoop core [5].

2) Matching
There exists two rows in the separate files where the sum of each

overlapping columns is equal to some given λ.

(a1 + b1) = λ ... (an + bn) = λ, a and b are files

The following procedure was implemented using Spark, and run

on various sizes of data [2]:

 Create mappings to use for each row in the RDD

 Spark core infers the schema, and maps it to its respective file

 The data is stored as a temporary “table”

 Using Spark SQL a matching is performed to find where the re-

sult exists within the two files

Efficiency for a 2-way matching using Apache Spark using 1 mas-

ter node and only 3 worker nodes is summarized below:

As the volume of data increases, the job will require scaling, in or-

der to effectively determine a 2-way match with a very large data

set.

Another challenge appears as the number of files increases.

Finding a match between 3 or more files requires a different algo-

rithm. The proposed solution relies on λ.

If a match exists between n files with k columns, then there is

some row in each of the n files where a sum exists that is equal to

λ.

For example, for a 3-way matching, there are 3 files with k col-

umns.

f1, f2, f3

If all the values of the rows in f3 are greater than zero, then the

sum of the columns in the row in f1 and f2, which sum with a row

in f3 to yield λ, will be less than λ.

(f1,1 + f2,1) < λ ... (f1,i + f2,i) < λ ... (f1,k + f2,k) < λ

Then there must be a range of integers less than λ, in which the

immediate sum of f1,i and f2,i falls within, which can be used to

further reduce the RDD to a smaller set.

α < β < λ

and

(f1,1 + f2,1) є [α,β] ... (f1,i + f2,i) є [α,β] ... (f1,k + f2,k) є [α,β]

Once reduced, this new RDD can be matched against f3 in order to

find the rows from f1, f2, and f3 who’s individual column sum is

λ.

A similar approach can be taken with a 4-way matching algorithm,

where two sets of files are reduced by range, and their resulting

RDDs are summed to equal λ, and their rows are returned.

Conclusion
 Relational databases require too much structure, and cannot be

efficiently used for handling unstructured data.

 Hadoop, and Spark can both be used to analyze large unstruc-

tured data sets, harnessing the power of a cluster, Spark is (10x-

100x)[3] faster than Hadoop

 2 Way matching can be performed relatively quickly with

Apache Spark on small sets of data

 Next steps include optimizing the matching algorithm, to work

quickly on larger data sets, and implementing the 3+ matching

References
[1] Zikopoulos, Paul. Big Data beyond the Hype: A Guide to Conversations for Today's Data Center. N.p.:

McGraw-Hill Education, 2015. Print.

[2] Karau, Holden, Andy Konwinski, Patrick Wendell, and Matei Zaharia.Learning Spark. Sebastopol, CA: O’Reil-

ly Media, 2014. Print.

[3] "Apache Spark." Apache Spark. Apache Software Foundation, n.d. Web. <http://spark.apache.org>.

[4] Salehnia, Ali. "Comparisons of Relational Databases with Big Data: A Teaching Approach." South Dakota

State University, 2015. Web. <https://www.asee.org/documents/zones/zone3/2015/Comparisons-of-

Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf>.

[5] Intro to Apache Spark Training - Part 1. Perf. Pacco. Youtube. Databricks, n.d. Web. <https://

www.youtube.com/watch?v=VWeWViFCzzg>.

Integer Matching Using Cluster Computing Frameworks
By: Mohamed Mohamedtaki, Directed Research Student

Supervised by: Dr. Ilias Kotsireas, Professor, Wilfrid Laurier University
March 23, 2016

Figure 1: The inserting hurdle for large datasets

Figure 2: Hadoop processing cycle [5]

Figure 3: Spark life cycle

Figure 4: Spark 2-way matching efficiency

