WILFRID LAURIER UNIVERSITY

LAURIER*

Inspiring Lives.

Computer Algebra Research Group

of
Wilfrid Laurier University

Abstract

Relational databases rely on schemas, allowing data to be sepa-
rated into entities. Data is broken down into a structured form,
and loaded into databases where it can be analyzed and stored
[4]. But the very nature of data is not structured, and relational
databases, can manage unstructured data in small sets before
having the need to scale up, requiring a costly investment in more
powerful servers and licenses [1].

A large matrix was computed consisting of 62 columns and more
than 10 million rows of non-negative integer data. Its output was
separated into separate files for portability, having a total file size
of more than 1.5 terabytes.

Relational Database Inserting
1200.00

1000.00

800.00

rds/Second

600.00

Reco

400.00

200.00

0.00 .
Single Insert

19.44

Bulk Loading (C5V)
925.93

Bulk Loading (JSON)

Records/Second 1111.11

Figure 1: The inserting hurdle for large datasets

Loading data into a relational database management system is te-
dious, and a time consuming. The project’s aim is to use open
cluster frameworks in order to eliminate the time consuming in-
serting hurdle, and efficiently find a matching between various
files given a total for the match.

1) Selecting a Framework

Network clusters can be used for processing various jobs in paral-

lel. Servers in the cluster work in unison, allowing for data redun-

dancy and redirection of work; in the event that a server is taken
offline [2].

Integer Matching Using Cluster Computing Frameworks

By: Mohamed Mohamedtaki, Directed Research Student

Supervised by: Dr. llias Kotsireas, Professor, Wilfrid Laurier University
March 23, 2016

1.1) Hadoop

Apache Hadoop consists of 3 main functions, Hadoop core, the
main engine running Hadoop, a storage system known as Hadoop
Distributed File System (HDFS), and a processing frame-

work, MapReduce [1].

i@hadaap

“lprgeme — ClEdemg, —

=[a/a]a
e

Figure 2: Hadoop processing cycle [5]

e HDFS works by splitting files into large blocks, distributing
them across nodes in a network cluster and spreading them
across a cluster to be used through out [1].

e MapReduce is a model for processing data, it first Maps the da-
ta by sorting, and filtering, then Reducing it into a summary. The
implementation is separated into 2 tasks, and computed in par-
allel. Hadoop heavily uses the hard disk to perform it’s computa-
tions [1].

1.2) Spark

Spark was developed to provide a more versatile engine than Ha-
doop, with a focus on computing performance, development
speed, and diverse support for various programming languages.
Many data sources can be read by Spark, and separated into Resil-
ient Distributed Datasets (RDDs) [5].

Flle,
Database,
HDFS

Data Source —»

Figure 3: Spark life cycle

Spark processes RDDs through set operations, applying a series
of transformations, followed by actions. Transformations are used
to manipulate, and reduce a data set, whereas actions are used
for analyzing the reduced set. Once an action has been per-
formed, data can be further transformed, and other actions can
be applied. Spark core is capable of efficiently managing memory,
and performs faster than Hadoop core [5].

2) Matching

There exists two rows in the separate files where the sum of each
overlapping columns is equal to some given A.

(a; +b;)=A... (a,+b,) =\, aand b are files

The following procedure was implemented using Spark, and run
on various sizes of data [2]:

e Create mappings to use for each row in the RDD
e Spark core infers the schema, and maps it to its respective file
e The data is stored as a temporary “table”

e Using Spark SQL a matching is performed to find where the re-
sult exists within the two files

Efficiency for a 2-way matching using Apache Spark using 1 mas-
ter node and only 3 worker nodes is summarized below:

Rows per File/Match Run Time

35000.00 9.00

30000.00 8.00

7.00

25000.00
6.00

20000.00 500

15000.00 4.00

3.00
10000.00

2.00

5000.00 1.00

0.00 0.00

100

2.61
0.00

1000

25.93
0.01

10000

18147.73
5.04

50000

30851.14
8.57

Seconds
Hours

Figure 4: Spark 2-way matching efficiency
As the volume of data increases, the job will require scaling, in or-
der to effectively determine a 2-way match with a very large data
set.

Another challenge appears as the number of files increases.
Finding a match between 3 or more files requires a different algo-
rithm. The proposed solution relies on A.

If a match exists between n files with k columns, then there is

some row in each of the n files where a sum exists that is equal to
A.

For example, for a 3-way matching, there are 3 files with k col-
umns.

fll fZ) f3

CRSNG

A

Nz T

If all the values of the rows in f; are greater than zero, then the
sum of the columns in the row in f; and f,, which sum with a row
in f3 to yield A, will be less than A.

(fro+ 1) <A (fri+ ) <A (fo+ for) <A

Then there must be a range of integers less than A, in which the
immediate sum of f;; and f;; falls within, which can be used to
further reduce the RDD to a smaller set

a<PB<A
and
(fr,1 +f21) € [a,B] ... (Fri +f2) € [a,B] ... (Fii + To) € [0, B]

Once reduced, this new RDD can be matched against f5 in order to

find the rows from 4, f,, and f; who’s individual column sum is
A.

A similar approach can be taken with a 4-way matching algorithm,
where two sets of files are reduced by range, and their resulting
RDDs are summed to equal A, and their rows are returned.

Conclusion

e Relational databases require too much structure, and cannot be
efficiently used for handling unstructured data.

e Hadoop, and Spark can both be used to analyze large unstruc-
tured data sets, harnessing the power of a cluster, Spark is (10x-
100x)[3] faster than Hadoop

e 2 Way matching can be performed relatively quickly with
Apache Spark on small sets of data

e Next steps include optimizing the matching algorithm, to work
quickly on larger data sets, and implementing the 3+ matching

References

[1] Zikopoulos, Paul. Big Data beyond the Hype: A Guide to Conversations for Today's Data Center. N.p.:
McGraw-Hill Education, 2015. Print.

[2] Karau, Holden, Andy Konwinski, Patrick Wendell, and Matei Zaharia.Learning Spark. Sebastopol, CA: O’Reil-
ly Media, 2014. Print.

[3] "Apache Spark." Apache Spark. Apache Software Foundation, n.d. Web. <http://spark.apache.org>.

[4] Salehnia, Ali. "Comparisons of Relational Databases with Big Data: A Teaching Approach." South Dakota
State University, 2015. Web. <https://www.asee.org/documents/zones/zone3/2015/Comparisons-of-
Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf>.

[5] Intro to Apache Spark Training - Part 1. Perf. Pacco. Youtube. Databricks, n.d. Web. <https://
www.youtube.com/watch?v=VWeWViFCzzg>.

HPSSd



