
Abstract

Relational databases rely on schemas, allowing data to be sepa-

rated into entities. Data is broken down into a structured form,

and loaded into databases where it can be analyzed and stored

[4]. But the very nature of data is not structured, and relational

databases, can manage unstructured data in small sets before

having the need to scale up, requiring a costly investment in more

powerful servers and licenses [1].

A large matrix was computed consisting of 62 columns and more

than 10 million rows of non-negative integer data. Its output was

separated into separate files for portability, having a total file size

of more than 1.5 terabytes.

Loading data into a relational database management system is te-

dious, and a time consuming. The project’s aim is to use open

cluster frameworks in order to eliminate the time consuming in-

serting hurdle, and efficiently find a matching between various

files given a total for the match.

1) Selecting a Framework
Network clusters can be used for processing various jobs in paral-

lel. Servers in the cluster work in unison, allowing for data redun-

dancy and redirection of work; in the event that a server is taken

offline [2].

1.1) Hadoop

Apache Hadoop consists of 3 main functions, Hadoop core, the

main engine running Hadoop, a storage system known as Hadoop

Distributed File System (HDFS), and a processing frame-

work, MapReduce [1].

 HDFS works by splitting files into large blocks, distributing

them across nodes in a network cluster and spreading them

across a cluster to be used through out [1].

 MapReduce is a model for processing data, it first Maps the da-

ta by sorting, and filtering, then Reducing it into a summary. The

implementation is separated into 2 tasks, and computed in par-

allel. Hadoop heavily uses the hard disk to perform it’s computa-

tions [1].

1.2) Spark

Spark was developed to provide a more versatile engine than Ha-

doop, with a focus on computing performance, development

speed, and diverse support for various programming languages.

Many data sources can be read by Spark, and separated into Resil-

ient Distributed Datasets (RDDs) [5].

Spark processes RDDs through set operations, applying a series

of transformations, followed by actions. Transformations are used

to manipulate, and reduce a data set, whereas actions are used

for analyzing the reduced set. Once an action has been per-

formed, data can be further transformed, and other actions can

be applied. Spark core is capable of efficiently managing memory,

and performs faster than Hadoop core [5].

2) Matching
There exists two rows in the separate files where the sum of each

overlapping columns is equal to some given λ.

(a1 + b1) = λ ... (an + bn) = λ, a and b are files

The following procedure was implemented using Spark, and run

on various sizes of data [2]:

 Create mappings to use for each row in the RDD

 Spark core infers the schema, and maps it to its respective file

 The data is stored as a temporary “table”

 Using Spark SQL a matching is performed to find where the re-

sult exists within the two files

Efficiency for a 2-way matching using Apache Spark using 1 mas-

ter node and only 3 worker nodes is summarized below:

As the volume of data increases, the job will require scaling, in or-

der to effectively determine a 2-way match with a very large data

set.

Another challenge appears as the number of files increases.

Finding a match between 3 or more files requires a different algo-

rithm. The proposed solution relies on λ.

If a match exists between n files with k columns, then there is

some row in each of the n files where a sum exists that is equal to

λ.

For example, for a 3-way matching, there are 3 files with k col-

umns.

f1, f2, f3

If all the values of the rows in f3 are greater than zero, then the

sum of the columns in the row in f1 and f2, which sum with a row

in f3 to yield λ, will be less than λ.

(f1,1 + f2,1) < λ ... (f1,i + f2,i) < λ ... (f1,k + f2,k) < λ

Then there must be a range of integers less than λ, in which the

immediate sum of f1,i and f2,i falls within, which can be used to

further reduce the RDD to a smaller set.

α < β < λ

and

(f1,1 + f2,1) є [α,β] ... (f1,i + f2,i) є [α,β] ... (f1,k + f2,k) є [α,β]

Once reduced, this new RDD can be matched against f3 in order to

find the rows from f1, f2, and f3 who’s individual column sum is

λ.

A similar approach can be taken with a 4-way matching algorithm,

where two sets of files are reduced by range, and their resulting

RDDs are summed to equal λ, and their rows are returned.

Conclusion
 Relational databases require too much structure, and cannot be

efficiently used for handling unstructured data.

 Hadoop, and Spark can both be used to analyze large unstruc-

tured data sets, harnessing the power of a cluster, Spark is (10x-

100x)[3] faster than Hadoop

 2 Way matching can be performed relatively quickly with

Apache Spark on small sets of data

 Next steps include optimizing the matching algorithm, to work

quickly on larger data sets, and implementing the 3+ matching

References
[1] Zikopoulos, Paul. Big Data beyond the Hype: A Guide to Conversations for Today's Data Center. N.p.:

McGraw-Hill Education, 2015. Print.

[2] Karau, Holden, Andy Konwinski, Patrick Wendell, and Matei Zaharia.Learning Spark. Sebastopol, CA: O’Reil-

ly Media, 2014. Print.

[3] "Apache Spark." Apache Spark. Apache Software Foundation, n.d. Web. <http://spark.apache.org>.

[4] Salehnia, Ali. "Comparisons of Relational Databases with Big Data: A Teaching Approach." South Dakota

State University, 2015. Web. <https://www.asee.org/documents/zones/zone3/2015/Comparisons-of-

Relational-Databases-with-Big-Data-a-Teaching-Approach.pdf>.

[5] Intro to Apache Spark Training - Part 1. Perf. Pacco. Youtube. Databricks, n.d. Web. <https://

www.youtube.com/watch?v=VWeWViFCzzg>.

Integer Matching Using Cluster Computing Frameworks
By: Mohamed Mohamedtaki, Directed Research Student

Supervised by: Dr. Ilias Kotsireas, Professor, Wilfrid Laurier University
March 23, 2016

Figure 1: The inserting hurdle for large datasets

Figure 2: Hadoop processing cycle [5]

Figure 3: Spark life cycle

Figure 4: Spark 2-way matching efficiency

