
The Search for Hadamard Matrices of Order 428
The Road Leading Towards an Algorithm Construction
Scott King

Contact Information:
Physics and Computer Science
Wilfrid Laurier University
75 University Ave. W, ON, Canada

Email: king3730@mylaurier.ca

Abstract
I will be proving the result of a paper for finding a Hadamard matrix

of order 428. Using four base sequences, that are Turyn-type, of lengths
n, n, n, n − 1, they are able to find four new sequences. These new se-
quences of lengths 2n − 1, 2n − 1, n and n are then used to generate a
numerous amount of sequences which they filter to find the appropriate
solution.

Motivation

The methodologies and algorithms behind this paper[1], yield
an important result of being able to filter sequences to find solu-
tions for Hadamard matrices.

•Naturally, the algorithm was not thoroughly detailed and
thus important to fully determine why and how it works

•With this understanding comes the ability to manipulate and
extend it to larger orders

• Larger orders are increasingly more difficult to prove and us-
ing this method may give new insights into solving them

Introduction

Proving the existence of Hadamard matrices is a problem with
an increasing complexity and amount of data to handle.

We will need to know some of the mathematical constructs and
devices use to make this possible.

Let’s start by defining the Hadamard matrix; which is a n × n
square matrix of order n, denoted as H = (hij). Each element of
H is ±1 such that HHT = In. Thus, H is orthogonal. 1 −1 −1

−1 1 −1
1 1 −1

Next, let’s look at Turyn-type sequences. They are quadruples

of ±1-sequences, (A,B,C,D), where each A, ..., D have lengths
of n, n, n, n− 1 respectively.

For a given sequence of the quadruple of length n, there is an
associated nonperiodic autocorrelation function. Denoted as
NA(s), ..., ND(s), where:

NA(s) =
n−1−s∑
i=1

aiai+s (1)

where s = 0, 1, ..., n − 1 and NA(s) = 0 for s ≥ n. These will
eventually filter down the terms where NA(n − 1) will give us
one term.

Next, Hall polynomials, which are discrete generating func-
tions. Denoted as:

hA(t) =

n−1∑
i=0

ait
i (2)

is a function returning constants.

From here, we are ready to start looking at the actual process
of finding solutions.

Hadamard Matrices of Higher Orders

Hadamard matrices of certain orders are known to exist, but
proving their existence is a non-trivial procedure. As the or-
der increases, the time complexity and number of subsequent
sequences increases.

Figure 1: Hadamard matrix of order 4 · 43 = 172

Procedure & Algorithm

Problems of this magnitude and complexity cannot be done se-
rially, due to hardware and especially time constraints. This is
where parallel computing comes in handy.

Theta Filtering

Combining (2) with the 100 θ-filters, we are able to generate a
list of constants:

hZ(e
iθ) = z0 + z1e

iθ + z2e
2iθ + · · · + zn−1e

(n−1)·iθ (3)

where θ ∈ [π100,
2π
100, ...,

100π
100]. From here we can combine (3) with

the real function:

fA(θ) = |hA(eiθ)|2 = Re(c)2 + Im(c)2 (4)

And thus (4) will give us our magnitudes of the complex num-
bers and more importantly our large number of possible solu-
tion sequences.

These θ-filters are generated using meta-programming, using
Maple. We can write a program to implement the filtering
algorithm[1] to provide the code which saves certain sequences
according to their identical first and last six entries. This is done
serially.

Abstractions and Next Steps

•Upon the initial run of this filter, it produces a large file of
52GB

•Using a serial computer to find the specified sequence will
take an unreasonably long time

•We will probably need to increase the number of filters

But we can parallelize some code to be able to do this in a
timely manner. This can be done a few different ways:

•A majority of the code will be written in C using MPI, Message
Passing Interface, which is a programming standard for high
performance computing

• I am also doing some experiments with Mozilla’s new sys-
tems language, Rust; which shows to have some performance
gains completing regex operations

Figure 2: Illustration of parallel algorithm

Figure 2 shows us that we will divide the file between n − 1
cores and each core will use a backtracking algorithm to deter-
mine whether the sequence is in solution space.

If this works for out the 4 sequences of the quadruple, then we
have found our solution.

From our final results, we can translate these sequences to ele-
ments in the matrix and produce images such as Figure 1.

Forthcoming Research on Higher Orders

Following my confirmation of the algorithm for finding a
Hadamard matrix of order 428, we will look at proving the exis-
tence of higher order matrices.

Acknowledgements

I would like to thank Dr. Ilias Kotsireas for giving me an oppor-
tunity in his lab and to develop methods for high performance,
symbolic computing. Also, to SHARCNET for the ability to be
able to run jobs on their machines. Credits to H.Kharagani and
B.Tayfeh-Rezaie for publishing their findings.

References

[1] H. Kharaghani and B. Tayfeh-Rezaie. A hadamard matrix of
order 428. pages 435–440, December 2004.

