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Implications of Information Theory on the Expansion of the 
Universe Using Planck Units and the Hubble Constant

Derivation of the Bekenstein Bound

Information theory traces its origins 

back to Ludwig Boltzmann and his 

formula for entropy, given as

𝑆 = 𝑘𝐵ln(𝑊)

where 𝑆 is the entropy, 𝑘𝐵 is the 

Boltzmann constant and 𝑊 is the 

thermodynamic probability. In 

information theory, a near identical 

formula was proposed by Claude 

Shannon and is given as

𝑁 = 𝑘𝐵ln(𝑝)

where 𝑁 is the information of the 

system, 𝑘𝐵 is the Boltzmann constant 

and 𝑝 is the complexity of the system. 

The Bekenstein bound in the 

universal form of a given system was 

found by Jakob Bekenstein to be,

𝑆 ≤
2𝜋𝑘𝐵𝑅𝐸

ℏ𝑐
where 𝑆 is entropy, 𝑘𝐵 is the 

Boltzmann constant, 𝑅 is the radius of 

a sphere that can contain the system, 

𝐸 is the energy of the system, ℏ is the 

reduced Planck constant and 𝑐 is the 

speed of light in a vacuum. Using the 

formula for the entropy of 

information,

𝑆 = 𝑁𝑘𝐵ln(2)

where 𝑁 is the number of bits of 

information needed to describe the 

system being studied and substituting 

it for the entropy in the Bekenstein 

bound yields,

𝑁𝑘𝐵 ln 2 ≤
2𝜋𝑘𝐵𝑅𝐸

ℏ𝑐

𝑁 ≤
2𝜋𝑅𝐸

ℏ𝑐 ln 2
(1)

Introduction

The smallest unit of 

information is the bit, a binary 

unit that has a value of either 0 

or 1. In computer science, this 

often corresponds to the state 

of an object, which is either 

high or low, for example, the 

state of an individual pixel can 

be described as being either on 

or off. In other words, the state 

of this pixel can be described 

using one bit of information. 

Furthermore, if one were to 

flip a coin, only one bit of 

information would be needed 

to describe the result of 

flipping the coin, a 0 could 

indicate tails and a 1 could 

indicate heads. The Bekenstein 

Bound, which is derived in the 

next section, was discovered by 

Jakob Bekenstein and provides 

an upper bound on the 

information needed to describe 

a physical system contained in 

a sphere of radius 𝑅 down to 

the quantum level. The 

Bekenstein Bound has been of 

particular interest to 

astrophysicists and 

cosmologists, most notably 

Stephen Hawking, who found 

that the information required to 

describe black holes is exactly 

equal to the Bekenstein Bound. 

This project examines the 

Bekenstein Bound in terms of 

Planck units and the Hubble 

constant and the resulting 

implications.

Planck Units

Planck units are units of 

measurement designed to 

normalize quantities in terms of 

natural constants such as 𝑐, ℏ, 𝐺, 

𝜖0 and 𝑘𝐵. Given below are values 

of the Planck time, 𝑡𝑃, and Planck 

energy, 𝐸𝑃. 

𝑡𝑃 =
ℏ𝐺

𝑐5

𝐸𝑃 =
ℏ𝑐5

𝐺

The above equations can be 

rearranged to give the following,

𝑡𝑃
2 =

ℏ𝐺

𝑐5
→ 𝐺 =

𝑡𝑃
2𝑐5

ℏ

𝐸𝑃
2 =

ℏ𝑐5

𝐺
→ 𝐺 =

ℏ𝑐5

𝐸𝑃
2

Equating the above, we find,

𝑡𝑃
2𝑐5

ℏ
=
ℏ𝑐5

𝐸𝑃
2

𝑡𝑃
2𝐸𝑃

2 = ℏ2

ℏ = 𝑡𝑃𝐸𝑃 (2)

Information in a “Planck 

Universe”

Replacing 𝐸 in the Bekenstein 

Bound with Einstein’s 𝐸 = 𝑚𝑐2, 

yields a Bekenstein Bound given 

as

𝑁 ≤
2𝜋𝑐𝑅𝑚

ℏ ln 2
(3)

Considering a universe with a 

radius of 𝑙𝑃 and a mass of 𝑚𝑃, the 

Bekenstein Bound of this “Planck 

Universe” can be expressed as

𝑁 ≤
2𝜋𝑐𝑙𝑃𝑚𝑃

ℏ ln(2)

Solving the above equation, the maximum information required to describe a 

“Planck Universe” is 𝑁 ≅ 9.06 ≡ 9 𝑏𝑖𝑡𝑠. Identical results were found using other 

Planck units.

The Bekenstein Bound and the Hubble Constant and the Resulting Implications

Using Equations (1) and (2), the Bekenstein Bound can be rewritten as

𝑁 ≤
2𝜋𝑅𝐸

𝑡𝑃𝐸𝑃𝑐 ln 2
(4)

Replacing 𝑅 in the above equation with the Hubble Length, given as, 

𝐻𝑢𝑏𝑏𝑙𝑒 𝐿𝑒𝑛𝑔𝑡ℎ =
𝑐

𝐻0
yields,

𝑁 ≤
2𝜋𝐸

𝑡𝑃𝐸𝑃𝐻0 ln 2
(5)

Equation (5) is an interesting equation as it is heavily dependent on natural 

constants and has only two variables, energy, 𝐸 and the Hubble Constant, 𝐻0. 

Furthermore, 𝐸 and 𝐸𝑃 can be eliminated and replaced with a constant value. 

Equation (5) also has interesting potential implications. In the preceding section, in 

the “Planck Universe” 𝐸 would be replaced with 𝐸𝑃 allowing the upper bound of 

𝐻0 to be found in the hypothetical universe. Equation (5) appears to further imply 

that in order for 𝑁 not to decrease over time, which unimpeded could spell disaster 

for the Universe, 𝐻0 must decrease or 𝐸 must increase or some combination of both 

scenarios must occur. If the situation is such that 𝐸 is constant, then in order for 𝑁
to increase, 𝐻0 must decrease, which would imply that if the Universe is expanding, 

then said expansion would have to slow. Finally, another potential implication of 

Equation (5) is its possible value in determining the current value of the Hubble 

Constant, which has been a major research topic in cosmology in the 21st century. If 

the Bekenstein Bound of the Universe could be determined reliably, then Equation 

(5) could be easily used to determine an upper bound for the current Hubble 

Constant, 𝐻0. Additionally, in the case of black holes where the Bekenstein Bound 

is saturated, the strict equality could possibly be used to draw even more definitive 

conclusions.

Conclusion

The Bekenstein Bound is of particular interest to astrophysicists and cosmologists 

due to the profound insights that it can provide into the current state of the Universe 

as well as the evolution of the Universe. The Bekenstein Bound and its various 

manifestations provide valuable governing equations that when combined with 

astronomical observations, could potentially be used to deepen humanity’s 

understanding of the Universe, the laws governing its expansion and the 

mechanisms by which such expansion occurs.


