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Welcome from the organizing committee

June 1st, 2025

It is a pleasure to welcome everyone to the Fifth Pythagorean Conference in Kalamata, Greece, an
advanced research workshop in

• Finite Geometry

• Cryptology

• Algebraic Combinatorics

• Coding Theory

• Combinatorial Designs

Explore Cutting-Edge Combinatorics!

Arrigo Bonisoli, Università di Modena e Reggio Emilia, Italy
Marco Buratti, Sapienza Università di Roma, Italy
Cafer Çalişkan, Antalya Bilim University, Turkey

Otokar Grosek, Slovak Technical University, Bratislava, Slovakia
Gábor Korchmáros, Università della Basilicata, Italy

Ilias S. Kotsireas, Wilfrid Laurier University, Waterloo, ON, Canada
Spyros S. Magliveras, Florida Atlantic University, Boca Raton, FL, USA

Alfred Wassermann, Universität Bayreuth, Germany

Social Program
• Sunday: Arrival day

• Wednesday 2:20 pm: Conference excursion

• Wednesday 8:30 pm: Conference dinner

Web page: https://cargo.wlu.ca/5thPythagorean/web.html
Version May 27, 2025 – 13:00
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Invited speakers

Invited speakers
Ferdinand Ihringer has obtained his PhD in 2015 from Giessen University. Currently,
he is a tenure-track assistant professor at the Southern University of Science and Tech-
nology in Shenzhen. In the past, he held two postdoctoral fellowships of the Research
Foundation - Flanders (FWO) and one postdoctoral fellowship of the Pacific Institute
for the Mathematical Sciences (PIMS). He was an invited speaker at various confer-
ences, workshops, colloquia and seminars. Most notably, in 2023, he was one of eight
plenary speakers at CanaDAM, a biennial conference with more than 320 participants
in that year.

Donald L. Kreher is an emeritus professor of Mathematical Sciences from Michigan
Technological University, where he was a professor for 29 years. He coauthored with
Douglas R. Stinson fifteen research papers and the internationally acclaimed textbook:
“Combinatorial Algorithms: Generation Enumeration and Search”. He has numerous
other publications in computational and algebraic methods for determining the struc-
ture and existence of combinatorial configurations. In 1995, Professor Kreher was
awarded the Marshall Hall Medal from the Institute of Combinatorics and its Applica-
tions. He is currently the production manager and an editor-in-chief for the Bulletin of

the Institute of Combinatorics and its Applications (BICA).

Klavdija Kutnar obtained her PhD from University of Primorska in 2008. She was
elected the fourth rector of the University of Primorska in 2019 and is now running her
second mandate. Her main research area is algebraic graph theory. She has been ac-
tively involved in various editorial boards of esteemed mathematical journals. She has
been a member of the editorial board of the journal Ars Mathematica Contemporanea
since 2016 and assumed the position of editor-in-chief in 2018. She is also a member
of the editorial boards for the Bulletin of the Institute of Combinatorics and its Ap-
plications and Algebraic Combinatorics, and managing editor of the journal ADAM –
The Art of Discrete and Applied Mathematics. She played a key role as the Deputy
Chair of the Organizing Committee for the 8th European Congress of Mathematics in

2021. She is currently serving as a scientific committee member of Balkan Mathematics Conference
(EMS – Regional Conference Series) and as a chair of EMS Meetings Committee.

Sam Mattheus obtained his PhD from Vrije Universiteit Brussel in 2022. Afterwards
he moved to University of California San Diego for one year supported by a Fulbright
and BAEF fellowship. Since 2023 he is a postdoc at Vrije Universiteit Brussel. His
research ranges from finite geometry and association schemes to extremal graph theory
and Ramsey theory. In 2023, he was awarded the Kirkman Medal of the Institute of
Combinatorics and its Applications.

Alessandro Montinaro began his academic career as an Assistant Professor at the Uni-
versity of Salento in 2005, where he is now an Associate Professor. His main field of
interest is Discrete Mathematics with particular attention to Design Theory. His major
contributions concern the construction of combinatorial designs with a rich group of
symmetries. He is author or coauthor of more than forty scientific papers published in
the main international journals on Combinatorics. In particular, he has collaborations
with S. H. Alavi, S. Zhou and C. E. Praeger. He served as a referee (multiple times)
for 16 journals. Also, he served as a reviewer for Research Funding Organizations. He

attended several conferences/workshops. He is an Associate Editor of Innovations in Incidence Geometry
and Note di Matematica.
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Invited speakers

Maura Paterson obtained her PhD from Royal Holloway, University of London in 2005,
under the supervision of Simon Blackburn and Peter Wild. She subsequently under-
took postdoctoral research there in collaboration with Sean Murphy, and then with
Keith Martin. In 2009 she joined Birkbeck, University of London, where she is now
a Professor of Mathematics in the School of Computing and Mathematical Sciences.
Her main area of research interest is applications of combinatorics to problems arising
from cryptography and information security.

Dimitris E. Simos holds a PhD in Discrete Mathematics and Combinatorics from Na-
tional Technical University of Athens and a habilitation degree in Applied Computer
Science from Graz University of Technology. He is Key Researcher for the Applied
Discrete Mathematics for Information Security research area with SBA Research lo-
cated in Vienna and leads its Mathematics for Testing, Reliability and Information
Security (MATRIS) research group. He is also the Head of Strategic Research at SBA
Research responsible for shaping and implementing the strategic R&D agenda of the
research center. He is further an Associate Professor (non-tenured track) with Graz

University of Technology and holds a Guest Researcher appointment with the US National Institute of
Standards and Technology (NIST), Applied Computational Mathematics Division (ACMD). During his
career Dimitris has (co)-authored over 150 papers in Discrete Mathematics and their applications to Com-
putational and Computer Science and has been awarded the rank of Fellow of the Institute of Combina-
torics and its Applications (FTICA) and the Applications of Computer Algebra Early Researcher Award
(ACA-ERA 2024). Last, he is the Founding Editor and current Lead Section Editor of the Springer Na-
ture Computer Science (SNCS) journal section on combinatorial methods and models in system testing
(COMSYT) and has served as the Austrian Delegate to the United Nations Commission on Science and
Technology for Development (UN CSTD). His research interests include Combinatorial Designs and
their applications to Software Testing, Algorithms, Quantum Computing, Cryptography and all aspects
of Information Security, as well as, Design of Experiments and their interplay with Computer Algebra,
Symbolic Computation, Mathematical Modelling, Optimization and Disaster Management.

Tommaso Traetta is an Associate professor at the University of Brescia (Italy) since
2021.
In 2010, he obtained his PhD in Mathematics and Computer Science under the super-
vision of Marco Buratti and was later awarded, by the Institute of Combinatorics and
its Applications (ICA), the 2013 Kirkman Medal that recognizes excellent research
in the early stage of a researcher career. From 2015 to 2017, he has been a Marie-
Curie Fellow, and more recently he has been invited as a visiting Professor at Toronto
Metropolitan University (Canada) and Jiaotong University (China).

During his career, he has been plenary speaker, or invited speaker in special sessions, at 13 international
conferences; he has presented contributed talks at more than 25 further conferences and gave several
seminars. He has also been a member of the organizing committee for special sessions and co-organizer
of the international conference Discretaly.
His research interests include: Combinatorial design theory, (infinite) Graph decompositions, Difference
Families, Regular Steiner triple systems, Automorphisms of combinatorial structures, Graph factoriza-
tions, packings and coverings, Graph labelings, and applications to DNA self-assembly, Heffter arrays
and Graph embeddings, Combinatorial matrices.
He has published 34 papers in international refereed journals and is a Co-Managing Editor of Ars Com-
binatoria. He is a member of the ICA Prize Canvassing Committee.
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Invited speakers

Charlene Weiss obtained her PhD in Mathematics from Paderborn University, Ger-
many, in 2023. In 2024/2025 she was working as a substitute professor for Geometry
at Otto von Guericke University Magdeburg, Germany. Since April 2025, she has a
postdoctoral position at the University of Amsterdam, funded by the DAAD (German
Academic Exchange Service). Her research focuses on algebraic combinatorics, par-
ticularly association schemes, and their applications to coding theory, design theory,
and finite geometry.

Yue Zhou is a professor at the National University of Defense Technology, China.
He mainly studies finite geometry, algebraic combinatorics and their applications in
coding and cryptography. He has published nearly 50 papers in journals such as Adv.
Math., J. Cryptology, JCTA, Combinatorica, etc. In 2016, he won the Kirkman Medal
of the Institute of Combinatorics and its Applications. He serves as a member of the
editorial boards of Designs, Codes and Cryptography and Journal of Combinatorial
Designs.
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Conference Program

Conference Program
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Conference Program

Monday, June 2nd

8:30 Opening

8:45 Plenary lecture
Yue Zhue: On the Existence of Dense Packing of Lee Spheres

Contributed talks

9:30 Ferruh Özbudak
On the Second Generalized Covering Radius of Binary Primitive Triple-Error-
Correcting BCH Codes

9:50 Mark Pankov
Geometry of equidistant codes

9:50 Gioia Schulte
Evaluation codes arising from symmetric polynomials

10:30 Coffee
Contributed talks

11:00 Jonathan Jedwab
Quaternary Legendre pairs of even length

11:20 Patric Östergård
Classifying Generalized Howell Designs

11:40 Anton Betten
A Flag Transitive Large Set of Desargues Configurations

12:00 Mariusz Meszka
Two-factorizations of some regular graphs

12:20 Lucia Moura
New families of covering arrays of strength 3 and 4 using LFSR sequences

12:40 Edoardo Persichetti
On Practical Post-Quantum Signatures from the Code Equivalence Problem

13:00
Lunch

15:15 Plenary lecture
Klavdija Kutnar: Hamilton compression

16:00 Coffee
Contributed talks

16:30 John Baptist Gauci
Algebraic structures of MRD codes

16:50 Robert Jajcay
Cyclic codes with large minimum distances and related combinatorial designs

17:10 Tatiana Jajcayova
A new family of maximum rank distance codes

17:30 Nancy E. Clarke
Pursuit-evasion on graphs arising from combinatorial designs

17:50 Renata Del-Vecchio
Integral Hypergraphs

18:10 Francesco Romeo
Sequentially Cohen-Macaulay binomial edge ideals of graphs
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Conference Program

Tuesday, June 3rd

8:45 Plenary lecture
Sam Mattheus: Combinatorics of finite spherical buildings

Contributed talks

9:30 Philipp Heering
Erdős-Ko-Rado problems and Uniqueness

9:50 Ivan Landjev
Quadratic sets and (𝑡 mod 𝑞)-arcs in PG(𝑟, 𝑞)

10:10 Assia Rousseva
A Reducibility Theorem for Minihypers

10:30 Coffee
Contributed talks

11:00 Emanuel Juliano
Fixed Point Free Automorphisms in Graphs Classes

11:20 Anargyros Katsampekis
Splittings of toric ideals of graphs

11:40 Jelena Sedlar
An alternative approach to the Five Line Conjecture

12:00 Robin Simoens
Design switching on graphs

12:20 Vladislav Taranchuk
On the Chromatic Number of Grassmann Graphs

12:40 Piotr Wojciechowski
Transitivity in weighted directed graphs

13:00
Lunch

15:15 Plenary lecture
Donald Kreher: Near-factorization of finite groups

16:00 Coffee
Contributed talks

16:30 Mark R. Sepanski
Robinson–Schensted shapes arising from cycle decompositions

16:50 Shaul Zemel
Stable Higher Specht Polynomials and Representations of Finite and Infinite Sym-
metric Groups

17:10 Assaf Goldberger
Automorphism actions with nilpotent non-commutative coefficient group, constructed
via cohomology

17:30 Arianna Dionigi
On Galois subcovers of the Hermitian curve

17:50 Barbara Gatti
Maximal Curves Over Finite Fields

18:10 Tony Shaska
Rational points of weighted hypersurfaces over finite fields and an application to
isogeny-based cryptography
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Conference Program

Wednesday, June 4th

8:45 Plenary lecture
Charlene Weiß: Codes and Designs in Polar Spaces

Contributed talks

9:30 Benedek Kovàcs
Constructing affine [3, 1]-avoiding sets from graphs and linear codes

9:50 Michael Hurley
New Geometric Large Sets

10:10 Peter Horak
Some Conjectures and Results on Tilings

10:30 Coffee
10:55 Plenary lecture

Tommaso Traetta: Highly symmetric Steiner and Kirkman triple systems

Contributed talks

11:40 Raúl Falcón
Study of symmetries of Latin squares by local permutation polynomials

11:20 González Regadera
Coloring Latin squares by paratopisms

11:40 Jaime Gutierrez
Local permutation polynomials and Latin hypercubes

11:20 Ludwig Kampel
Locating single Failure Inducing 𝑡-way Interactions with 0𝑡 -Locating Arrays

13:00
Lunch

14:20
Excursion

20:30
Conference dinner
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Conference Program

Thursday, June 5th

8:45 Plenary lecture
Ferdinand Ihringer: On Boolean Degree 1 Functions, Anti-Designs, and Cameron-
Liebler Sets in Finite Vector Spaces

Contributed talks

9:30 Bart De Bruyn
Combinatorial characterizations of ovoidal cones

9:50 Adam Tyc
Maximal cliques in the collinearity graphs of geometries of simplex codes

10:10 Zijian Zhou
Neighborhoods of Vertices in the Isogeny Graph of Principally Polarized Superspecial
Abelian Surfaces

10:30 Coffee
Contributed talks

11:00 Chris Mitchell
New constructions for orientable sequences

11:20 Onur Ağırseven
On the Buratti-Horak-Rosa Conjecture for Small Supports

11:40 Lukas Klawuhn
Designs of perfect matchings

12:00 Vedrana Mikulić Crnković
Quasi-strongly regular digraphs and new strongly regular digraph with parameters
(165, 60, 36, 23, 21)

12:20 Juliana Palmen
Further results on decomposition of low degree circulant graphs into cycles

12:40 Prangya Parida
Cover-free Families on Graphs

13:00
Lunch

15:15 Plenary lecture
Alessandro Montinaro: 2-Designs admitting a flag-transitive automorphism group

16:00 Coffee
Contributed talks

16:30 Usman Mushrraf
One weight sum-rank metric codes

16:50 Krzysztof Petelczyc
Geometry of binary simplex codes and symmetric block designs

17:10 Mariusz Żynel
Automorphisms of geometries related to binary equidistant codes

17:30 Zita Abreu
Optimal Multidimensional Convolutional Codes

17:50 Carlos Vela Cabello
The neighbor graph of binary Linear Complementary Dual Codes

18:10 Ivona Traunkar
Self-orthogonal and LCD codes related to some combinatorial structures
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Conference Program

Friday, June 6th

8:45 Plenary lecture
Maura Paterson: Strong External Difference Families, Graph Labeling and Near Fac-
torizations of Finite Groups

Contributed talks

9:30 Valentino Smaldore
A family of strongly regular graphs from hyperbolic quadrics

9:50 Jurgen Mezinaj
A Neurosymbolic Approach to Galois Group of Septics

10:10 Patricija Šapokaitė
Coadjoint Matroids and Dependencies on Hypergraphs

10:30 Coffee
11:00 Plenary lecture

Dimitris E. Simos: Applications of Combinatorial Designs to Software Engineering,
Cyber Security and Disaster Science
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Conference Program

Abstracts
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Invited Talk Monday, June 2nd, 8:45

On the Existence of Dense Packing of Lee Spheres

Yue Zhou
National University of Defense Technology

yue.zhou.ovgu@gmail.com

Based on the packing density of cross-polytopes in R𝑛, more than 50 years ago Golomb and Welch
proved that the packing density of Lee spheres in Z𝑛 must be strictly smaller than one provided that the
dimension 𝑛 > 2 and the radius 𝑟 of the Lee sphere is large enough compared with 𝑛. In the same paper
[1], they conjectured that there is no perfect packing of Lee spheres of radius 𝑟 in Z𝑛 for 𝑛 ≥ 3 and 𝑟 ≥ 2.
This conjecture still remains open. All the partial results based on geometric ideas are obtained for fixed
dimension 𝑛 and radius 𝑟 which is comparatively large enough. In this talk, we concentrate on this
conjecture with fixed radius 𝑟 and different dimension 𝑛.
First, we prove the existence of asymptotically optimal coverings of the facets of the Lee sphere 𝑆(𝑛, 𝑟)
centered at the origin by its translates as 𝑛 → ∞, which shows the difficulty of the proof of the Golomb-
Welch conjecture by local analysis. Then we look at the constructions of packings of Lee spheres with
density 𝛿𝑛 → 2𝑟

(2𝑟+1)𝑟 ! as 𝑛 → ∞. When 𝑟 = 2, we further improve the packing density to 𝛿𝑛 → 2
3 as

𝑛→ ∞.
In the second part we focus on the lattice tiling cases of the Golomb-Welch conjecture. We present a
method to improve the symmetric polynomial criteria originally introduced by Kim [2] and generalized
by Qureshi [3], Zhang and Ge [5]. By the new criteria, we can prove the lattice tiling case of the Golomb-
Welch conjecture for 𝑟 = 3 and every 3 ≤ 𝑛 ≤ 1000 except for 𝑛 = 122, 634.

References

[1] S. W. Golomb and L. R. Welch. Perfect codes in the Lee metric and the packing of polyominoes.
SIAM Journal on Applied Mathematics, 18(2):302–317, 1970.

[2] D. Kim. Nonexistence of perfect 2-error-correcting Lee codes in certain dimensions. European
Journal of Combinatorics, 63:1 – 5, 2017.

[3] C. Qureshi. On the non-existence of linear perfect Lee codes: The Zhang-Ge condition and a new
polynomial criterion. European Journal of Combinatorics, 83:103022, 2020.

[4] A. Xiao and Y. Zhou. On the packing density of Lee spheres. Designs, Codes and Cryptography,
Apr. 2024. published online.

[5] T. Zhang and G. Ge. Perfect and quasi-perfect codes under the 𝑙𝑝 metric. IEEE Trans. Inform.
Theory, 63(7):4325–4331, 2017.
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Contributed Talk Monday, June 2nd, Session start: 9:30

On the Second Generalized Covering Radius of Binary Primitive
Triple-Error-Correcting BCH Codes

Ferruh Özbudak & İlknur Öztürk
Sabancı University, Türkiye

ferruh.ozbudak@sabanciuniv.edu &
ilknur.ozturk@sabanciuniv.edu

The covering radius is a basic geometric parameter of a code. The study of the covering radius of error-
correcting codes plays an important role in coding theory, with applications in communication systems as
error detection, data compression, testing, and in other areas. The problem of finding the covering radius
of a given code is very hard in general. There are only a few classes of codes with special parameters in
which the covering radii are known.
The covering radius of binary primitive BCH codes was determined in [3]. In [5], the problem of the
determination of the covering radius for an arbitrary Melas code was completed. Recently, in [6] and [7],
the covering radius of generalized Zetterberg type codes have been obtained for all finite fields of odd
characteristic.
The generalized covering radius extends this concept, offering an enriched perspective by detailing code
properties. For some application and connections to other areas we refer, for example, [1] and [2].
The second generalized covering radius of binary primitive double-error-correcting BCH codes has been
determined in [8]. Using methods from coding theory, combinatorics and the arithmetic of algebraic vari-
eties over finite fields, we previously determined the third generalized covering radius of binary primitive
double-error-correcting BCH codes [4]. In this work we obtain results on the second generalized covering
radius of binary primitive triple-error-correcting BCH codes using similar methods.

References
[1] D. Elimelech, M. Firer, and M. Schwartz, The generalized covering radii of linear codes, IEEE

Transactions on Information Theory, 2021, vol. 67, pp. 8070-8085.

[2] D. Elimelech, H. Wei, and M. Schwartz, On the generalized covering radii of Reed-Muller codes,
IEEE Transactions on Information Theory, 2022, vol. 68, pp. 4378-4391.

[3] S. D. Cohen, The length of primitive BCH codes with minimal covering radius, Designs, Codes and
Cryptography, vol. 10, pp. 5–16, 1997.

[4] F. Özbudak, and İ. Öztürk, The third generalized covering radius for binary primitive double-error-
correcting BCH codes, submitted, 2025.

[5] M. Shi, T. Helleseth, F. Özbudak, and P. Solé, Covering radius of Melas codes, IEEE Transactions
on Information Theory, 2022, vol. 68, pp. 4354-4364.

[6] M. Shi, T. Helleseth, F. Ozbudak, Covering radius of generalized Zetterberg type codes over finite
fields of odd characteristic, IEEE Transactions on Information Theory, 2023, vol. 69, pp. 7025-
7048.

[7] M. Shi, S. Li, T. Helleseth, and F. Özbudak, Determining the covering radius of all general-
ized Zetterberg codes in odd characteristic, IEEE Transactions on Information Theory, 2025, doi:
10.1109/TIT.2025.3544025.

[8] L. Yohananov and M. Schwartz, The second generalized covering radius of binary primitive double-
error-correcting BCH codes, arXiv preprint, arXiv:2409.10420, 2024.
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Contributed Talk Monday, June 2nd, Session start: 9:30

Geometry of equidistant codes

Mark Pankov
Faculty of Mathematics and Computer Science,

University of Warmia and Mazury,
Słoneczna 54, 10-710 Olsztyn, Poland
pankov@matman.uwm.edu.pl

We present a brief survey of recent results and problems concerning the point-line geometries of equidis-
tant codes. The main place is occupied by automorphisms and maximal cliques in the collinearity graphs.
We describe relations to symmetric block designs and normal rational curves.
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Contributed Talk Monday, June 2nd, Session start: 9:30

Evaluation codes arising from symmetric polynomials

Gioia Schulte
University of Salento, Italy

gioia.schulte@unisalento.it
Joint work with Barbara Gatti, Gábor Korchmáros, Gábor P. Nagy, Vincenzo Pallozzi

Lavorante

Datta and Johnsen [1] introduced a new family of evalutation codes in a vector space of dimension ≥ 2
over a finite field F𝑞 where linear combinations of elementary symmetric polynomials are evaluated on
the set of all distinguished points, that is points with pairwise distinct coordinates. A generalization of
the Datta-Johnsen codes is found in the recent paper [2] where the approach is a combination of Galois
theoretical methods with Weil-type bounds for hypersurfaces.
In this talk we deal with another generalization by taking 𝑚-dimensional linear systems of symmetric
polynomials. We thoroughly work out the case of 𝑚 = 3. Computation for small values of 𝑞 = 7, 9 shows
that carefully chosen such generalized Datta-Johnsen codes

[
1
2𝑞(𝑞 − 1), 3, 𝑑

]
have minimum distance 𝑑

equal to the optimal value minus 1.

Keywords: evaluation code, symmetric polynomials, finite field

References
[1] M. Datta, T. Johnsen. “Codes from symmetric polynomials”, Des. Codes and Cryptogr., 91,

747–761, 2023.

[2] G. Micheli, V. Pallozzi Lavorante, P. Waitkevich. “Codes from 𝑎𝑚-invariant polynomials”, Des.
Codes and Cryptogr., 2024, https://doi.org/10.1007/s10623-024-01550-3.

15



Contributed Talk Monday, June 2nd, Session start: 11:00

Quaternary Legendre pairs of even length

Jonathan Jedwab, Thomas Pender
Simon Fraser University

jed@sfu.ca

One of the most famous open problems in discrete mathematics is Paley’s 1933 conjecture that there
is a Hadamard matrix of order 𝑛 > 2 if and only if 𝑛 is a multiple of 4. It has long been known that
this conjecture would follow from the existence of a pair of binary Legendre sequences for every odd
length. It has recently been shown that this conjecture would also follow from the existence of a pair of
quaternary Legendre sequences for every even length.
We use finite fields to give the first general constructions of quaternary Legendre sequences of even
length. Firstly, we modify a classical construction due to Szekeres to show that there is a quaternary
Legendre sequence of even length (𝑞−1)/2 for every prime power 𝑞 congruent to 1 modulo 4. Secondly,
we use the Gray map to show that there is a quaternary Legendre pair of length 2𝑝 for every odd prime 𝑝
for which 2𝑝 − 1 is a prime power.
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Contributed Talk Monday, June 2nd, Session start: 11:00

Classifying Generalized Howell Designs

Patric R. J. Östergård
Department of Information and Communications Engineering

Aalto University School of Electrical Engineering
P.O. Box 15600, 00076 Aalto, Finland
patric.ostergard@aalto.fi

A 𝑡-GHD𝑘 (𝑠, 𝑣;𝜆) generalized Howell design is an 𝑠 × 𝑠 array, each cell of which is either empty or
contains a 𝑘-subset of elements of some set 𝑋 of size 𝑣 such that (i) each element of 𝑋 appears exactly
once in each row and in each column and (ii) no 𝑡-subset of elements from 𝑋 appears in more than 𝜆 cells.
Computer-aided classification of such designs is here considered in the framework of permutation codes
with specific properties. Computations show among other things that there is a unique 2-GHD3 (7, 18; 1);
that there are 340 2-GHD3 (7, 21; 1) (correcting an earlier result); and that the known 2-GHD5 (8, 40; 1)
is unique. Double counting is used to validate the results.

pyt hag ore vni cfk bdj
bhp cei aky dfr jno gtv
cov dhi gnp jkt abr efy
dny krv fjp bcg eht aio
aft ben dko hjv giy cpr
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egk acj nrt bfi hoy dpv
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Contributed Talk Monday, June 2nd, Session start: 11:00

A Flag Transitive Large Set of Desargues Configurations

Anton Betten
Kuwait University

anton.betten@ku.edu.kw

We discuss partitions of the set of 3-subsets of the set 1, . . . , 10 into 12 pairwise disjoint Desargues
configurations. This is an instance of a structure in the theory of combinatorial designs called a large set.
The 3-subsets are called lines. The Desargues configuration is the incidence structure of 10 points and
10 lines arising in the theorem of Desargues. Using computer, the complete number of possibilities of
such large sets is determined. Exactly one example has the additional property that the automorphism
group acts flag transitively on the object. This means that any incident point / line pair can be mapped
to any other. The automorphism group of the object is isomorphic to the automorphism group of the
symmetric group of 6 things, of order 1440. Here we recall that the symmetric group of degree 6 is the
only symmetric group admitting a non-trivial outer automorphism. The talk will discuss the classification
of all large sets with these parameters and an analysis of the specific flag transitive object.
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Contributed Talk Monday, June 2nd, Session start: 11:00

Two-factorizations of some regular graphs

Mariusz Meszka
AGH University of Kraków, Poland

meszka@agh.edu.pl

A 𝑘-factorization of 𝐺 is a collection {𝐹1, 𝐹2, . . . , 𝐹𝑡 } of edge-disjoint 𝑘-factors such each edge of 𝐺
belongs to exactly one 𝐹𝑖 . We say that 𝐺 has an 𝐹-factorization if each 𝐹𝑖 , 𝑖 = 1, 2, . . . , 𝑡, is isomorphic
to 𝐹.
One of the best-known open problems concerning two-factorizations is the famous Oberwolfach prob-
lem, posed by G. Ringel in 1967, which asks whether, for any two-factor 𝐹, the complete graph 𝐾𝑛 (when
𝑛 is odd) or 𝐾𝑛 \ 𝐼 (when 𝑛 is even and 𝐼 is a one-factor removed from 𝐾𝑛) admits an 𝐹-factorization.
Several years later A. Rosa suggested the following extension of the Oberwolfach problem, the so-called
Hamilton-Waterloo problem, which asks for the existence of a two-factorization of 𝐾𝑛 or 𝐾𝑛 \ 𝐼 (de-
pending on the parity of 𝑛) in which 𝑟 of its two-factors are isomorphic to a given two-factor 𝑅, and the
remaining 𝑞 two-factors are isomorphic to a given two-factor 𝑄, for any admissible 𝑟 and 𝑞.
Results related to both these problems will be presented. Moreover, algorithmic methods for constructing
two-factorizations will be discussed.
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Contributed Talk Monday, June 2nd, Session start: 11:00

New families of covering arrays of strength 3 and 4 using LFSR
sequences

Lucia Moura
University of Ottawa, Canada
lmoura@uottawa.ca

Joint work with Kianoosh Shokri and Brett Stevens

A covering array of strength 𝑡, denoted by CA(𝑁; 𝑡, 𝑘, 𝑣), is an 𝑁 × 𝑘 array 𝐶 over an alphabet with 𝑣
symbols with the property that for any subarray consisting of 𝑡 columns of𝐶, every 𝑡-tuple of the alphabet
appears at least once as a row of the subarray. An additional parameter 𝜆 is used when we require that
every 𝑡-tuple of the alphabet appears at least 𝜆 times as a row of the subarray. An orthogonal array is
a special case of a covering array, where each 𝑡-tuple appears exactly 𝜆 times, so in this case 𝑁 = 𝜆𝑣𝑡 .
Given 𝑡, 𝑘, 𝑣, we aim to determine CAN(𝑡, 𝑘, 𝑣) which is the minimum 𝑁 for which a CA(𝑁; 𝑡, 𝑘, 𝑣)
exists. This is a hard problem in general, so we seek good upper bounds for CAN obtained from con-
structions.

Raaphorst, Moura and Stevens [3] gave a construction for a CA(2𝑞3−1; 3, 𝑞2+𝑞+1, 𝑞), for every prime
power 𝑞, using linear feedback shift register (LFSR) sequences over finite fields. In a recent paper with
Kianoosh Shokri [4], we explore using this “good” ingredient to build covering arrays of strength 3 with a
larger number of columns via recursive constructions and elimination of redundant rows. Several of these
covering arrays improve the best upper bounds currently found in Colbourn’s covering array tables [1].
In this talk, I describe these results and discuss our ongoing work to generalize the main result in each
of the papers [3, 4] for the case of strength 4. There are interesting connections to finite geometry, as we
seek to generalize [3] using a geometrical perspective discussed in [2]. This is joint work with Kianoosh
Shokri and Brett Stevens.
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On Practical Post-Quantum Signatures from the Code Equivalence
Problem

Edoardo Persichetti
Department of Mathematics and Statistics, Florida Atlantic University

epersichetti@fau.edu

The design of secure post-quantum digital signatures is a particularly important and current topic, es-
pecially considering the presence of initiatives such as NIST’s call for proposals. While lattice-based
designs offer intriguing solutions (some of which were recently standardised) NIST itself expressed the
desire for alternatives, based on different security assumptions. Code-based signatures are historically
challenging to design, due to the intrinsic nature of the Hamming metric, and the syndrome decoding
problem; however, a recent approach exploiting the notion of code equivalence offers an interesting al-
ternative. In this talk, we briefly summarise the state of the art, introduce the LESS signature scheme,
and then present recent developments which greatly contribute to making it one of the most promising
code-based signature schemes in literature.
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Hamilton compression

Klavdija Kutnar
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Given a graph 𝑋 with a Hamilton cycle 𝐶, the compression factor 𝜅(𝑋,𝐶) of 𝐶 is the order of the largest
cyclic subgroup of Aut(𝐶) ∩ Aut(𝑋), and the Hamilton compression 𝜅(𝑋) of 𝑋 is the maximum of
𝜅(𝑋,𝐶) where 𝐶 runs over all Hamilton cycles in 𝑋 .
Motivated by Gregor, Merino and Mütze generalization of the well-known open problem regarding the
existence of vertex-transitive graphs without Hamilton paths/cycles we have recently started to investigate
existence of Hamilton cycles, admitting large rotational symmetry, in certain families of vertex-transitive
graphs.
The work discussed in this talk is a joint work with Dragan Marušič and Andriaherimanana Sarobidy
Razafimahatratra.
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On the algebraic connectivity of a subfamily of generalized Petersen
graphs

John Baptist Gauci
Department of Mathematics, Faculty of Science, University of Malta

john-baptist.gauci@um.edu.mt
Joint work with James Zammit

In 1973, Fiedler showed that the second smallest eigenvalue 𝜆2 of the Laplacian matrix 𝐿 (𝐺) of a simple
graph 𝐺 is zero if and only if 𝐺 is disconnected. Due to this relationship, 𝜆2 is called the algebraic
connectivity of 𝐺, and is usually denoted by 𝛼(𝐺). It serves as a key indicator of whether a graph is
connected or not.
Since its introduction by Fiedler, algebraic connectivity has been widely studied, particularly in relation
to vertex and edge connectivity. Researchers have also explored its connections with various graph
invariants, such as the independence number and matching number, and have characterized graphs that
attain some set bounds. A number of bounds for 𝛼(𝐺) have been established leading to deep insights into
the spectral properties of graphs. Additionally, researchers have extensively studied graphs that maximize
or minimize 𝛼(𝐺) within specific families.
In this talk, we examine the algebraic connectivity of a subfamily of generalized Petersen graphs, dis-
cussing bounds that make use of certain structural properties.
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Classification and Extremal Properties of Graphs Sharing
Properties of Vertex-Transitive Graphs

Robert Jajcay
Comenius University, Bratislava, Slovakia
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While many problems in Graph Theory do not require the considered graphs to be vertex- or edge-
transitive, ultimately, some of the best constructions yield graphs that just ‘happen’ to be vertex- or
edge-transitive. We choose to address this observation in the context of the Cage and Degree/Diameter
Problems, two of the fundamental problems in Extremal Graph Theory, and focus on classes of extremal
graphs that are not necessarily vertex-transitive but share the cycle structure properties of vertex-transitive
(or often specifically Cayley) graphs.
After a brief survey of the role of vertex-transitive graphs in these areas, we introduce three intercon-
nected concepts sharing the properties of vertex- or edge-transitive graphs: edge-girth regular, girth-
regular and vertex-girth-regular graphs. All of these concept can be best understood via the concept of
the girth-cycle signature defined for each vertex 𝑢 to be the multi-set containing the numbers of girth-
cycles passing through the edges adjacent to 𝑢. Using this concept, a 𝑘-regular graph of girth 𝑔, a
(𝑘, 𝑔)-graph, is called edge-girth-regular, 𝑒𝑔𝑟 (𝑘, 𝑔, 𝜆)-graph, if the girth-cycle signature of each vertex
is the same and the number of girth-cycles through each edge is equal to a constant 𝜆. A (𝑘, 𝑔)-graph
is called girth-regular if the girth-cycle signature of each vertex is the same (without requiring all the
members of the signature to be the same), and is called vertex-girth-regular, 𝑣𝑔𝑟 (𝑘, 𝑔,Λ), if the sum of
the numbers in the girth-cycle signature of each vertex is the same and equal to Λ. Clearly, each edge-
girth-regular graph is girth-regular and each girth-regular graph is vertex-girth-regular (with none of the
classes equal). In addition, vertex-transitive graphs are necessarily girth- and vertex-girth-regular and
edge-transitive graphs are edge-girth-regular (with all the classes distinct again).
In view of the connections of the above defined classes of graphs to the Cage and Degree/Diameter
Problems, we shall present some classifications for small parameter sets 𝑘 , 𝑔, 𝜆, and Λ, and investigate
the extremal properties of graphs in these classes. The results presented are based on collaboration with
the presenter’s co-authors listed below.
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Partial automorphisms of combinatorial structures

Tatiana B. Jajcayova
Comenius University, Bratislava, Slovakia
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Even though researchers often tend to focus on combinatorial structures possessing many symmetries,
the majority of combinatorial structures (for instance graphs) are in fact asymmetric, i.e., having no non-
trivial symmetries at all. In our talk, we attempt to reconcile these two seemingly opposing views, and
we will argue that asymmetric and highly symmetric structures are not that far apart as it may seem.
For example, removing just a single vertex from a vertex transitive graph may result in a graph with a
trivial automorphism group; while removing a vertex from a graph belonging to the family of minimal
asymmetric graphs (introduced by Nešetřil) always leads to a graph with a non-trivial automorphism
group. Such situations call for the use of the concept of a partial automorphism which is an isomorphism
between two induced substructures.
The set of all partial automorphisms of a given combinatorial structure together with composition of
partial maps and taking partial inverses forms inverse monoid which is an analouge of the concept of an
automorphism group. We believe, that inverse monoids of partial automorphisms captures better the local
properties of the considered combinatorial structures. The problem of determining the full automorphism
group of a combinatorial structure is one of the well-known hard problems. The focus of our project is on
an extension of the automorphism group problem to that of inverse monoid problem. The goal is to apply
the algebraic methods of partial permutation semigroup theory to the class of combinatorial structures that
admit none or only very few total automorphisms and resist the use of methods from permutation group
theory. In our presentation, we describe the algebraic structure of such inverse monoids by the means of
the standard tools of inverse semigroup theory and give a characterization of inverse monoids which arise
as inverse monoids of partial graph automorphisms. The results involving partial automorphisms and use
of inverse monoids may offer new insights into some long open problems from Graph Theory, as we will
illustrate with examples.
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Pursuit-evasion on graphs arising from combinatorial designs

Nancy E. Clarke
Acadia University
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Joint work with A. Burgess, R. Cameron, P. Danziger, S. Finbow, C. Jones, and D. Pike

Cops and Robber is a well-studied pursuit-evasion game played on graphs. In this talk, we discuss a
variation of the game with an alternate capture condition. Instead of a win for the cop side resulting
from at least one of the cops occupying the same vertex as the robber as in the original game, the cops in
this surrounding version win by occupying each of the robber’s neighbouring vertices. Our parameter of
interest is the minimum number of cops that suffice to win on a graph 𝐺. We present a variety of results
for this parameter, including exact values for several classes of graphs as well as more general bounds.
In particular, we present results for graphs arising from combinatorial designs.
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Integral Hypergraphs

Renata Del-Vecchio and Lucas Portugal Lima
Universidade Federal Fluminense
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rrdelvecchio@id.uff.br

Although the study of hypergraphs and their structural properties can be considered a fruitful area, with
many published articles, the Spectral Theory for hypergraphs is still at an early stage. Spectral Theory
for hypergraphs has two distinct approaches, via tensors and via matrices. The option in this work is the
matrix approach, which has been increasingly recognized in recent years.

In this paper we introduce the concept of integral hypergraphs - hypergraphs whose all adjacency eigen-
values are integers, in analogy to integral graphs, noting that the search for integral graphs is one of the
important problems in Spectral graph Theory. We study integrality for uniform hypercycles obtaining a
characterization of integral uniform hypercycles in two specific cases: 3−uniform and 4−uniform hyper-
cycles. As in the case of graphs, there are few integral hypercycles. From these cases, a more general
result is left as a conjecture.

We also present infinite families of integral hypergraphs, especially hypergraphs built by two operations,
the s-extension of a graph and the k-power of a graph.

27



Contributed Talk Monday, June 2nd, Session start: 16:30

Sequentially Cohen-Macaulay binomial edge ideals of graphs

Francesco Romeo
Department of Electrical and Information Engineering “Maurizio Scarano”,

University of Cassino and Southern Lazio, 03043 Cassino, Italy
francesco.romeo@unicas.it

Let 𝐺 be a simple graph with the vertex set [𝑛] and the edge set 𝐸 (𝐺), let 𝐾 be a field and 𝑅 =

𝐾 [𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛] be a polynomial ring in 2𝑛 indeterminates. The binomial edge ideal of 𝐺
is the ideal 𝐽𝐺 of 𝑅 generated by all binomials 𝑓𝑖 𝑗 = 𝑥𝑖𝑦 𝑗 − 𝑥 𝑗 𝑦𝑖 , such that 𝑖 < 𝑗 and {𝑖, 𝑗} ∈ 𝐸 (𝐺).
The notion of binomial edge ideals was introduced by Herzog et al. in [6], and independently by Ohtani
in [10]. Many algebraic properties and invariants of such ideals were described via the combinatorics
of the underlying graph: as an example special subsets of vertices of the graph whose removal discon-
nect the graph play a crucial role in the computation of several invariants, e.g. Krull dimension (see [7]
for a nice survey on this topic). One of the main problems in the study of binomial edge ideals is to
classify the Cohen-Macaulay ones, and significant progress in this direction has been recently made in
[1],[2],[3],[9]. A nice and deeply studied generalization of the Cohen-Macaulay property is the sequen-
tially Cohen-Macaulay one, due to Stanley (see [12]). For what concerns binomial edge ideals, sequen-
tially Cohen-Macaulay property has been studied for some particular classes of graphs [13, 11, 4]. In
this talk, we present some classes of graphs whose binomial edge ideal is sequentially Cohen-Macaulay
and we give some combinatorial necessary conditions for the sequentially Cohen-Macaulay property, by
using interpretations of a characterization given in [5]. The presented results are extracted from [8] and
another work in progress.
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Combinatorics of finite spherical buildings
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We will give an introduction to finite spherical buildings, which is the geometry of flags in projective
and polar spaces. In this setting, known extensions of the classical Erdős-Ko-Rado theorem to projective
and polar spaces can be generalized to the setting of flags. While some proofs of the former rely on
the underlying commutative association schemes and ideas developed by Delsarte, the corresponding
association scheme in the latter case, also known as the Iwahori-Hecke algebra, no longer enjoys this
commutativity property. Nevertheless, we will see that it is possible to overcome this difficulty and
obtain sharp bounds on Erdős-Ko-Rado sets of flags. Moreover, we are able to obtain classification
results for the largest Erdős-Ko-Rado sets of flags in a majority of the cases, which is one of the few such
results in which the underlying association scheme is not commutative. We will conclude by sketching
some interesting problems in this area.
Based on joint works with Jan De Beule, Philipp Heering, Jesse Lansdown and Klaus Metsch.
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Erdős-Ko-Rado problems and Uniqueness
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Joint work with Jan De Beule, Jesse Lansdown, Sam Mattheus and Klaus Metsch

The Erdős-Ko-Rado problem is a cornerstone of extremal combinatorics, given a suitable notion of “in-
tersection”, it asks the following questions: What is the maximum size of a set of intersecting objects?
What is their structure? We will focus on the latter question. Algebraic methods have been highly effec-
tive in addressing the size question. We discuss a new algebraic tool called "Antidesigns" that allows us
to determine the structure in certain cases, even if the underlying association scheme is not commutative.
Moreover, we discuss the limitations of these tools. Our objects will be chambers in finite spherical build-
ings and our notion of intersection will be non-oppositeness. We conclude with open problems related to
finite spherical buildings and Antidesigns.

Keywords: Erdős-Ko-Rado problem, design orthogonality, finite geometry
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Quadratic sets and (𝑡 mod 𝑞)-arcs in PG(𝑟, 𝑞)
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Joint work with Sascha Kurz and Assia Rousseva

An arc K in the geometry PG(𝑟, 𝑞) is called a (𝑡 mod 𝑞)-arc if K(𝐿) ≡ 𝑡 (mod 𝑞) for every line 𝐿
in PG(𝑟, 𝑞). If in addition the maximal multiplicity of a point is 𝑡 then the arc K is called a strong
(𝑡 mod 𝑞)-arc.
The (𝑡 mod 𝑞)-arcs arise in connection with the extendability problem for arcs and linear codes, but
are objects that are interesting in their own right. Strong (𝑡 mod 𝑞)-arcs can be obtained by the so-
called lifting construction from (𝑡 mod 𝑞)-arcs in geometries of smaller dimension. Arcs obtained by
this construction are called lifted arcs. It is known that all strong (1 mod 𝑞)-arcs in PG(𝑟, 𝑞) are just
the hyperplanes or the complete space for every 𝑟 and every prime power 𝑞. This fact is equivalent to
Hill-Lizak’s extension theorem for linear codes. It was proved that all strong (2 mod 𝑞) arcs in PG(𝑟, 𝑞),
𝑟 ≥ 3, 𝑞 odd are lifted.
For 𝑡 ≥ 3 the situation is more complicated. It was even conjectured that all strong (3 mod 5)-arcs in
geometries of dimension 𝑟 ≥ 3 are lifted. This conjecture turns out to be wrong. There exist strong
non-lifted (3 mod 5)-arcs in PG(3, 5) of respective sizes 128, 143, 168. The first one is related to the
exceptional 20-cap in PG(3, 5) discovered by Abatangelo, Korchmáros and Larato. The other two are
obtained from the elliptic and hyperbolic quadric in PG(3, 5), respectively, by a construction which can
be generalized to geometries of larger dimension over larger fields of odd characteristic. Arcs obtained
by this construction are called quadratic arc. We prove the following theorems.

Theorem 1 Every strong (3 mod 5) arc in PG(4, 5) is either a lifted, or a quadratic arc.

Theorem 2 Let every strong (3 mod 5)-arc in PG(𝑟 − 1, 5) be either lifted, or a quadratic (3 mod 5)-
arc. Then every strong (3 mod 5)-arc in PG(𝑟, 5) is also either lifted, or quadratic.
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A Reducibility Theorem for Minihypers

Assia Rousseva
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Joint work with Ivan Landjev and Konstantin Vorobev

A multiset F in PG(𝑟, 𝑞) is called an (𝑛, 𝑤)-minihyper if its total point multiplicity is |F | = 𝑛, F (𝐻) ≤
𝑤 for every hyperplane 𝐻, and there is a hyperplane 𝐻0 with F (𝐻0) = 𝑤. The existence of an (𝑛, 𝑤)-
minihyper in PG(𝑘 − 1, 𝑞) with maximal point multiplicity 𝑠 is equivalent to that of a linear code with
parameters [𝑠𝑣𝑘 − 𝑛, 𝑘, 𝑠𝑣𝑘−1 − 𝑤]𝑞 . Here 𝑣𝑘 = (𝑣𝑘 − 1)/(𝑣 − 1).

In this talk we prove the following reducibility theorem for minihypers:

Theorem 1. Let F be an (𝑛, 𝑤)-minihyper in PG(𝑟, 𝑝), 𝑝 a prime, with 𝑤 ≡ 𝑛 − 𝑝 (mod 𝑝2). Assume
that F has the following properties:

(1) F (𝐻) ≡ 𝑛 − 𝑝 or 𝑛 (mod 𝑝2) for every hyperplane 𝐻 in PG(𝑟, 𝑝);

(2) for every hyperplane 𝐻 with F (𝐻) ≡ 𝑛 (mod 𝑝2) F |𝐻 is a divisible minihyper with divisor 𝑝;

(3) for every hyperplane 𝐻 with F (𝐻) ≡ 𝑛 − 𝑝 (mod 𝑝2) F |𝐻 is reducible to a divisible minihyper
with divisor 𝑝.

Then F = F ′ + 𝜒𝐿 where F ′ is a (𝑛 − 𝑣2, 𝑤 − 𝑣1)-minihyper, and 𝐿 is a line.

This theorem can be formulated as an extension theorem for arcs and linear codes.
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Let 𝑋 be a graph, and 𝜙 : 𝑉 (𝑋) → 𝑉 (𝑋) be an automorphism of 𝑋 . We say that 𝜙 is a fixed point free
(FPF) automorphism if for all 𝑣 ∈ 𝑉 (𝑋) we have 𝜙(𝑣) ≠ 𝑣. Lubiw [4] introduced the FPFAUT problem,
which asks whether there exists a fixed point free (FPF) automorphism for a given graph, and proved that
this problem is NP-complete.
Despite the negative result, there exist polynomial-time algorithms for specific graph classes. For in-
stance, it follows from an old result of Jordan [3, 5] that the answer to the FPFAUT problem is trivially
true when restricted to the class of vertex-transitive graphs. Moreover, Cameron [2] has shown that with
the generators of the automorphism group in hand, it is also possible to compute the FPF automorphisms
of a vertex-transitive graph.
In this talk, we present a polynomial-time algorithm for the FPFAUT problem when restricted to graph
classes with unique tree representations. The algorithm can be modified to compute FPF involutions,
which are related to some special equitable partitions. This generalizes the result of Abiad et al. [1].
Based on a joint work with Aida Abiad, Gabriel Coutinho, Vinicius F. dos Santos and Sjanne Zeijlemaker.
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Splittings of toric ideals of graphs
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Department of Mathematics, University of Ioannina,

Ioannina 45110, Greece
katsampekis@uoi.gr, athoma@uoi.gr

Let 𝐺 be a finite, connected and undirected graph having no loops and no multiple edges on the vertex
set 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}, and let 𝐸 (𝐺) = {𝑒1, . . . , 𝑒𝑚} be the set of edges of 𝐺. Let 𝐾 [𝑒1, . . . , 𝑒𝑚] be
a polynomial ring over a field 𝐾 , where we treat the 𝑒𝑖’s as indeterminates. Similarly, we consider the
polynomial ring 𝐾 [𝑣1, . . . , 𝑣𝑛]. The toric ideal of𝐺, denoted by 𝐼𝐺 , is the kernel of the 𝐾-algebra homo-
morphism 𝜙𝐺 : 𝐾 [𝑒1, . . . , 𝑒𝑚] −→ 𝐾 [𝑣1, . . . , 𝑣𝑛] defined by 𝜙𝐺 (𝑒𝑖) = 𝑣 𝑗𝑖𝑣𝑘𝑖 , where 𝑒𝑖 = {𝑣 𝑗𝑖 , 𝑣𝑘𝑖 } for
all 1 ≤ 𝑖 ≤ 𝑚 . This talk aims to answer [1, Question 5.1], namely to classify all graphs 𝐺 such that 𝐼𝐺 is
a subgraph splittable toric ideal. We say that 𝐼𝐺 is subgraph splittable if there exist subgraphs 𝐺1 and 𝐺2

of 𝐺 such that 𝐼𝐺 = 𝐼𝐺1
+ 𝐼𝐺2

, where both 𝐼𝐺1
and 𝐼𝐺2

are not equal to 𝐼𝐺 . We give a complete answer
to the above problem. Our approach is based on the graphs 𝐺\𝑒 and 𝐺𝑒

𝑆
, where 𝑒 is an edge of 𝐺 and 𝑆

is a minimal system of binomial generators of 𝐼𝐺 . We show that 𝐼𝐺 is subgraph splittable if and only if
there is an edge 𝑒 of 𝐺 and a minimal generating set of binomials 𝑆 of 𝐼𝐺 such that 𝐼𝐺 = 𝐼𝐺𝑒

𝑆
+ 𝐼𝐺\𝑒 is a

subgraph splitting. As an application of our results, we prove that the toric ideal of a complete bipartite
graph is not subgraph splittable and the toric ideal of the wheel graph is subgraph splittable if and only
if either 𝑛 = 4 or 𝑛 is odd. We also study the case that 𝐺 coincides with the complete graph 𝐾𝑛 on 𝑛
vertices. We show that 𝐼𝐾𝑛

is subgraph splittable if and only if 𝑛 ≥ 4.
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An alternative approach to the Five Line Conjecture
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A Fano coloring is an edge-coloring of a cubic graph by points of the Fano plane such that the colors of
any three edges meeting at a vertex form a line. A natural problem is to determine the minimum value of
𝑘 such that every bridgeless graph admits a 𝑘-line Fano coloring. It is conjectured that every bridgeless
cubic graph admits a 4-line Fano coloring. This is the strongest possible conjecture, since it is known
that 3 lines are not sufficient to color each bridgeless cubic graph. A 5-line conjecture is a relaxation of
the 4-line conjecture, which states that every bridgeless cubic graph admits a 5-line Fano coloring. It is
known that a 5-line Fano coloring is equivalent to a proper edge colorings in which colors are non-zero
elements of the group Z4 × Z2 and the sum of the three colors meeting at each vertex is zero. We give
a characterization of proper Z4 × Z2 colorings in terms of a matching in a 2-factor of a bridgeless cubic
graph 𝐺. If a matching of a 2-factor of 𝐺 does not satisfy the characterization, we further provide two
sufficient conditions under which a matching can be modified to satisfy the characterization. This yields
the construction of 5-line Fano coloring for many snarks.
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Design switching on graphs
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A switching method is a graph operation used to obtain cospectral graphs (graphs with the same adja-
cency spectrum). It needs the graph to have a switching set holding some conditions. Abiad and Haemers
[2] found a switching method that uses a switching set of size seven. In this talk, I present a new combi-
natorial description of this switching method, based on the Fano plane, as described in [1].
Moreover, the operation can in fact be generalized to a switching method based on any symmetric com-
binatorial design. This also generalizes other previously known switching methods such as the one in [3,
Section 7.1], when applied to the point-hyperplane design of a projective space.
This talk is based on joint work with Aida Abiad and Nils van de Berg [1] and ongoing joint work with
Ferdinand Ihringer.
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On the Chromatic Number of Grassmann Graphs
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While much work has been done on the chromatic number of Johnson graphs and Kneser graphs, much
less is known about the chromatic number of Grassmann graphs. In this talk we will give a brief survey
of results regarding the chromatic number of several Johnson graphs, Kneser graphs, and Grassmann
graphs. Furthermore, we will present new upper bounds on the chromatic number of Grassmann graphs.
This talk is based on joint work with Jozefien D’haeseleer and Himanshu Gupta.
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Transitivity in weighted directed graphs
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A transitive system is a tuple (𝑋,R, 𝐺, 𝑓 ) where 𝑋 is a nonempty set, R is a reflexive and transitive
relation on 𝑋 , (𝐺,+, 0) is an abelian group and 𝑓 : R → 𝐺 is a transitive mapping satisfying

(i) for every 𝑥 ∈ 𝑋 , 𝑓 (𝑥, 𝑥) = 0 and

(ii) if (𝑥, 𝑦), (𝑦, 𝑧) ∈ R then 𝑓 (𝑥, 𝑦) + 𝑓 (𝑦, 𝑧) = 𝑓 (𝑥, 𝑧).

Transitive systems provide a wide research area with applications. A state of the art of this research will
be presented in the talk.
In graph-theoretic language, transitive systems are directed, weighted and transitive graphs with the
weights obeying the triangle equality. A natural question often arises: Is it possible to fill in the missing
connections in the system and preserve its transitivity? If the answer is positive, we say that the system
can be completed. In all cases observed in [1],[2],[3] if a graph admits a transitive system that cannot be
completed in one abelian group, then the same is true for every nontrivial abelian group. So, for example,
no matter what nontrivial group we consider, no system imposed on the graph in Fig. 1 can be completed.
There is something intrinsic to some graphs that predetermines the existence of such a “universally bad”
situation. These graphs are called defective.

Figure 1: The simplest defective graph.

Figure 2: A soluble graph.

On the other hand, there are graphs featuring the opposite: they “know” that no matter what group of
weights is considered, any transitive system can be completed. An example of such a graph is shown
in Fig. 2. Those “good” graphs are called soluble. Our paper [2] is devoted to various techniques of
obtaining soluble graphs. A graph which is either soluble or defective is called conclusive.
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There are several identified classes of conclusive graphs. In terms of size, at this moment we can tell that
every graph of up to 10 vertices is conclusive. A practical application of this knowledge is that within
these classes we can use the group Z2 to determine if every imposed transitive system can be completed
or not, which obviously optimizes the process.
Although at present we do not know if every graph is conclusive, the most recent result asserts that all
planar graphs are!
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Let (𝐺, ·) be a finite multiplicative group with identity 𝑒. For 𝐴, 𝐵 ⊆ 𝐺, define

𝐴𝐵 = {𝑔ℎ : 𝑔 ∈ 𝐴, ℎ ∈ 𝐵}

and note that 𝐴𝐵 is a multi-set.
We say that (𝐴, 𝐵) is a near-factorization of 𝐺 with index 𝜆 if |𝐴| × |𝐵 | = 𝜆( |𝐺 | − 1) and each element
of 𝐺 \ {𝑒} occurs 𝜆 times in the product 𝐴𝐵. We abbreviate this by writing 𝐴𝐵 = 𝜆(𝐺 \ {1}). If (𝐴, 𝐵)
is a near-factorization with index 𝜆, then we say that 𝐵 is a 𝜆-mate of 𝐴. A 𝜆-mate with 𝜆 = 1 is simply
called a mate.
Some new structural properties of near-factorizations in certain classes of groups are established. In
particular if there is a near-factorization (𝐴, 𝐵), then there is an explicit formula for 𝐵 in terms of 𝐴.
This leads to an efficient method for computing the 𝜆-mate 𝐵 of a subset 𝐴 ⊆ 𝐺, if it exists. All
noncyclic abelian groups of order less than 200 were examined in a search for a possible nontrivial near-
factorization with index 1 and all of these possibilities were ruled out, either by theoretical criteria or by
exhaustive computer searches. (In contrast, index 1 near-factorizations in cyclic or dihedral groups are
known to exist by previous results.)
Collaborators: Bill Martin, Maura Paterson, and Doug Stinson.
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Robinson–Schensted shapes arising from cycle decompositions
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At the heart of classical algebraic combinatorics is the representation theory of the symmetric group 𝑆𝑛.
In turn, much of this theory can be expressed in terms of integer partitions. In this paper, we describe
the subtle relationship between two partitions closely associated with each element 𝜎 ∈ 𝑆𝑛: the cycle
type of 𝜎, on one hand, and the shape of 𝜎, via the Robinson–Schensted correspondence, on the other
hand. Although separately each of these partitions is fundamental to the general theory, the two had
not yet been studied together until a very recent paper treating the special case where 𝜎 is a cyclic (or
almost cyclic) permutation. (The most closely related works study cycle types and descents, or shapes
and inversions.) A natural question is the following: which shapes arise from the elements of a given
cycle type?
It is well known that the conjugacy classes of 𝑆𝑛 (and also its irreducible complex representations) can
be naturally labeled by the integer partitions 𝛼 of 𝑛 (written as 𝛼 ⊢ 𝑛). In particular, the conjugacy class
of 𝜎 ∈ 𝑆𝑛 is labeled by the partition 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) giving the cycle type of 𝜎, which is easily read off
from the expression of 𝜎 in disjoint cycle notation: 𝜎 = (𝛼1-cycle) (𝛼2-cycle) · · · (𝛼𝑟 -cycle). (As usual,
we write partitions so that 𝛼1 ≥ · · · ≥ 𝛼𝑟 ≥ 1.) We will write C𝛼 to denote the conjugacy class of 𝑆𝑛
consisting of elements with cycle type 𝛼.
Another key concept in the representation theory of 𝑆𝑛 (and in algebraic combinatorics in general) is the

Robinson–Schensted (RS) correspondence. The RS correspondence is a bijection 𝑆𝑛
RS−−→ ∐

𝜆⊢𝑛 SYT(𝜆)×
SYT(𝜆), where SYT(𝜆) denotes the set of standard Young tableaux with shape 𝜆, meaning that the par-
tition 𝜆 gives the row lengths of the tableaux. If the RS correspondence takes 𝜎 to a pair (𝑃,𝑄) ∈
SYT(𝜆) ×SYT(𝜆), then we say that 𝜆 is the RS shape of 𝜎, which we denote by writing sh(𝜎) = 𝜆. The
main problem in this paper is to describe the elements of S𝛼 := {sh(𝜎) : 𝜎 ∈ C𝛼}.
As a preliminary result, for all 𝛼 = (𝛼1, . . . , 𝛼𝑟 ) ⊢ 𝑛, we prove that the partitions in S𝛼 have Young
diagrams fitting inside a certain bounding box: S𝛼 ⊆ B𝛼, where B𝛼 consists of all partitions of 𝑛 with
at most

(
𝑛 − 𝑟 +#{𝑖 : 𝛼𝑖 = 2} + 𝛿1,𝛼𝑟

)
many rows and

(
𝑛 − 𝑟 +#{𝑖 : 𝛼𝑖 = 1}

)
many columns.

For certain cycle types 𝛼, the containment S𝛼 ⊆ B𝛼 is, in fact, an equality. We can thus reframe our
main problem as follows: classify the cycle types 𝛼 such that S𝛼 = B𝛼, and for the remaining cycle
types 𝛼, determine the complement B𝛼 \ S𝛼. The main result of this paper solves this problem in the
case 𝑟 = 2, that is, when 𝛼 = (𝛼1, 𝛼2). Namely, if 𝑛 is odd, then S𝛼 = B𝛼. If 𝑛 is even, then S𝛼 = B𝛼
unless 𝛼 is one of five types. The exceptional 𝛼 are (𝑛− 1, 1),

(
𝑛
2 ,

𝑛
2

)
with 4 | 𝑛,

(
𝑛
2 ,

𝑛
2

)
with 4 ∤ 𝑛, (4, 2),

and (5, 3). In these case, respectively, B𝛼 \ S𝛼 is {
(
𝑛
2 ,

𝑛
2

)
}, {(𝑛 − 2, 1, 1), (3, 1, . . . , 1)}, {(𝑛 − 2, 1, 1)},

{(2, 2, 2)}, and {(2, 2, 2, 2)}.
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Shaul Zemel
Hebrew University of Jerusalem, Israel
shaul.zemel@mail.huji.ac.il

We show how to normalize the higher Specht polynomials of Ariki, Terasoma, and Yamada in a compat-
ible way in order to define a stable version of these polynomials, as eventually symmetric functions. We
also decompose the non-transitive actions of Haglund, Rhoades, and Shimozono into orbits, and show
how the associated basis of higher Specht polynomials of Gillespie and Rhoades respects that decomposi-
tion. We also generalize these higher Specht polynomials in a way that produces several decompositions
of the space of homogeneous polynomials of degree 𝑑 in 𝑛 variables into irreducible representations
of 𝑆𝑛, each natural for its own reasoning. Finally, we use them to determine the maximal completely
reducible sub-representation of the infinite symmetric group on polynomials and on eventually symmet-
ric functions, as well as a conjectural filtration on these full representations, with maximal completely
reducible quotients.
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Automorphism actions with nilpotent non-commutative coefficient
group, constructed via cohomology
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Automorphism groups of weighing and Hadamard matrices, and other types of combinatorial actions,
have been studied extensively. Objects like group-developed matrices, cocyclic matrices and group
frames can be defined via selecting a suitbale group of automorphism symmetries. It is customary to
discuss automorphism actions is term of projective monomial representations and centralizer algebras.
In this talk we sketch another interpretation of automorphisms in terms of group cohomology. These def-
initions extend naturally to matrices with non-commutative coefficients, and we show how to construct
all matrices over any nilpotent coefficient group, given the underlying permutation action.
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On Galois subcovers of the Hermitian curve

Arianna Dionigi
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A problem of current interest, also motivated by applications to Coding theory, is to find explicit equations
for maximal curves, that are projective, geometrically irreducible, non-singular curves defined over a
finite field F𝑞2 whose number of F𝑞2 -rational points attains the Hasse-Weil upper bound 𝑞2 + 2𝔤𝑞 + 1
where 𝔤 is the genus of the curve.
For curves which are Galois covered of the Hermitian curve, this has been done so far ad hoc, in par-
ticular in the cases where the Galois group has prime order and also when has order the square of the
characteristic.
In this talk we will discuss explicit equations of all Galois covers of the Hermitian curve with Galois
group of order 𝑑𝑝 where 𝑝 is the characteristic of F𝑞2 and 𝑑 is a prime other than 𝑝. We also compute
the generators of the Weierstrass semigroup at a special F𝑞2 -rational point of some of the curves.

Keywords: Maximal curves, Function fields, Galois cover, Weierstrass semigroup
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Maximal Curves Over Finite Fields
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A (projective, geometrically irreducible, non-singular) curve X defined over a finite field F𝑞2 is maximal
if the number 𝑁𝑞2 of its F𝑞2 -rational points attains the Hasse-Weil upper bound, that is 𝑁𝑞2 = 𝑞2+2𝔤𝑞+1
where 𝔤 is the genus of X. An important question, also motivated by applications to algebraic-geometry
codes, is to find explicit equations for maximal curves. By a theorem of Serre, every curve which is
covered over F𝑞2 by a F𝑞2 -maximal curve is also F𝑞2 -maximal. Serre’s theorem has given an impulse to
the study of explicit equations for maximal curves covered by the Hermitian curve. For curves of high
genera which are Galois covered of the Hermitian curve, this has been done so far in the cases where
the Galois group has prime order, or has order the square of the characteristic, or has order the product
of the characteristic and another prime. In this talk we exhibit these explicit equations and make some
remarks. For the case of genus 𝔤 = 1

8 (𝑞 − 1)2 where 𝑞 ≡ 1 (mod 4) we show some new properties of
the automorphism group, Weierstrass semigroup and Frobenius embedding.
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This talk investigates the number of rational points on weighted hypersurfaces over finite fields, focusing
on the loci of genus 2 curves with (𝑛, 𝑛)-split Jacobians. We build on previous work studying these vari-
eties and explore upper bounds, modular congruences, and Serre-type inequalities in weighted projective
space. Using explicit equations for these hypersurfaces, we analyze their structure and derive bounds that
improve upon classical results.
The study of rational points on algebraic varieties over finite fields is a central theme in arithmetic ge-
ometry, with significant implications for cryptography. In [1], we explored the number of rational points
on weighted projective varieties and Vojta’s conjecture for such varieties and considered the weighted
hypersurface in Pw, for w = (2, 4, 6, 10), namely the locus of genus 2 curves with extra automorphisms,
and argued that it is more efficient to search for rational points in the weighted hypersurface rather than
embed it into a projective variety and determine rational points there. For example, in [2], it was shown
that this particular weighted hypersurface has no rational points of weighted height ≤ 2, a result that
would have been much harder to prove if it were considered as a projective hypersurface.
The example above is of particular interest in isogeny-based cryptography since every point in it cor-
responds to a genus 2 curve with a (2, 2)-split Jacobian. In general, the locus of genus 2 curves with
(𝑛, 𝑛)-split Jacobians for odd 𝑛, denoted by L𝑛, is a weighted hypersurface in the weighted projective
space Pw and has been the focus of very active research in recent years due to its applications in isogeny-
based cryptography.
In this talk, we investigate the number of points of L𝑛 over finite fields. We use specific equations of L𝑛
and the methods in [1] to determine whether we can obtain bounds that improve upon the classical ones
for such hypersurfaces. Given the growing interest in genus 2 isogeny-based cryptosystems, a precise
analysis of rational points on these hypersurfaces over 𝐹𝑞 provides valuable insights into the security and
efficiency of these cryptographic constructions.

References
[1] Salami, Sajad, and Shaska, Tony Vojta’s conjecture on weighted projective varieties Eur. J. Math. 11,

1, Paper No. 12 (2025).

[2] Shaska, Elira, and Shaska, Tony Machine learning for moduli space of genus two curves and an
application to isogeny based cryptography https://arxiv.org/abs/2403.17250 (2024)

47

https://arxiv.org/abs/2403.17250


Invited Talk Wednesday, June 4th, 8:45

Codes and Designs in Polar Spaces
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A finite classical polar space of rank 𝑛 is formed by the totally isotropic subspaces of a finite vector
space equipped with a nondegenerate form, where 𝑛 is the maximal dimension of such subspaces. In
this talk, we will explore codes and designs in polar spaces and provide an overview of the current state
of research in this area. Specifically, we will demonstrate how the theory of association schemes and
linear programming can be used to establish bounds on the size of codes and prove nonexistence results
for certain types of designs. Additionally, we will discuss how these linear programming bounds give
Erdős-Ko-Rado type results. Finally, using a probabilistic method introduced by Kuperberg, Lovett, and
Peled, we will establish the existence of 𝑡-(𝑛, 𝑘, 𝜆) designs in polar spaces of rank 𝑛 with 𝑘 < 𝑛.
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Constructing affine [3, 1]-avoiding sets from graphs and linear
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Our main motivating question is the following: in F𝑛2 , the 𝑛-dimensional affine space over F2, if we are
given a set 𝑆 of size 𝑚, then is it necessarily true that there is an affine subspace 𝐹𝑘 ⊆ F𝑛2 of dimension
𝑘 (called a 𝑘-flat) intersecting 𝑆 in exactly 𝑡 points? If this holds for a quadruple (𝑛, 𝑚, 𝑘, 𝑡), then we
say that [𝑛, 𝑚] → [𝑘, 𝑡]. In our previous work, we made the conjecture [3] that for every fixed pair
(𝑘, 𝑡), almost all values 𝑚 satisfy [𝑛, 𝑚] → [𝑘, 𝑡] as 𝑛 → ∞. Using a combination of techniques such as
Szemerédi’s Cube Lemma [5, 1] and bounds on sizes of hypercube cuts [2], we proved that the conjecture
is true for 𝑡 ∈ {0, 2𝑘−1, 2𝑘} and achieved some results in the cases 𝑡 = 2ℓ , 3 · 2ℓ too (for 1 ≤ ℓ ≤ 𝑘 − 2).
In this talk we focus on constructing explicit [3, 1]-avoiding sets in F𝑛2 . An example is provided by
unions of quarter-spaces, i.e. (𝑛 − 2)-flats. This construction turns out to be very fruitful, as for any
simple graph 𝐺 on 𝑛 vertices, we can get a [3, 1]-avoiding set of size 2𝑛 − 𝐼 (𝐺), where 𝐼 (𝐺) is the
number of independent vertex sets in 𝐺 (also called the Fibonacci number of 𝐺, see [4]). This raises the
question:
Question. Given an integer 𝑛 ≥ 1, let 𝑓 (𝑛) denote the number of different values that 𝐼 (𝐺) can take for
an 𝑛-vertex graph 𝐺. Give bounds for 𝑓 (𝑛) that are as tight as possible.
In this talk, we outline a proof that there exists a positive constant 𝐶 > 0 with

2𝑛−2
𝐶 (log 𝑛)1/2 ≤ 𝑓 (𝑛) ≤ 2𝑛−0.2075 log2 𝑛

for all 𝑛 large enough, and accordingly show a lower bound for the number of values 𝑚 with [𝑛, 𝑚] ̸→
[3, 1].
We construct another nice family of [3, 1]-avoiding sets using binary linear codes as well, where we
obtain explicit examples of exponentially many different sizes, with the sizes expressible using the weight
enumerator polynomial of the code used.
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Let 𝑉 be an 𝑛-dimensional vector space over the field of 𝑞 elements. By a geometric 𝑡-[𝑞𝑛, 𝑘, 𝜆] design
we mean a collection D of 𝑘-dimensional subspaces of 𝑉 , called blocks, such that every 𝑡-dimensional
subspace 𝑇 of𝑉 appears in exactly 𝜆 blocks in D. A large set, 𝐿𝑆 [𝑁] [𝑡, 𝑘, 𝑞𝑛], of geometric designs is a
collection of 𝑁 disjoint 𝑡-[𝑞𝑛, 𝑘, 𝜆] designs that partitions

[
𝑉
𝑘

]
, the collection of 𝑘-dimensional subspaces

of 𝑉 . In this work we construct non-isomorphic large sets using methods based on incidence structures
known as the Kramer-Mesner matrices. These structures are induced by particular group actions on
the collection of subspaces of the vector space 𝑉 . Subsequently, we discuss and use computational
techniques for solving certain linear problems of the form 𝐴𝑋 = 𝐵, where 𝐴 is a large integral matrix
and 𝑋 is a {0, 1} solution. These techniques involve (i) lattice basis-reduction, including variants of the
𝐿𝐿𝐿 algorithm, and (ii) linear programming. Inspiration came from the 2013 work of Braun, Kohnert,
Östergard, and Wassermann, [1], who produced the first nontrivial large set of geometric designs with 𝑡 ≥
2. Bal Khadka and Michael Epstein provided the know-how for using the 𝐿𝐿𝐿 and linear programming
algorithms that we implemented to construct the large sets.

2000 Mathematics Subject Classification: 05B25, 05B40, 05E18.
Key words. Geometric 𝑡-designs, large sets of geometric 𝑡-designs, 𝑡-designs over 𝐺𝐹 (𝑞), parallelisms,
lattice basis reduction, LLL algorithm.

References
[1] M. BRAUN, A. KOHNERT, P. ÖSTERGARD, A. WASSERMANN, Large Sets of t-Designs over Finite

Fields, JCTA 124 (2014), pp. 195-202.

50



Contributed Talk Wednesday, June 4th, Session start: 9:30

Some Conjectures and Results on Tilings

Peter Horak
University of Washington, USA

horak@uw.edu

Tilings and tessellations belong to the oldest structures not only in geometry but in all mathematics. They
have attracted the attention of best mathematicians. Even one of Hilbert’s problems is on the topic. Tiling
problems do not always have a geometric background, sometimes there is even an unexpected relation
of tiling to other parts of mathematics. For example, the roots of the Minkowski conjecture on tiling the
𝑛-space by unit cubes can be traced to geometry of numbers and to positive definite quadratic forms; Hao
Wang’s work on tilings has been inspired by decision problems; there is a well-known relation of Penrose
tilings to crystallography, etc.
As a short historical introduction, we present the conjecture of Minkowski. Its last open case was solved
only 3 years ago.
Our interest in tilings stems from coding theory, especially from the area of error-correcting codes in Lee
metric. Therefore, in this talk we will focus on tiling the 𝑛-space by unit cubes or by a cluster (the union)
of unit cubes; a special attention will be paid to the famous and long-standing Golomb-Welch conjecture.
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Steiner (STS) and Kirkman (KTS) triple systems have been extensively studied over the past 150 years,
in light of their connections with geometry, group theory, finite fields and their applications to coding
theory and cryptography. Nonetheless, some recent new applications [6] further highlight the strong ben-
efits of working with systems having automorphisms [5] with a prescribed action.

In this talk, after surveying some of the most recent advances on Steiner and Kirkman triple systems,
we focus our attention on the 𝑓 -pyramidal ones, that is, those having an automorphism group fixing 𝑓

points and acting sharply transitively on the remaining ones. Regular and 1-rotational STSs are examples
of 𝑓 -pyramidal systems with 𝑓 = 0 or 1, respectively. We will present the latest progress concerning
the existence of 𝑓 -pyramidal STSs and KTSs [1, 2, 3, 4] and some new types of difference families and
difference matrices which play a central role in our constructions.
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A local permutation polynomial (LPP) in the polynomial ring F𝑞 [𝑥, 𝑦], with 𝑞 a prime power, is a poly-
nomial

∑𝑞−1
𝑖, 𝑗=0 𝑐𝑖, 𝑗𝑥

𝑖𝑦 𝑗 ∈ F𝑞 [𝑥, 𝑦] such that both polynomials 𝑓 (𝑥, 𝑎) and 𝑓 (𝑎, 𝑥) in F𝑞 [𝑥] act as permu-
tations on F𝑞 for every 𝑎 ∈ F𝑞 (see [3]). It is equivalent to a Latin square 𝐿 𝑓 of order 𝑞 that is defined
so that 𝐿 𝑓 [𝑖, 𝑗] = 𝑓 (𝑖, 𝑗) for all 𝑖, 𝑗 ∈ F𝑞 . In cryptography, Latin squares and LPPs are used to generate
pseudorandom sequences with high period growth [2, 4].
The above mentioned equivalence among Latin squares and LPPs gives rise to a natural translation of
notions and results on both theories [1]. This talk delves into this topic by focusing on the natural
translation to LPPs of the concepts of isotopism, conjugation and paratopism of Latin squares. More
specifically, we show how this translation makes much easier the study of symmetries of Latin squares,
which play a relevant role in their enumeration and classification. Thus, for instance, we say that two
LPPs 𝑓 and 𝑔 in F𝑞 [𝑥, 𝑦] are isotopic if there exist three permutation polynomials 𝜋1, 𝜋2, 𝜋3 ∈ F𝑞 [𝑥]
such that

𝑓 (𝜋1 (𝑥), 𝜋2 (𝑦)) = 𝜋3 (𝑔(𝑥, 𝑦)) . (0.1)

They are principal isotopic if 𝜋3 (𝑥) = 𝑥, the trivial permutation in F𝑞 [𝑥]. Then, every LPP over F2 [𝑥, 𝑦]
and F3 [𝑥, 𝑦] is principal isotopic to 𝑥 + 𝑦.
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Let 𝑆𝑛 be the symmetric group on the set [𝑛] := {1, . . . , 𝑛}. Two Latin squares 𝐿1 and 𝐿2 with entries
in [𝑛] are paratopic if there exist a permutation 𝜋 ∈ 𝑆3 and a triple 𝑓 := ( 𝑓1, 𝑓2, 𝑓3) ∈ 𝑆𝑛 × 𝑆𝑛 × 𝑆𝑛
such that 𝐿2

[
𝑓𝜋 (1) (𝑒𝜋 (1) ), 𝑓𝜋 (2) (𝑒𝜋 (2) )

]
= 𝑓𝜋 (3) (𝑒𝜋 (3) ) whenever 𝐿1 [𝑒1, 𝑒2] = 𝑒3. The pair (𝜋; 𝑓 ) is

then a paratopism from 𝐿1 to 𝐿2. It is an isotopism if 𝜋 is the trivial permutation; and an isomorphism if
besides, 𝑓1 = 𝑓2 = 𝑓3. Further, the pair (𝜋; 𝑓 ) is an autoparatopism if 𝐿1 = 𝐿2. (This is an autotopism if
𝜋 is trivial.) It is known [3] that every autoparatopism is conjugate to either an isotopism or a paratopism
of the form ((12); (Id𝑛, 𝑓2, 𝑓3)) or ((123); (Id𝑛, Id𝑛, 𝑓3)).
The set of autoparatopisms of a Latin square is a group acting on its cells, which can be colored ac-
cording to the corresponding orbits. In this talk we show how this coloring only depends on both the
isomorphism class of the Latin square, and the conjugate class of the autoparatopism under considera-
tion. Then, we show how the study of feasible colorings makes much easier the problem of computing
critical sets of Latin squares having a given paratopism of the form ((123); (Id𝑛, Id𝑛, 𝑓3)) in their au-
toparatopism group. This problem generalizes that one concerning critical sets of Latin squares having a
given isotopism in their autotopism group, which has completely been solved for Latin squares of order
up to five [2], and also for order up to six when the mentioned autotopism is trivial [1]. In cryptography,
these problems play a relevant role to define new secret sharing schemes.
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There is a bijective map between 𝑛-dimensional Latin hypercubes of order a prime power 𝑞 and local
permutation polynomials in 𝑛 variables with coefficients in the finite field IF𝑞 of degree smaller than 𝑞
in each variable. In this talk, I will study how the algebraic variety described by the set of coefficients of
these polynomials allows the establishment of new approaches to the problems of counting, enumerating
and classifying Latin hypercubes. I will also analyse the set of orthogonal Latin hypercubes and its
relation to an orthogonal system of polynomials.

The work discussed in this talk is a joint work with Raúl M. Falcón and Jorge Jiménez-Urroz.
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Abstract

Covering arrays are combinatorial designs that find application in (combinational) Combinatorial
Testing, where a tester is faced with the problem of detecting all failures of a so-called System Under
Test whose input is represented by (row) vectors, where it is assumed that the failures of the SUT are
due to certain sub-combinations of its input vectors. The tester can only select the test vectors and
observe the result (failure or non-failure) of each test.

Locating arrays are combinatorial designs that find application in Combinatorial Testing - Fault
Localization, where the tester has to select the test vectors in such a way that it is also possible to
identify which sub-combination of the input vectors trigger a failure of the SUT.

We propose 0𝑡 -locating arrays which can be applied for adaptive Combinatorial Testing - Fault
Localization, where a tester is allowed to perform two (or more) rounds of testing. We motivate the
study of these objects through their application in (Software) Testing. After defining the notion of
0𝑡 -Locating Arrays, we establish links to existing combinatorial designs, but also show that the notion
of 0𝑡 -Locating Arrays can be distinguished from these by formulating basic properties.

Keywords: Combinatorial Testing - Fault Localization, Locating Arrays, Superimposed Codes, Cover-
Free Families

Introduction In (combinational) Combinatorial Testing (CT) we are faced with the problem of
testing a so-called System Under Test (SUT) whose input is represented by (row) vectors. An intro-
duction to CT can be found in [1]; see also [2]. The underlying assumption of CT is that misbehavior
of the SUT, i.e. its failure is due to certain sub-combinations of its input vectors. The goal of CT is
to detect such misbehavior by means of a set of input vectors, called test suite and their respective
testing results, which come from the execution of the input vectors on the SUT and their annotation
according to whether the SUT results in failure or not. Combinatorial Design Theory offers a solution
to this problem, see for example [2], based on the notion of Covering Arrays [3], [4], and general-
izations thereof. A covering array of strength 𝑡 over a 𝑣-ary alphabet is an 𝑁 × 𝑘 array, denoted as
CA(𝑁; 𝑡, 𝑘, 𝑣), with the property that in any 𝑁 × 𝑡 sub-array each 𝑣-ary 𝑡-tuple appears at least once
as a row. Covering arrays can therefore be understood as a generalization of orthogonal arrays [5].
A selection of 𝑡 columns of an array, together with a 𝑣-ary 𝑡-tuple is also called a 𝑡-way interaction,
and is formally denoted as a set of pairs {(𝑢1, 𝑝1), . . . , (𝑢𝑡 , 𝑝𝑡 )}, where 𝑢𝑖 ∈ {0, . . . , 𝑣 − 1} represent
the 𝑣-ary values and the pairwise disjoint 𝑝𝑖 represent the 𝑡 different columns. We say that a covering
array CA(𝑁; 𝑡, 𝑘, 𝑣) covers all 𝑡-way interactions given appropriate number of columns 𝑘 and alphabet
size 𝑣.

The goal of Combinatorial Testing-Fault Localization (CT-FLA) is to identify which sub-combinations
(more precisely, which 𝑡-way interaction) of the input vectors trigger a misbehavior of the SUT. Again,
this goal shall be achieved by means of a set of input vectors together with their annotation resulting
from test execution. This means that the set of input vectors must obey the necessary combinatorial
properties that allow to identify which 𝑡-way interactions trigger the failures of the SUT.

We can distinguish CT-FLA into non-adaptive methods, i.e., only a single set of test vectors can
be applied to the SUT; and adaptive methods, where multiple rounds of testing can be done, i.e., test
vectors can be selected based on the testing results of previous rounds.

Several combinatorial designs have been proposed to address the problem faced in non-adaptive
CT-FLA. Among them are locating arrays and detecting arrays [6] or error locating arrays [7] as well
as generalized notions, such as detecting arrays with constraints [8]. For example, (d,t)-locating arrays
(𝑑, 𝑡)-LA(𝑁; 𝑡, 𝑘, 𝑣) are introduced in [6], as covering arrays that have the additional property that any
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set of 𝑑 different 𝑡-way interactions yields a unique set of rows where its elements are covered; refer
to [6] for the precise definition.

Methods for adaptive CT-FLA are based on alternating rounds of test selection and test execution
and use, for example, statistical ranking [9], [10], or follow a one factor at a time approach [11].

0𝑡 -Locating Arrays We propose 0𝑡 -locating arrays, which can be applied for adaptive CT-FLA,
when a tester has to inspect an input vector that induces a failure of the SUT and wants to identify a
single failure-inducing 𝑡-way interaction that is covered by the vector.

Definition 1 A 0𝑡 -locating array is a binary 𝑁 × 𝑘 array with the property that there are no two 𝑡-way
interactions, whose values are all 0, that are covered by exactly the same rows of the array. More
formally, let 𝐴 denote an 𝑁 × 𝑘 array and 𝜏, 𝜏′ denote 𝑡-way interactions 𝜏 = {(0, 𝑝1), . . . , (0, 𝑝𝑡 )},
𝜏′ = {(0, 𝑝′1), . . . , (0, 𝑝

′
𝑡 )}, with 0 ≤ 𝑝1 < 𝑝2 < · · · < 𝑝𝑡 ≤ 𝑘 and 0 ≤ 𝑝′1 < 𝑝′2 < · · · < 𝑝′𝑡 ≤ 𝑘 .

Further, let 𝜌𝐴(𝜏) denote the set of rows of 𝐴 that cover the 𝑡-way interaction 𝜏. Then 𝐴 is a 0𝑡 -locating
array (denoted as 0𝑡 -LA(N;t,k)) if and only if,

∀𝜏∀𝜏′𝜌𝐴(𝜏) = 𝜌𝐴(𝜏′) ⇒ 𝜏 = 𝜏′ .

Proposition 3 We can show the following:

1. A CA(𝑁; (𝑡 + 1), 𝑘, 2) is a 0𝑡 -LA(N;t,k).

2. A (1, 𝑡 + 1)-superimposed code family is a 0𝑡 -LA(N;t,k).

3. Not every 0𝑡 -LA(N;t,k) is a (1, 𝑡 + 1)-superimposed code.

Related Work and Related Notions The proposed notion of 0𝑡 -locating arrays is clearly related
to other notions of combinatorial design theory that find application in combinatorial testing, such as
the already mentioned covering arrays [3], as well as locating and detecting arrays [6] and further, for
example, to covering arrays on graphs [12] and partial covering arrays [13]. However, as Proposition
3 indicates 0𝑡 -LAs might be even more closely related to combinatorial designs appearing in combi-
natorial group testing [14], such as the already mentioned (𝑤, 𝑟)-superimposed codes for 𝑤 = 1 [15],
respectively, to cover-free families [16], [17]. This does not come at a surprise, considering that the
application of adaptive CT-FLA that motivates the study of 0𝑡 -locating arrays, resembles a combina-
torial group testing problem where defective items (failure-inducing 𝑡-way interactions) require to be
identified and distinguished from non-defective ones.
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On Boolean Degree 1 Functions, Anti-Designs, and
Cameron-Liebler Sets in Finite Vector Spaces

Ferdinand Ihringer
Southern University of Science and Technology, China

Ferdinand.Ihringer@gmail.com

It is easy to see that if 𝑓 is a real, 𝑛-variate affine function which is Boolean on the 𝑛-dimensional
hypercube (that is, 𝑓 (𝑥) ∈ {0, 1} for 𝑥 ∈ {0, 1}𝑛), then 𝑓 (𝑥) = 0, 𝑓 (𝑥) = 1, 𝑓 (𝑥) = 𝑥𝑖 or 𝑓 (𝑥) = 1 − 𝑥𝑖 .
The same classification holds if we restrict {0, 1}𝑛 to elements with Hamming weight 𝑘 if 𝑛 − 𝑘, 𝑘 ≥ 2.
Here the concept corresponds to an anti-design.
Let𝑉 (𝑛, 𝑞) denote the 𝑛-dimensional vector space over the field with 𝑞 elements. Since work by Cameron
and Liebler in 1982, it has been asked if a similar classification holds for 𝑘-spaces in 𝑉 (𝑛, 𝑞). It is known
due to the work by Drudge (1998) and subsequent work that for (𝑛, 𝑘) = (4, 2) such a classification is
impossible. In our talk we will discuss the history of the problem. Furthermore, we will show that for
fixed 𝑞, 𝑘 ≥ 2 and 𝑛 sufficiently large, a Boolean degree 1 function on the 𝑘-spaces of𝑉 (𝑛, 𝑞) corresponds
to one of the following:

1. The empty set.

2. All 𝑘-spaces through a fixed 1-space 𝑃.

3. All 𝑘-spaces in a fixed hyperplane 𝐻.

4. The union of the previous two examples when 𝑃 is not in 𝐻.

5. The complement of any of the previous cases.

The solves the classification problem of Cameron-Liebler classes asymptotically.
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Combinatorial characterizations of ovoidal cones

Bart De Bruyn
Ghent University, Belgium

Bart.DeBruyn@UGent.be
Joint work with Geertrui Van de Voorde

For a solid Π in the projective space PG(4, 𝑞), an ovoid 𝑂 in Π � PG(3, 𝑞) and a point 𝑥 ∈ Π, the set of
points obtained by joining 𝑥 with the points of 𝑂 is called an ovoidal cone. We will characterise ovoidal
cones by their intersection numbers. Specifically, we show that a set of points of PG(4, 𝑞) which blocks
all planes and intersects solids in 𝑞 + 1, 𝑞2 + 1 or 𝑞2 + 𝑞 + 1 points is a plane or an ovoidal cone, and
determine all examples that arise when the blocking condition is omitted.
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Maximal cliques in the collinearity graphs of geometries of simplex
codes

Adam Tyc
University of Warmia and Mazury in Olsztyn, Poland
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Joint work with Mark Pankov

We consider the point-line geometry whose maximal singular subspaces correspond to 𝑞-ary simplex
codes of dimension 𝑘 . It follows from Fisher’s inequality that maximal cliques in the collinearity graph
of this geometry contain at most 𝑛 = (𝑞𝑘 − 1)/(𝑞 − 1) elements and maximal singular subspaces are
𝑛-cliques of this graph. If 𝑞 = 2, then 𝑛 = 2𝑘 − 1 and there is a one-to-one correspondence between
(2𝑘 − 1)-cliques of the collinearity graph and symmetric (2𝑘 − 1, 2𝑘−1, 2𝑘−2)-designs. For the case when
𝑞 ≥ 5 there is a class of 𝑛-cliques distinct from maximal singular subspaces. In the case when 𝑘 = 2,
some of these cliques are normal rational curves.
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Neighborhoods of Vertices in the Isogeny Graph of Principally
Polarized Superspecial Abelian Surfaces

Zijian Zhou
National University of Defence Technology, China

zhouzijian.edu@gmail.com

Supersingular isogeny-based cryptography has emerged as a promising candidate for post-quantum cryp-
tographic systems. The security of these systems relies on the difficulty of finding paths in isogeny graphs
between supersingular elliptic curves, even for quantum computers. Recent advances have extended
these cryptographic constructions to higher-dimensional abelian varieties, such as superspecial abelian
surfaces, which offer new opportunities for cryptographic applications.
In [2], Xu et al. proved the graph’s structure for supersingular elliptic curves. In this talk, we generalize
the study of isogeny graphs from elliptic curves to abelian surfaces, focusing on the structure of the
(ℓ, ℓ)-isogeny graph of principally polarized superspecial abelian surfaces (PPSSAS). Particularly, we
study the local structure of vertices [𝐸 × 𝐸 ′] in this graph, where at least one of the elliptic curves 𝐸 or
𝐸 ′ is defined over the finite field F𝑝 .
We provide a detailed analysis of the geometric properties of these vertices within the isogeny graph.
Specifically, we present a complete classification of the loops and neighborhoods of vertices [𝐸 × 𝐸 ′]
in the (ℓ, ℓ)-isogeny graph, extending previous work on elliptic curves to higher-dimensional abelian
varieties. We also give explicit constructions of isogenies and their kernels, which reveal the underlying
algebraic and geometric structures of the graph.
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New constructions for orientable sequences

Chris J. Mitchell and Peter R. Wild
Royal Holloway, University of London

me@chrismitchell.net

Orientable sequences of order 𝑛 are infinite periodic sequences with symbols drawn from a finite alphabet
of size 𝑘 with the property that any particular subsequence of length 𝑛 occurs at most once in a period
in either direction. They were introduced in the early 1990s [2, 3] in the context of possible applica-
tions in position sensing. Gabrić and Sawada [4] provide an interesting discussion of further possible
applications as well as their relationship to strings relevant to DNA computing. Bounds on the period for
such sequences [1] and a range of methods of construction have been devised although, apart from very
small cases, a significant gap remains between the largest known period for such a sequence and the best
known upper bound.
We give a new general method of construction for orientable sequences using graph-theoretic techniques,
involving subgraphs of the de Bruijn graph with special properties. We then describe two different
approaches for generating such subgraphs. This enables us to construct orientable sequences with periods
meeting the upper bound when 𝑛 = 2 and 𝑛 = 3 (𝑘 odd), as well as sequences with period very close
to the bound for 𝑛 = 3 and 𝑘 even. For 4 ≤ 𝑛 ≤ 8, in some cases the sequences produced have periods
larger than for any previously known sequences.
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On the Buratti-Horak-Rosa Conjecture for Small Supports
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Joint work with M. A. Ollis, Emerson College, USA

Label the vertices of the complete graph 𝐾𝑣 with the integers {0, 1, . . . , 𝑣 − 1} and define the length ℓ of
the edge between distinct vertices labeled 𝑥 and 𝑦 by ℓ(𝑥, 𝑦) = min( |𝑦 − 𝑥 |, 𝑣 − |𝑦 − 𝑥 |). A realization
of a multiset 𝐿 of size 𝑣 − 1 is a Hamiltonian path through 𝐾𝑣 whose edge labels are 𝐿. The Buratti-
Horak-Rosa (BHR) Conjecture is that there is a realization for a multiset 𝐿 with support contained in
{1, 2, . . . , ⌊ 𝑣−12 ⌋} if and only if for any divisor 𝑑 of 𝑣 the number of multiples of 𝑑 in 𝐿 is at most 𝑣 − 𝑑.
We use “grid-based graphs", which are useful for constructing particular types of realizations, called
“linear realizations," especially when the multiset in question has at most three distinct elements [1, 2, 3].
Our current focus is mainly on multisets with support of the form {1, 𝑥, 𝑦}, for which we had previously
constructed standard linear realizations when 𝑦 − 𝑥 ≤ 2, including all cases when the number of 1-edges
is at least 𝑦 [1, 3]. We will present our recent results extending these constructions to many cases with
𝑦 − 𝑥 > 2. These constructions considerably extend the parameters for which the BHR Conjecture is
known to hold.

MSC2020: 05C38, 05C78
Keywords: complete graph, Hamiltonian path, edge-length, realization, grid-based graph.
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Designs of perfect matchings

Lukas Klawuhn
Paderborn University
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Joint work with John Bamberg

It is well-known that the complete graph 𝐾2𝑛 on 2𝑛 vertices can always be decomposed into perfect
matchings, called a 1-factorisation. In such a decomposition, every edge of 𝐾2𝑛 appears in exactly 1 per-
fect matching. This was generalised by Jungnickel and Vanstone to hyperfactorisations. These are sets
of perfect matchings such that every pair of disjoint edges of 𝐾2𝑛 appears in a constant number of perfect
matchings. Hyperfactorisations are examples of Cameron’s partition systems and were rediscovered by
Stinson who called them hyperresolutions. We generalise all these ideas to 𝜆-factorisations of 𝐾2𝑛 and
characterise them algebraically as Delsarte designs in an association scheme using the theory of Gelfand
pairs. We use this characterisation to derive divisibility conditions and non-existence results. Further-
more, we explore a connection to finite geometry, giving rise to explicit constructions of 𝜆-factorisations.

This is joint work with John Bamberg (University of Western Australia). It is based on ideas developed
together with Kai-Uwe Schmidt.
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Quasi-strongly regular digraphs and new strongly regular digraph
with parameters (165, 60, 36, 23, 21)

Vedrana Mikulić Crnković
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Joint work Matea Zubović Žutolija

In this talk we present a method for constructing regular digraphs from a transitive permutation group,
which is a generalisation of a construction method described in [1]. We use this method to construct
directed quasi-strongly regular graphs from transitive permutation groups of degree up to 30. To illustrate
how the construction method works, we prove the existence of a directed strongly regular graph with
parameters (165, 60, 36, 23, 21) and describe the construction of two non-isomorphic digraphs with the
given parameters.

Keywords: 1-design, strongly regular digraph, quasi-strongly regular digraph, transitive permutation
group
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Further results on decomposition of low degree circulant graphs
into cycles

Juliana Palmen
AGH University of Krakow
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A decomposition of a graph 𝐺 is a collection of edge-disjoint subgraphs 𝐻1, 𝐻2, . . . , 𝐻𝑡 of 𝐺 such that
each edge of 𝐺 belongs to exactly one 𝐻𝑖 . We call this collection a 𝑘-factorization when every 𝐻𝑖 is a
𝑘-regular spanning subgraph of 𝐺.
For a positive integer 𝑛 and a set 𝑆 ⊆ {1, . . . , ⌊( 𝑛2 ⌋)} a circulant 𝐶 (𝑛, 𝑆) is a graph 𝐺 = (𝑉, 𝐸) such that
𝑉 = Z𝑛 and 𝐸 = {{𝑢, 𝑣} : 𝛿(𝑢, 𝑣) ∈ 𝑆} where 𝛿(𝑢, 𝑣) = 𝑚𝑖𝑛{±|𝑢 − 𝑣 | (mod 𝑛)}.
Some results on decomposition of those graphs into cycles were obtained. Inspired by the work of Bryant
and Martin [1], who gave a complete solution for the cycle decomposition of 𝐶 (𝑛, {1, 2}), we examine
the case when 𝑆 = {1, 3}. Among others, we present the results on decomposition of 𝐶 (𝑛, {1, 3}) into
cycles of odd lengths and into cycles of even lengths.
In [2] Bryan showed that, whenever 𝑛 ≥ 5, there exists a 2-factorization of 𝐶 (𝑛, {1, 2}) in which one
factor is a Hamiltonian cycle and the other factor is isomorphic to any given 2-regular graph of order 𝑛.
We discuss some open problems concerning the 2-factorization of 𝐶 (𝑛, {1, 3}).
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Cover-free Families on Graphs
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University of Ottawa, Canada
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Joint work with Lucia Moura

A family of subsets of a 𝑡-set is called a 𝑑-cover-free family if no subset in the family is contained in the
union of any 𝑑 other subsets. We denote by 𝑡 (𝑑, 𝑛) the minimum 𝑡 for which there exists a 𝑑-cover-free
family of a 𝑡-set with 𝑛 subsets. Cover-free families (CFFs) have wide applications in combinatorial
group testing, where a 𝑑-CFF(𝑡, 𝑛) can be used to identify 𝑑 defective items in a group of 𝑛 items with
𝑡 tests [2]. It is well known that 𝑡 (1, 𝑛) can be obtained by applying the famous Sperner’s theorem [3].
For 𝑑 ≥ 2, we rely on bounds for 𝑡 (𝑑, 𝑛). Erdős, Frankl, and Füredi [8] provided bounds for 𝑡 (2, 𝑛) using
the probabilistic method, given by 3.106 log(𝑛) < 𝑡 (2, 𝑛) < 5.512 log(𝑛). Using a derandomization
technique, Porat and Rothschild [1] presented a deterministic polynomial-time algorithm to construct
𝑑-CFFs that achieves 𝑡 = 𝑂 (𝑑2 log(𝑛)). Some upper bounds on 𝑡 (2, 𝑛), and in some cases exact bounds
for small values of 𝑛, were provided by Li, van Rees, and Wei [4] in 2006.
In this talk, we use a graph 𝐺 to extend the definition of a cover-free family, where vertices correspond to
elements of a family of subsets of a 𝑡-set and the edges of 𝐺 impose constraints on pairs of corresponding
subsets. Specifically, a family of subsets of a 𝑡-set is a 𝐺-CFF if, for every edge {𝐴, 𝐵} in 𝐺, the union of
the subsets corresponding to 𝐴 and 𝐵 does not cover any other subset in the family. A family of subsets
of a 𝑡-set is a 𝐺-in-CFF if, for every edge {𝐴, 𝐵} in 𝐺, the subsets corresponding to 𝐴 and 𝐵 are not
mutually contained in each other. We define a 𝐺-CFF as a family that is both a 𝐺-CFF and a 𝐺-in-
CFF. We denote by 𝑡 (𝐺), 𝑡𝑒 (𝐺), and 𝑡𝑖𝑛 (𝐺) the minimum value of 𝑡 for which there exists a 𝐺-CFF, a
𝐺-CFF, and a 𝐺-in-CFF, respectively. The traditional 2-CFF(𝑡, 𝑛) is a special case of a 𝐺-CFF when
𝐺 = 𝐾𝑛. This generalization of cover-free families provides a richer combinatorial structure that lies
between being a 1-CFF and a 2-CFF. Using a technique involving vertex coloring, Idalino and Moura [5]
showed that for a graph with chromatic number 𝜒(𝐺) and 𝑛 vertices, 𝑡 (𝐺) ≤ 𝜒(𝐺) log(𝑛).
We will discuss some classical results on cover-free families, along with general constructions of 𝐺-
CFFs and specific constructions for certain families of graphs. We prove that for a graph 𝐺 with 𝑛
vertices, 𝑡 (1, 𝑛) ≤ 𝑡 (𝐺) ≤ 𝑡 (2, 𝑛), and show that for an infinite family of star graphs 𝑆𝑛 with 𝑛 vertices,
𝑡 (𝑆𝑛) = 𝑡 (1, 𝑛). Using a result from [6], we show that 𝑡𝑖𝑛 (𝐺) = 𝑡 (1, 𝜒(𝐺)). Interestingly, we construct
CFFs on paths (𝑃𝑛) and cycles (𝐶𝑛) with 𝑛 vertices using a mixed-radix Gray code [7]. This yields an
upper bound for 𝑡 (𝑃𝑛) and 𝑡 (𝐶𝑛) that is smaller than the lower bound of 𝑡 (2, 𝑛) mentioned above and
improves the upper bound obtained by vertex coloring, which is 2 log(𝑛). This is joint work with Lucia
Moura.
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A 2-(𝑣, 𝑘, 𝜆) design D = (P,B) consists of a set P of 𝑣 points and a set B of blocks such that each
block is a 𝑘-subset of P and each pair of distinct points is contained in exactly 𝜆 blocks. A flag of D is
an incident point-block pair, and a group 𝐺 of automorphisms of D is flag-transitive if it acts transitively
on the set of flags. Such a group 𝐺 is transitive on both P and B. Also, 𝐺 is said to be point-imprimitive
if it leaves invariant a partition of the point set P in classes of size 𝑐 with 1 < 𝑐 < 𝑣, and point-primitive
otherwise.
If 𝜆 = 1, then 𝐺 acts point-primitively on D by a celebrated result of Higman and McLaughlin [5], and
a classification of such 2-designs was achieved by Buekenhout et al. in [4] except when 𝑣 is a power of a
prime and 𝐺 ≤ 𝐴Γ𝐿1 (𝑣).
If 𝜆 > 1, there are many known families of flag-transitive point-imprimitive 2-designs. Recently, as an
effort of several authors [1, 2, 3, 6, 7, 8, 9], a classification of flag-transitive 2-designs with 𝜆 = 2 has
been achieved except when 𝑣 is a power of a prime and 𝐺 ≤ 𝐴Γ𝐿1 (𝑣).
In my talk, I will give an overview on flag-transitive 2-designs, both in the primitive and imprimitive
case, present some constructions, and provide some recent classification results.
The talk is based on joint works with S. H. Alavi, M. Bayat, A. Daneshkhakh, H. Liang, C. E. Praeger,
Y. Zhao, Z. Zhang and S. Zhou.

Keywords: Flag-transitive designs, 2-designs, permutation groups.

References
[1] H. Alavi, M. Bayat, A. Daneshkhah, M. Tadbirinia, Classical groups as flag-transitive automor-

phism groups of 2-designs with 𝜆 = 2, J. Combin. Theory Ser. A 206: 105892, (2024).

[2] S. H. Alavi, almost simple groups as flag-transitive automorphism groups of 2-designs with 𝜆 = 2,
https://doi.org/10.48550/arXiv.2307.05195.

[3] A. Devillers, H. Liang, C. E. Praeger, B. Xia, On flag-transitive 2-(𝑣, 𝑘, 2) design, J. Combin.
Theory Ser. A 177: 105309, (2021).

[4] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Saxl, Linear spaces
with flag-transitive automorphism groups, Geom. Dedicata 36: 89–94, (1990).

[5] D. G. Higman and J. E. McLaughlin, Geometric ABA-Groups, Illinois J. Math. 5: 382–397, (1961).

[6] H. Liang, A. Montinaro, A Classification of the flag-transitive 2-(𝑣, 𝑘, 2) designs, J. Combin. Theory
Ser. A 211: 105983, (2025).

[7] H. Liang, S. Zhou, Flag-transitive point-primitive automorphism groups of non-symmetric 2-
(𝑣, 𝑘, 2) designs, J. Combin. Des. 24: 421–435, (2016).

[8] H. Liang, S. Zhou, Flag-transitive point-primitive non-symmetric 2-(𝑣, 𝑘, 2) designs with alternat-
ing socle, Bull. Belg. Math. Soc. Simon Stevin 23: 559–571, (2016).

[9] A. Montinaro, Y. Zhao, Z. Zhang, S. Zhou, Design with a simple automorphism group, Finite Fields
Appl. 99: 102488, (2004).

70



Contributed Talk Thursday, June 5th, Session start: 16:30

One weight sum-rank metric codes

Usman Mushrraf
Università degli Studi della Campania “Luigi Vanvitelli”

usman.mushrraf@unicampania.it
Joint work with Ferdinando Zullo

Sum-rank metric codes have gained attention for their applications in network coding and other areas.
These codes are also interesting as mathematical objects, they act as a bridge between the Hamming and
rank metrics, which can be seen as special cases of the sum-rank metric. In this talk, we will explore
linear sum-rank metric codes and examine important properties, such as one weight codes in various
dimensions. We will use geometric tools to analyze and characterize classes of one-weight sum-rank
metric codes.

Keywords: Sum-rank metric code; Linear set; One-weight code
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Geometry of binary simplex codes and symmetric block designs

Krzysztof Petelczyc
University of Białystok (Poland) — Faculty of Mathematics

kryzpet@math.uwb.edu.pl
Joint work with Mark Pankov and Mariusz Żynel

Points of the projective space PG(𝑛 − 1, 2) can be naturally identified with non-empty subsets of an
𝑛-element set. Consider the subgeometry P𝑚 (𝑛) formed by all 2𝑚-element subsets. If 𝑛 = 2𝑘 − 1 and
𝑚 = 2𝑘−2 for some integer 𝑘 ≥ 3, then maximal singular subspaces of this geometry correspond to binary
simplex codes of dimension 𝑘 .
For 𝑘 ≥ 4 the collinearity graph of P𝑚 (𝑛) contains maximal cliques that are not maximal singular
subspaces. Moreover, if such a clique consists of 𝑛 elements, then it determines a symmetric (𝑛, 2𝑚, 𝑚)-
design isomorphic to the design of points and hyperplane complements of PG(𝑘 − 1, 2). We focus on
so-called centered maximal cliques, that are unions of 2𝑘−1 − 1 lines passing through a common point.
They can be constructed using bijections between two maximal (2𝑚−1)-element cliques of P𝑚/2 (2𝑚−1).
The main results concern the case 𝑘 = 𝑚 = 4. Then P𝑚/2 (2𝑚 − 1) = P2 (7) is a rank 3 polar space
and every maximal clique of the associated collinearity graph is a Fano plane. The classification of
bijective maps of Fano planes gives rise to the classification of centered maximal 15-element cliques
in the collinearity graph of P4 (15). This, together with a construction of a non-centered maximal 15-
element clique, provides geometric interpretation of the five well-known symmetric (15, 8, 4)-designs.

Keywords: binary simplex code; Fano plane; symmetric block design.
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Automorphisms of geometries related to binary equidistant codes

Mariusz Żynel
University of Białystok (Poland) — Faculty of Mathematics

mariusz@math.uwb.edu.pl
Joint work with Mark Pankov, Krzysztof Petelczyc

There are two notions of code equivalence. Two codes 𝐶1, 𝐶2 in a vector space 𝑉 over a finite field are
equivalent if either, there is a Hamming weight preserving semilinear isomorphism sending 𝐶1 to 𝐶2, or
there is a monomial transformation of 𝑉 sending 𝐶1 to 𝐶2. The MacWilliams extension theorem says
that these two notions of equivalence are the same.
We consider the projective space P(𝑉) over a vector space 𝑉 = F𝑛2 . Lines in P(𝑉) are of size 3, so P(𝑉)
is a Steiner triple system. The standard basis of 𝑉 is 𝑒1 = (1, 0, . . . , 0), . . . , 𝑒𝑛 = (0, . . . , 0, 1). For every
non-zero vector 𝑣 of 𝑉 we have 𝑣 = 𝑒𝐼 =

∑
𝑖∈𝐼 𝑒𝑖 , where 𝐼 is a non-empty subset of [𝑛] = {1, 2, . . . , 𝑛}.

The 𝑖-th coordinate of 𝑒𝐼 is either 1, if 𝑖 ∈ 𝐼, or 0 otherwise. We write 𝑃𝐼 for the point of P(𝑉)
corresponding to 𝑒𝐼 . Its Hamming weight is |𝐼 |.
Now, let us fix a positive integer 𝑚 with 3𝑚 ≤ 𝑛 and take those points of P(𝑉) whose Hamming weight is
2𝑚. This set of points P𝑚 can be considered a point-line geometry whose lines are those of the projective
space P(𝑉) contained in P𝑚. The Hamming distance between any two distinct collinear points in P𝑚
is 2𝑚. This class of geometries includes: the Pasch configuration (𝑛 = 3𝑚 + 1 = 4), the Cremona-
Richmond configuration known also as the generalized quadrangle of type 2, 2 (𝑛 = 3𝑚 = 6) and a polar
space (𝑛 = 4𝑚 − 1 = 7).
We prove that in some non-trivial cases, there are automorphisms of the geometry P𝑚 induced by a
non-monomial semilinear automorphism of 𝑉 .

Keywords: equidistant code, simplex code, Pasch configuration, Cremona-Richmond configuration, par-
tial Steiner triple system
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Optimal Multidimensional Convolutional Codes
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A one-dimensional (1D) convolutional code can be described as an F[𝑧]-submodule of F[𝑧]𝑛, where
F[𝑧] denotes the polynomial ring in a single indeterminate over the field F. One significant advantage of
convolutional codes is their enhanced error correction capabilities compared to block codes, especially in
scenarios where data is transmitted in a continuous stream. The structure of convolutional codes allows
the detection and correction of errors that may occur across multiple transmitted symbols, rather than
being limited to fixed blocks. Notable contributions to the theory of convolutional codes were made by
Forney, see [4, 5, 6]. The search for convolutional codes with optimal encoding and decoding properties
remains an active area of research. An excellent introduction to convolutional codes can be found in the
books [1, 2, 3].
Multidimensional (mD) convolutional codes extend the concept of convolutional codes to polynomial
rings with multiple variables. Consider the polynomial ring 𝑅 = F[𝑧1, . . . , 𝑧𝑚] in 𝑚 indeterminates over
F. An 𝑚-dimensional convolutional code of length 𝑛 is defined as an 𝑅-submodule of 𝑅𝑛.
mD codes offer significant advantages in the transmission of multidimensional data. For instance, 2D
convolutional codes are suited for applications such as transmitting images and videos as 2D data. The
importance of 3D convolutional codes is also growing as 3D data transmission becomes more common.
With the advancement of higher dimensional codes, we are confident that these applications will find
more uses in the future.
While 1D convolutional codes have been extensively studied, 2D convolutional codes have received
comparatively less attention. Fornasini and Valcher introduced 2D convolutional codes in [8, 9], and the
authors in [10] established an upper bound for the free distance of 2D convolutional codes, along with
optimal constructions. Additional studies on 2D convolutional code constructions can be found in [11,
12, 13]. In [20] the authors introduced the concept of column distance for delay-free 2D convolutional
codes under certain restrictions. Later, in [21] the authors presented upper bounds on these distances
and provide characterizations in terms of the properties of the sliding parity-check matrices of the code.
These results led to the definition of the Maximum Separation Set Distance Profile for 2D convolutional
codes.
Higher-dimensional convolutional codes have garnered even less research. mD convolutional codes were
first introduced in [7, 14] and further examined in [15, 16, 17, 18, 19]. Key distinctions exist between 1D
and 2D convolutional codes, as well as between 2D and mD codes, with 𝑚 ≥ 3, with these differences
being thoroughly explored by Weiner in [7].
In this talk, we introduce the notion of free and column distances for mD convolutional codes. We derive
a new upper bound for the free distance of and we introduce a novel construction for a 3D convolutional
code with rate 1

𝑛
and degree 𝛿 ≤ 2. Additionally, we derive new upper bounds on the column distances,

leading to the novel concept of the Maximum Separation Set Distance Profile for mD convolutional
codes.

References
[1] R. Johannesson and K.S. Zigangirov, Fundamentals of Convolutional Coding, Digital and Mobile Communi-

cation. Wiley-IEEE Press, New Jersey, 1999.
[2] J. Lieb, R. Pinto, and J. Rosenthal, “Convolutional Codes”, in Concise Encyclopedia of Coding Theory, C.

Huffman, J. Kim, and P. Sole (eds.), CRC Press, 2021.
[3] S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications. Prentice-Hall, Englewood

Cliffs, 1983.
[4] G. D. Forney, “Convolutional Codes I: Algebraic Structures”, IEEE Transactions on Information Theory, vol.

IT-16, no. 5, pp. 720–738, 1970.

74



Contributed Talk Thursday, June 5th, Session start: 16:30

[5] G. D. Forney, “Structural Analysis of Convolutional Codes via Dual Codes”, IEEE Transactions on Information
Theory, vol. IT-19, no. 5, pp. 512–518, 1973.

[6] G. D. Forney, “Convolutional Codes II: Maximum Likelihood Decoding”, Information and Control, vol. 25,
pp. 222–266, 1974.

[7] P. Weiner, Multidimensional Convolutional Codes. PhD thesis, University of Notre Dame, USA, 1998.
[8] M.E. Valcher and E. Fornasini, “On 2D Finite Support Convolutional Codes: An Algebraic Approach”, Multi-

dimensional Systems and Signal Processing, vol. 5, pp. 231–243, 1994.
[9] E. Fornasini and M.E. Valcher, “Algebraic Aspects of Two-Dimensional Convolutional Codes”, IEEE Trans-

actions on Information Theory, vol. 40, pp. 1068–1082, 1994.
[10] J.J. Climent, D. Napp, C. Perea, and R. Pinto, “Maximum Distance Separable 2D Convolutional Codes”, IEEE

Transactions on Information Theory, vol. 62, no. 2, pp. 669–680, 2016.
[11] P. Almeida, D. Napp, and R. Pinto, “MDS 2D Convolutional Codes with Optimal 1D Horizontal Projections”,

Designs, Codes and Cryptography, vol. 86, pp. 285–302, 2018.
[12] P. Almeida, D. Napp, and R. Pinto, “From 1D Convolutional Codes to 2D Convolutional Codes of Rate 1/𝑛”,

in Coding Theory and Applications, R. Pinto, P. Rocha Malonek, and P. Vettori (eds.), Springer, CIM Series in
Mathematical Sciences, vol. 3, 2015.

[13] J.J. Climent, D. Napp, C. Perea, and R. Pinto, “A Construction of MDS 2D Convolutional Codes of Rate 1/𝑛
Based on Superregular Matrices”, Linear Algebra and its Applications, vol. 437, no. 3, pp. 766–780, 2012.

[14] H. Gluesing-Luerssen, J. Rosenthal, and P. Weiner, “Duality Between Multidimensional Convolutional Codes
and Systems”, in Advances in Mathematical Systems Theory, pp. 135–150, 2000.

[15] C. Charoenlarpnopparut, “Applications of Gröbner Bases to the Structural Description and Realization of Mul-
tidimensional Convolutional Codes”, ScienceAsia, vol. 35, pp. 95–105, 2009.

[16] C. Charoenlarpnopparut and S. Tantaratana, “Algebraic Approach to Reduce the Number of Delay Elements
in the Realization of Multidimensional Convolutional Codes”, in Proceedings of the 47th IEEE International
Midwest Symposium Circuits and Systems (MWSCAS 2004), pp. 529–532, 2004.

[17] B. Kitchens, “Multidimensional Convolutional Codes”, SIAM Journal on Discrete Mathematics, vol. 15, pp.
367–381, 2002.

[18] E. Zerz, “On Multidimensional Convolutional Codes and Controllability Properties of Multidimensional Sys-
tems over Finite Rings”, Asian Journal of Control, vol. 12, no. 2, pp. 119–126, 2010.

[19] V. Lomadze, “Non-Catastrophicity in Multidimensional Convolutional Coding”, Discrete Mathematics, vol.
343, 2020.

[20] D. Napp Avelli, C. Perea, and R. Pinto, “Column distances for 2D-convolutional codes”, in Proceedings of the
19th International Symposium on Mathematical Theory of Networks and Systems (MTNS), pp. 377–102, 2010.

[21] J.I. Iglesias, D. Napp, C. Perea, R. Pinto, and R. Simões, “Separation set distance for 2D Convolutional
Codes”, in Proceedings of the 23rd International Symposium on Mathematical Theory of Networks and Systems
(MTNS), 2018.

75



Contributed Talk Thursday, June 5th, Session start: 16:30

The neighbor graph of binary Linear Complementary Dual Codes
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Linear complementary dual (LCD) codes were first proposed by Massey in [3]. An LCD code 𝐶 is
defined to be a linear code whose dual code 𝐶⊥ satisfies that 𝐶 ∩ 𝐶⊥ = {0}. In this same reference, the
author proved LCD codes to be an optimal linear coding solution for the two-user binary adder channel.
Furthermore, they are also presented as countermeasures to passive and active side channel analyses on
embedded cryptosystems, see [1] for a detailed description.
In a similar vein to the study of neighbor graphs of binary self-dual codes in [2], we investigate the
neighbor graphs of LCD codes. In this graph, two codes (vertices) are connected by an edge if and only
if they share a subcode of co-dimension 1. We show this is a connected, regular graph as well as show
how some subtypes of LCD codes induce regular subgraphs. With this, we unveil structural connections
between LCD codes which could provide new methods for classifying or searching for LCD codes.
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Self-orthogonal and LCD codes related to some combinatorial
structures
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Joint work with Vedrana Mikulić Crnković

In this talk we will present methods for constructing self-orthogonal and LCD codes using incidence
matrices of some combinatorial structures.

A linear code C is called self-orthogonal if C is contained in its dual and LCD code if the intersection of
C with its dual is trivial. Matrix 𝐺 generates self-orthogonal code if 𝐺 ·𝐺𝑇 = 0 and 𝐺 generates an LCD
code if and only if det(𝐺 · 𝐺𝑇 ) ≠ 0 (see [1]).
We analyse extensions of the incidence matrix, orbit matrix and submatrices of orbit matrix of a weakly
𝑝-self-orthogonal 1-design1 in order to construct self-orthogonal codes (see [2]), and we extend the
methods of construction described in order to construct LCD codes (see [3]).
Additionally, we present methods of obtaining self-orthogonal and LCD codes using incidence matrices
and orbit matrices of some combinatorial structures, such as graphs and digraphs.

Keywords: self-orthogonal code, LCD code, weakly 𝑝-self-orthogonal design
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Strong External Difference Families, Graph Labeling and Near
Factorizations of Finite Groups
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Strong external difference families (SEDFs) were defined in 2016 as a way of characterising optimal
examples of certain structures arising from an application in cryptography. Specifically, an SEDF is a
collection of disjoint subsets 𝐴1, . . . , 𝐴𝑚 of a finite group 𝐺 with the property that for each 𝑖 from 1 up
to 𝑚, the nonzero elements of 𝐺 occur exactly once as a difference of the form 𝑎𝑖 − 𝑎 𝑗 with 𝑎𝑖 ∈ 𝐴𝑖 and
𝑎 𝑗 ∈ 𝐴 𝑗 for some 𝑗 ≠ 𝑖. In this talk we consider connections with longer-studied combinatorial objects,
including graph labelings and near factorizations of finite groups, and we explore recent progress and
open questions in the quest to classify SEDFs.
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A family of strongly regular graphs from hyperbolic quadrics
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Pavese

Let 𝑄+ (2𝑛 + 1, 𝑞) be a hyperbolic quadric of 𝑃𝐺 (2𝑛 + 1, 𝑞). Fix a generator 𝑛-space 𝑆 of the quadric.
Then G𝑛 denote the graph whose vertices are the points of 𝑄+ (2𝑛 + 1, 𝑞) \ 𝑆 and where two vertices
𝑃 and 𝑄 are adjacent if the line 𝑃𝑄 is secant to 𝑄+ (2𝑛 + 1, 𝑞) or non-trivially intersects 𝑆. Then, G𝑛
is a strongly regular graph with parameters 𝑣 =

(𝑞𝑛+1) (𝑞𝑛+1−1)
𝑞−1 − 𝑞𝑛+1−1

𝑞−1 =
𝑞𝑛 (𝑞𝑛+1−1)

𝑞−1 , 𝑘 = 𝑞2𝑛 − 1,
𝜆 = 𝑞2𝑛−1 (𝑞 − 1) − 2 and 𝜇 = (𝑞2𝑛−1 + 𝑞𝑛−1) (𝑞 − 1). Moreover, if 𝑞 = 2, G𝑛 is cospectral to the tangent
graph 𝑁𝑂+ (2𝑛 + 2, 2), whose vertex set is 𝑃𝐺 (2𝑛 + 1, 2) \𝑄+ (2𝑛 + 1, 2), and two vertices 𝑃 and 𝑄 are
adjacent if the line 𝑃𝑄 is a tangent.
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A Neurosymbolic Approach to Galois Group of Septics
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We introduce a database of irreducible polynomials of degree 7, where each polynomial is encoded
in binary form and stored in a Python dictionary. For every polynomial, we compute invariants us-
ing transvection formulas and determine the associated Galois groups. Building on this comprehensive
dataset, we develop a Neurosymbolic Network that classifies Galois groups. Furthermore, this database
will serve as a foundational resource for training models which work for any degree polynomial with a
reasonably high degree of accuracy.
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Coadjoint Matroids and Dependencies on Hypergraphs
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Using the definitions of matroidal hypergraph cycles and matroidal closures we proposed in [2], we
expand our ideas to the concept of the joints of matroids, while also formalising the definition of the
coadjoint matroids. By establishing connections between the standard definition of the closure on a
matroid, provided in [3] and a matroidal closure, we research the relations between matroids and the
combinatorial derived matroids (defined in [1]) associated to them.
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Applications of Combinatorial Designs to Software Engineering,
Cyber Security and Disaster Science

Dimitris Simos
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C. J. Colbourn, J. H. Dinitz and D.R. Stinson, in their seminal survey on applications of combinatorial
designs to communications, cryptography, and networking [Surveys in Combinatorics, 1999. London
Mathematical Society Lecture Note Series. Cambridge University Press; pages 37-100], highlighted
connections with experimental and applied computer science and that the theory of combinatorial designs
grew in part as a consequence of the variety of its potential applications.
More than 25 years later, we pay tribute to their work by illustrating new profound applications of com-
binatorial designs to the technical and natural sciences. In particular, in this talk, we present various
research problems encountered in the important fields of software engineering, cyber security and disas-
ter science and demonstrate that they are prone to combinatorial design interpretations where one can use
recursive combinatorial constructions, efficient combinatorial optimization, neural and quantum comput-
ing algorithms as well as algebraic or symbolic computation solvers to tackle them.
It comes as no surprise that the rich theory of combinatorial designs and the increasing depth of the
connections with various classes of designs not only continues to grow in an astonishing fashion but the
many new applications emerged pave the way for a new era of challenging problems in combinatorial
design theory.
Based on joint works with Charles Colbourn, Bernhard Garn, Ludwig Kampel, Ilias Kotsireas, Temur
Kutsia, Manuel Leithner and Michael Wagner.
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