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2-designs

Definition

A 2-(v , k , λ) design D = (P,B) consists of a set P of v points, and a set
B of k-element subsets of P, called blocks, such that every pair of distinct
points is contained in exactly λ blocks.

- In general, the number of blocks b := |B| is at least v by Fisher’s
inequality, and D is said to be symmetric if b = v ;

- r = (v−1)λ
k−1 is the number of blocks of D containing any fixed point,

and it is called the replication number of D. It results bk = vr ;

- D is non-trivial if 2 < k < v − 1.

- A flag is any incident point-block pair of D.
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Automorphisms of 2-designs

Definition

An automorphism of D = (P,B) is a permutation of the point-set P
preserving the block-set B.

The set of all automorphisms of D is a group,
called the full automorphism group of D, denoted by Aut(D).
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A Classical Problem

Problem

Determine/classify the pairs (D,G ), where D is a 2-design admitting
G as an automorphism group,

provided some conditions on

D (for instance, on its parameters), or

G (like some transitivity property of G on some subset of
points, blocks or flags of D).

We are interested in the case where G acts flag-transitively on D.
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Flag-transitivity⇒Block-transitivity⇒Point-transitivity

Let G ≤ Aut(D), then

D

x x ′

γ

B B ′γ

x x ′

γ

flag-transitivity ⇒block-transitivity ⇒point-transitivity
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Flag-transitivity & Point-primitivity

Definition

A point-transitive automorphism group G of D is said to be
point-imprimitive if G preserves a partition Σ of the point-set of D in
classes of size v0 with 1 < v0 < v .

Otherwise, G is said to be
point-primitive.

Let Σ = {∆1, ...,∆v1} is a G -invariant partition of the point-set of D in v1
classes each of size v0 with 1 < v0 < v . Hence, v = v0v1.

∆1 ∆2 ∆3 ∆4 · · · ∆v1

γ
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Flag-transitivity & Point-primitivity

flag-transitivity block-transitivity point-transitivity

point-primitivity

point-imprimitivity

G acts flag-transitively and point-imprimitively on D;

G acts flag-transitively and point-primitively on D.
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The Higman-McLaughlin Theorem

Theorem (Higman-McLaughlin, 1961)

Any flag-transitive automorphism group of a 2-design with λ = 1 acts
point-primitively.
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Flag-Transitive Point-Imprimitive Examples

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for λ > 1:

D is one of the two (16, 6, 2) biplanes with G isomorphic to (Z2)
4 : S4

or (Z2 × Z8).(S4.Z2), respectively, (Husain (1945) and, independently,
by Nandi (1946), and O’Relly-Reguerio (2005));

D is the complementary design of PGn(2), n odd, and
G ∼= PΓL(n+1)/2(4) (Cameron-Kantor, 1978);

D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4) (Praeger, 2007);

D is one of the four 2-(96, 20, 4) designs (several G )
(Law-Praeger-Reichard, 2009).

Theorem (Davies, 1987)

For any fixed λ, there are only finitely many 2-(v , k, λ) designs with a
flag-transitive point-imprimitive automorphism group.
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Conditions ensuring point-primitivity

Theorem

Let G be any flag-transitive automorphism group of a 2-(v , k, λ) design D.
Then G acts point-primitively on D, provided that at least one of the
following conditions on the parameters of D holds:

Line Condition Author(s)

1 λ > (r , λ) · ((r , λ)− 1) Dembowski, 1968, or
2 (r , λ) = 1 Kantor, 1969
3 (r − λ, k) = 1
4 r > λ(k − 3)
5 (v − 1, k − 1) = 1 or 2

6 k > 2λ2(λ− 1) Devillers-Praeger, 2021

7 v >
(
2λ2(λ− 1)− 1

)2
8 (v − 1, k − 1)2 ≤ v − 1 Zhong-Zhou, 2023
9 (v − 1, k − 1) = 3 or 4
10 k prime
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Flag-transitive point-imprimitive 2-designs with λ ≤ 4

Theorem (Devillers-Praeger, 2024)

Let G be any flag-transitive point-imprimitive automorphism group of a
2-(v , k , λ) design D. If v < 100 and λ ≤ 4, then one of the following
holds:

1 D is one of the two (16, 6, 2) biplanes with G isomorphic to (Z2)
4 : S4

or (Z2 × Z8).(S4.Z2);

2 D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4);

3 D is the 2-(15, 8, 4) design and A5 ⊴ G ≤ S5;

4 D is one of the two 2-(16, 6, 4) designs;

5 D is the 2-(36, 6, 4) design;

6 D is one of the four 2-(96, 20, 4) designs (several G) .
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The Higman-McLaughlin theorem for 2-designs with λ
prime

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a
2-(v , k , λ) design D. If λ is a prime, then one of the following holds:

1 D is one of the two 2-(16, 6, 2) biplanes with G isomorphic to
(Z2)

4 : S4 or (Z2 × Z8).(S4.Z2);

2 D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4);

3 D is a 2-(22
j+1

(22
j
+ 2), 22

j
(22

j
+ 1), 22

j
+ 1) design when 22

j
+ 1 > 3

is a Fermat prime.

There are no known examples corresponding to case (3).
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A Fundamental Tool: the Theorem of Camina-Zieschang

Let Σ = {∆1, ...,∆v1} be a G -invariant partition in v1 classes each of size
v0 with 1 < v0 < v . Hence, v = v0v1

.

∆1 ∆2 ∆3 ∆4 · · · ∆v0

B

k0

There is a constant k0 ≥ 2 such that |B ∩∆| = 0 or k0 for each B ∈ B
and ∆ ∈ Σ. Moreover, k0 divides k .
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Let Σ = {∆1, ...,∆v1} be a G -invariant partition in v1 classes each of size
v0 with 1 < v0 < v . Hence, v = v0v1.

∆1 ∆2 ∆3 ∆4 · · · ∆v1

For each i = 1, ..., v1 the incidence structure D∆i
= (∆i ,B∆i

), where
B∆i

= {B ∩∆i ̸= ∅ : B ∈ B}, is a 2-(v0, k0, λ0) design;

G∆i
∆i

acts flag-transitively on D∆i
.

As the incidence structures corresponding to distinct classes
∆i ,∆j ∈ Σ are isomorphic under elements of G mapping ∆i to ∆j

we refer to D∆i
as D0.
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A fundamental Tool: the Theorem of Camina-Zieschang

∆1 ∆2 ∆3 ∆4 · · · ∆v1

C

C ′

1 for each block C of D the set C (Σ) = {∆ ∈ Σ : C ∩∆ ̸= ∅} has a
constant size k1 =

k
k0
;

2 Let BΣ be the quotient set defined by the equivalence relation
R = {(C ,C ′) ∈ B × B : C (Σ) = C ′(Σ)} on B;

3 the incidence structure D1 =
(
Σ,BΣ, I

)
, where

I = {(∆,CΣ) ∈ Σ× BΣ : ∆ ∈ C (Σ)}, is a 2-(v1, k1, λ1) design;

4 GΣ acts flag-transitively on D1.
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The Higman-McLaughlin theorem for 2-designs with λ
prime: proof main ingredients.

apply the Theorem of Camina-Zieschang (1989);

determine (D0,G
∆
∆ ) using the Liebeck-Saxl result (1985) on primitive

permutation groups containing elements of large prime order;

determine (D1,G
Σ) using the above mentioned bounds by

Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

match the results obtained on (D0,G
∆
∆ ) and on (D1,G

Σ).
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The Symmetric Case

Theorem (Praeger-Zhou, 2006)

Let D = (P,B) be any symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive automorphism group G preserving a
nontrivial partition Σ of P with v1 classes of size v0, where v = v0v1. If
k > λ(λ− 3)/2, then admissible parameters for D,D0 and D1 are as in
the following table:

Table: Admissible parameters for D,D0 and D1

Line v k v0 k0 v1 k1
1 λ2(λ+ 2) λ(λ+ 1) λ2 λ λ+ 2 λ+ 1
2 λ+ 2 2 λ2 λ(λ+ 1)/2

3 λ+2
2

λ2−2λ+2
2

λ2

2
λ+2
2

2 λ2−2λ+2
2

λ2

4

4 (λ+ 6)λ
2−2+4λ−1

4
λ(λ+5)

2
λ+ 6 3 λ2−2+4λ−1

4
λ(λ+5)

6
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The Symmetric case

Theorem (M., 2024)

Let D = (P,B) be any symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive automorphism group G . If
k > λ(λ− 3)/2, then

1 D is one of the two (16, 6, 2) biplanes with G isomorphic to (Z2)
4 : S4

or (Z2 × Z8).(S4.Z2);

2 D is the 2-(45, 12, 3) design and G ≤ AΓL1(3
4);

3 D is the 2-(15, 8, 4) design and A5 ⊴ G ≤ S5;

4 D is one of the four 2-(96, 20, 4) designs (several possibilities for G ).
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Affine Resolvable Designs

Definition

A resolution of a 2-design D0 = (P0,B0) is any partition of B0 into sets,
called parallel classes, each of which is a partition of P0.

Any 2-design admitting a resolution is called resolvable.

Examples 2

(i) AGn(q) with the hyperplanes as blocks.

(ii) Any affine plane.

(iii) The hermitian unital or the Ree unital.

(iv) 2-(12, 6, 5) Witt design W12.

Definition

A resolvable 2-design D0 in which blocks in different classes have the same
number of points in common is called affine resolvable.
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Latin Squares

Definition

A Latin square of order n is a n × n array containing the symbols 1, ..., n
in such a way that each symbol occurs once in each row and once in each
column of the array.

A Latin square of order 4

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

The multiplication table (Caley table) of a group is a Latin square.
The converse is not true!

Latin squares and Quasigroups are equivalent objects.
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Camina-Zieschang Thm. & Cameron-Praeger Construction

Symmetric 2-(v0v1, k0k1, λ) design D
G flag-transitive point-imprimitive on D

2-(v0, k0, λ0) design D0

G∆
∆ flag-transitive on D0

2-(v1, k1, λ1) design D1

GΣ flag-transitive on D1
G ≲ G∆

∆ ≀ GΣ

Affine resolvable
2-(v0, k0, λ0) design D0

H flag-transitive
Symmetric
2-(v1, k1, λ1) design D1

with k1 = r0 = v1 − 1
K flag-transitive

Latin square
of order r0 + 1

A specific sub-
group of H ≀ K
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The role of the Latin square in the CP-construction

D0
∼= AG2(2) with point set ∆;

D1 is the trivial 2-(4, 3, 2) design with point set {1, 2, 3, 4};
LS(4) :

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

∆× {2} ∆× {3} ∆× {4}
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Examples arising from Cameron-Praeger construction

Examples 3

1 the two 2-(16, 6, 2) designs with G ∼= [24].S4 < AGL4(2) described by
O’Relly-Reguerio (2006). Here, D0

∼= AG2(2).

2 the 2-(45, 12, 3) with G = [34].(10.4) < AΓL1(81) constructed by
Praeger (2007). Here, D0

∼= AG2(3).

3 D the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard
(2007). Here, D0

∼= AG2(4).

4 D is the 2-(22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) design S−(n) with
n ≥ 2 described by Cameron-Seidel (1973), and G ∼= 22n : GL2(n).
Here, D0

∼= AGn(2).

5 D is a 2-(1408, 336, 80) design constructed by Cameron-Praeger
(2016) and G ∼= 26 : ((3 ·M22) : 2). Here, D0

∼= AG3(4).
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An Open Problem

Problem

Does every flag-transitive, point-imprimitive symmetric 2-design
arise from the Cameron-Praeger construction?
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On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P,B) be a symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition Σ of P with v1 classes of size v0. If D0 is affine
resolvable and k1 = v1 − 1, then one of the following holds:

1 D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

2 D is the 2-(144, 66, 30) design constructed by Lempken (1999), and
G ∼= M12.

Remark

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each LS(10).

The number of LS(10) is
greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

27 / 37



On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P,B) be a symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition Σ of P with v1 classes of size v0. If D0 is affine
resolvable and k1 = v1 − 1, then one of the following holds:

1 D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

2 D is the 2-(144, 66, 30) design constructed by Lempken (1999), and
G ∼= M12.

Remark

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each LS(10).

The number of LS(10) is
greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

27 / 37



On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P,B) be a symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition Σ of P with v1 classes of size v0. If D0 is affine
resolvable and k1 = v1 − 1, then one of the following holds:

1 D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

2 D is the 2-(144, 66, 30) design constructed by Lempken (1999), and
G ∼= M12.

Remark

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each LS(10).

The number of LS(10) is
greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

27 / 37



On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P,B) be a symmetric 2-(v , k , λ) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition Σ of P with v1 classes of size v0. If D0 is affine
resolvable and k1 = v1 − 1, then one of the following holds:

1 D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

2 D is the 2-(144, 66, 30) design constructed by Lempken (1999), and
G ∼= M12.

Remark

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each LS(10). The number of LS(10) is
greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

27 / 37



Classification of the flag-transitive affine resolvable designs

The parameters of D0 are known as a consequence of a result of Bose
(1942) on affine resolvable designs;

The replication number r0 of D0 is coprime to λ0.

Theorem [Alavi, Biliotti, Daneshkhah, M., Zhou et al. (2022)]

One of the following holds for
(
D0,G

∆
∆

)
:

(I) G∆
∆ is almost simple and one of the following holds:

(a) D0 is AG3(2) and G∆
∆ = PSL2(7);

(b) D0 is a 2-(12, 6, 5) Witt design and M11 ≤ G∆
∆ ≤ M12;

(II) G∆
∆ is of affine type and D0 is a 2-(pi , pj , λ0) design with either

λ0 = 1 or λ0 =
pj−1

pgcd(j,i/z)−1
for some z | i such that gcd(j , z , i/z) = 1,

or λ0 =
pj−1
a for some a | pgcd(j ,i) − 1.

The points and blocks of D0 are the points and (certain) j-subspaces
of AGi (p).
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Open Problems

Affine resolvable 2-(v0, k0, λ0) design D0

Symmetric 2-(v1, k1, λ1) design D1 with
k1 = r0 = v1 − 1

L = {lij} is a Latin square of order r0 + 1

Symmetric
2-(v0v1, k0k1, λ) design
D = F (D0,D1, L)

Definition

Two latin squares L = {lij} and L′ = {l ′ij} of order r0 + 1 are isotopic if
and only if there are α, β, γ ∈ Sr0+1 such that γ(lij) = l ′α(i)β(j) for all i , j .

The triple (α, β, γ) is called isotopism.

1 L and L′ are isotopic
?

=⇒ D = F (D0,D1, L) ∼= F (D0,D1, L
′) = D′.

2 D = F (D0,D1, L)
?

=⇒ L is based on a group.

3 Try to settle the G -soluble case.
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Flag-transitive point-primitive 2-designs with small λ

Theorem

Let D be a non-trivial 2-(v , k , λ) design admitting a flag-transitive
point-primitive automorphism group G . If G ≰ AΓL1(v), v power of a
prime, then (D,G ) is classified in the following cases:

Conditions on D Conditions on G Author(s)

λ = 1 Buekenhout, Delandtsheer,
Doyen, Kleidman, Liebeck
Saxl, 1990

λ = 2, v = b O’Relly-Reguerio, 2005

λ = 2, v < b G almost simple Alavi, Devillers,
Daneshkah, Liang,
M., Praeger, Xia,
Zhou et. al 2016–2025

λ = 2, v < b G affine Liang-M., 2025

2 < λ ≤ 10, v = b G affine Alavi-Daneshkhah-M., 2025+
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λ Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G . Then the socle
T of G is either nonabelian simple, or an elementary abelian p-group for
some prime p.

Theorem (Zhang-Chen-Zhou, 2024)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle
T ∼= An, n ≥ 5. Then one of the following holds:

1 D is a 2-(6, 3, 2) design and G ∼= A5;

2 D is a 2-(10, 4, 2) design and G ∼= A5,S5,A6,PΣL2(9);

3 D is a 2-(10, 6, 5) design and G ∼= A5,S5,A6,S6;

4 D is a 2-(15, 7, 3) design and G ∼= A7,A8.
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Sporadic Groups

Theorem (Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
simple sporadic group. Then (D,G ) is (up to isomorphism) as one of the
rows in the following table.

Table: Sporadic simple groups and flag-transitive 2-designs with λ prime.

Line v b r k λ G Gα GB

1 12 22 11 6 5 M11 PSL2(11) A6

2 22 77 21 6 5 M22 PSU3(4) 24:A6

22 77 21 6 5 M22:2 PSU3(4):2 24:S6
3 176 1100 50 8 2 HS PSU3(5):2 S8
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Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v , k, λ) design with λ prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
finite exceptional simple group. Then one of the following holds

1 T is 2B2(q) with q2a+1 ≥ 8 even, and D is the 2-(q2 + 1, q, q − 1)
design, where q − 1 is a Mersenne prime, arising from the Suzuki-Tits
ovoid;

2 T is G2(q) with q ≥ 4 even, and D is the 2-
(
q3

2 (q
3 − 1), q

3

2 , q + 1
)

design, where q + 1 a Fermat prime,

and it is identified with the coset
geometry cos(T ,H,K ), where H = SU3(q) : Z2 and K = [q6] : Zq−1;

Example 4

Using the Higman-McLaughlin setting: cos(T ,H,K ) = (P,B, I), where
P = {Hx : x ∈ T}, B = {Ky : y ∈ T};
Hx I Ky if and only if Hx ∩ Ky ̸= ∅.
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The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let D be a nontrivial symmetric design with λ prime admitting a
flag-transitive and point-primitive automorphism group G of affine type.
Then G ≤ AΓL1(q), or D is a symmetric 2-(16, 6, 2) design with full
automorphism group 24 : S6 and point-stabilizer S6.

Examples occur in the non-symmetric design case:

Example 5 (Buratti-Martinović-Nakić, 2025)

There are two non isomorphic flag-transitive 2-(33, 6, 5) designs with
AGL1(3

3)⊴ G ≤ AΓL1(3
3).
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Future Works

Complete the λ prime case (joint work with S. H. Alavi, A.
Daneshkhah).

Study the flag-transitive 2-(v , k , λ)-designs with k | v . Focus on the
resolvable ones (joint work with E. Romano, Z. Lu, S. Zhou).

Use the previous case to investigate the Cameron-Praeger
construction in the non-symmetric design case.
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THANK YOU FOR YOUR ATTENTION!

Σας ευχαριστώ για την προσοχή σας!
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