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2-designs

Definition

A 2-(v, k,\) design D = (P, B) consists of a set P of v points, and a set
B of k-element subsets of P, called blocks, such that every pair of distinct
points is contained in exactly A blocks.

- In general, the number of blocks b := |B| is at least v by Fisher's
inequality, and D is said to be symmetric if b = v;

- r= % is the number of blocks of D containing any fixed point,
and it is called the replication number of D. It results bk = vr;

- Dis non-trivial if 2 < k < v —1.
- A flag is any incident point-block pair of D.
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Definition

An automorphism of D = (P, B) is a permutation of the point-set P
preserving the block-set B.
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Automorphisms of 2-designs

Definition

An automorphism of D = (P, B) is a permutation of the point-set P
preserving the block-set B. The set of all automorphisms of D is a group,
called the full automorphism group of D, denoted by Aut(D).
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A Classical Problem

Determine/classify the pairs (D, G), where D is a 2-design admitting
G as an automorphism group, provided some conditions on

@ D (for instance, on its parameters), or

@ G (like some transitivity property of G on some subset of
points, blocks or flags of D).

We are interested in the case where G acts flag-transitively on D.
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Flag-transitivity=-Block-transitivity=-Point-transitivity

Let G < Aut(D), then

@ G acts flag-transitively on D:

D
B v B’
Y

flag-transitivity = block-transitivity =-point-transitivity
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The Higman-MclLaughlin Theorem

Theorem (Higman-McLaughlin, 1961)

Any flag-transitive automorphism group of a 2-design with A = 1 acts
point-primitively.
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Flag-Transitive Point-Imprimitive Examples

Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for A > 1:

@ D is one of the two (16, 6,2) biplanes with G isomorphic to (Z2)* : S4
or (Z> x Z3).(54.22), respectively, (Husain (1945) and, independently,
by Nandi (1946), and O'Relly-Reguerio (2005));

@ D is the complementary design of PG,(2), n odd, and
G = PT'L(541)/2(4) (Cameron-Kantor, 1978);

o D is the 2-(45,12, 3) design and G < AlL1(3*) (Praeger, 2007);

@ D is one of the four 2-(96, 20, 4) designs (several G)
(Law-Praeger-Reichard, 2009).

Theorem (Davies, 1987)

For any fixed A, there are only finitely many 2-(v, k, \) designs with a
flag-transitive point-imprimitive automorphism group.
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Conditions ensuring point-primitivity

Let G be any flag-transitive automorphism group of a 2-(v, k, A) design D.
Then G acts point-primitively on D, provided that at least one of the
following conditions on the parameters of D holds:

Line Condition Author(s)

1 A>(r,A)-((r,A\) —1) Dembowski, 1968, or

2 (r,\)=1 Kantor, 1969

3 (r—=XNk)=1

4 r> Mk —3)

5 (v—1,k—1)=1lor2

6 k>2)\2(\—1) Devillers-Praeger, 2021

7 v> (220 -1)-1)°

8 (v—1,k—1)><v—1 Zhong-Zhou, 2023

9 (v—1,k—1)=3o0r4

10 k prime

. Wy
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Flag-transitive point-imprimitive 2-designs with \ < 4

Theorem (Devillers-Praeger, 2024)

Let G be any flag-transitive point-imprimitive automorphism group of a
2-(v, k, \) design D. If v < 100 and A < 4, then one of the following
holds:

@ D is one of the two (16,6, 2) biplanes with G isomorphic to (Z)* : S,
or (22 X Zg).(54.22);

Q D is the 2-(45,12,3) design and G < Al'L;(3%);

@ D is the 2-(15,8,4) design and As I G < Ss;

Q D is one of the two 2-(16, 6, 4) designs;

@ D is the 2-(36, 6, 4) design;

@ D is one of the four 2-(96,20,4) designs (several G) .
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The Higman-McLaughlin theorem for 2-designs with A
prime

Theorem (M., 2025)

Let G be any flag-transitive point-imprimitive automorphism group of a
2-(v, k, \) design D. If X is a prime, then one of the following holds:

@ D is one of the two 2-(16,6,2) biplanes with G isomorphic to
(22)4 o 54 or (Zg X Zg).(54.22);

@ D is the 2-(45,12,3) design and G < Al'L;(3%);

@ Disa 2-(227 (2% +2),2%(2% +1),2% +1) design when 22 +1 >3
is a Fermat prime.

v

There are no known examples corresponding to case (3).
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A Fundamental Tool: the Theorem of Camina-Zieschang

Let ¥ = {A1,...,A,,} be a G-invariant partition in v; classes each of size
vo with 1 < vy < v. Hence, v = vyvy.

A1 JAD) JAN) JAVA .. Ay,
ko ko L B
|k ]

There is a constant kg > 2 such that |[BN A| =0 or kg for each B € B
and A € X. Moreover, kg divides k.

. 57



A Fundamental Tool: the Camina-Zieschang Theorem

. -



A Fundamental Tool: the Camina-Zieschang Theorem

Let ¥ = {Aq1,..., Ay, } be a G-invariant partition in v; classes each of size
vo with 1 < vy < v. Hence, v = wv1.
AN Ay A3 AV AW

T~/ [/ [T T~ / [T~

. -



A Fundamental Tool: the Camina-Zieschang Theorem

Let ¥ = {Aq1,..., Ay, } be a G-invariant partition in v; classes each of size
vo with 1 < vy < v. Hence, v = wv1.
AN Ay A3 AV . AW

[~ [~ [~

e For each i =1, ..., v the incidence structure Da, = (A}, Ba,), where
Ba, ={BNA;#@:BecB},is a2 (v, ko, \o) design;

. -



A Fundamental Tool: the Camina-Zieschang Theorem

Let ¥ = {Aq1,..., Ay, } be a G-invariant partition in v; classes each of size
vo with 1 < vy < v. Hence, v = wv1.
AN Ay A3 AV . AW

[~ [~ [~

e For each i =1, ..., v the incidence structure Da, = (A}, Ba,), where
Ba, ={BNA;#@:BecB},is a2 (v, ko, \o) design;

° GAA,_" acts flag-transitively on Dy,.

. -



A Fundamental Tool: the Camina-Zieschang Theorem

Let ¥ = {Aq1,..., Ay, } be a G-invariant partition in v; classes each of size
vo with 1 < vy < v. Hence, v = wv1.
AN Ay A3 AV AW

T~/ [/ [T T~ / [T~

e For each i =1, ..., v the incidence structure Da, = (A}, Ba,), where
Ba, ={BNA;#@:BecB},is a2 (v, ko, \o) design;
° GAA,_" acts flag-transitively on Dy,.

As the incidence structures corresponding to distinct classes
Aj,A; € ¥ are isomorphic under elements of G mapping A; to A;
we refer to Dp, as Dy.

. -



A fundamental Tool: the Theorem of Camina-Zieschang

Ay Ay As Ay - A,

C

e

D

c [

© for each block C of D theset C(X)={Ae€X:CNA#Z} hasa

constant size k1 = kio;

@ Let B* be the quotient set defined by the equivalence relation
R={(C,C"YeBxB:C(X)=C(X)}on B;
© the incidence structure Dy = (Z,BZ,I), where
I={(A,C*)eLxB*:AcC(X)} isa2-(v, ki, \1) design;
Q G?* acts flag-transitively on Dj.
] 17 /37
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The Higman-McLaughlin theorem for 2-designs with A
prime: proof main ingredients.

@ apply the Theorem of Camina-Zieschang (1989);

o determine (Do, GX') using the Liebeck-Sax! result (1985) on primitive
permutation groups containing elements of large prime order;

o determine (D1, G¥) using the above mentioned bounds by
Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group
theory;

@ match the results obtained on (Dp, G&') and on (D1, GT).
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The Symmetric Case

Theorem (Praeger-Zhou, 2006)

Let D = (P, B) be any symmetric 2-(v, k, \) design admitting a
flag-transitive, point-imprimitive automorphism group G preserving a
nontrivial partition X of P with v; classes of size vy, where v = vyvy. If
k > A(A — 3)/2, then admissible parameters for D, Dy and D; are as in
the following table:

Table: Admissible parameters for D, Dy and D;

Line v k Vo ko vi kq
1 N(X+2) A +1) N A A+2 A+1
2 A+2 2 X AN +1)/2
3 Ad2 A2—22+42 A2 A2 5 AP-2a42 A2
9 )%2—2+4,\—1 >\2(A+5) 2 A2 —§+4>\—1 A4(>\+5)
4 (A +6) : 5 A+6 3 t =
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The Symmetric case

Theorem (M., 2024)

Let D = (P, B) be any symmetric 2-(v, k, A) design admitting a
flag-transitive, point-imprimitive automorphism group G. If
k > XA —3)/2, then

@ D is one of the two (16, 6,2) biplanes with G isomorphic to (Z2)* : S,
or (Zo x Z3).(S4-2);

@ D is the 2-(45,12, 3) design and G < AlL;(3%);
© D is the 2-(15,8,4) design and As < G < Ss;
© D is one of the four 2-(96, 20, 4) designs (several possibilities for G).

. .
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called parallel classes, each of which is a partition of Pg.
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Examples 2
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Affine Resolvable Designs

Definition

A resolution of a 2-design Dy = (Po, Bo) is any partition of By into sets,
called parallel classes, each of which is a partition of Pg.

Any 2-design admitting a resolution is called resolvable.

|

Examples 2

(i) AGp(q) with the hyperplanes as blocks.
(i) Any affine plane.
(iii) The hermitian unital or the Ree unital.
(iv) 2-(12,6,5) Witt design Wi».

|

Definition
A resolvable 2-design Dy in which blocks in different classes have the same
number of points in common is called affine resolvable.

v
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Definition
A Latin square of order nis a n X n array containing the symbols 1, ..., n
in such a way that each symbol occurs once in each row and once in each
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A Latin square of order 4
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Latin Squares

Definition

A Latin square of order n is a n X n array containing the symbols 1, ..., n
in such a way that each symbol occurs once in each row and once in each
column of the array.

A Latin square of order 4

N H—| & W
RN WD

Al WIN| -
W=D

@ The multiplication table (Caley table) of a group is a Latin square.
The converse is not true!

. a5



Latin Squares

Definition

A Latin square of order n is a n X n array containing the symbols 1, ..., n
in such a way that each symbol occurs once in each row and once in each
column of the array.

A Latin square of order 4

N H—| & W
RN WD

Al WIN| -
W=D

@ The multiplication table (Caley table) of a group is a Latin square.
The converse is not true!

@ Latin squares and Quasigroups are equivalent objects.
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Camina-Zieschang Thm. & Cameron-Praeger Constructi
2-(vo, ko, \o) design Dy 2-(vi, k1, A1) design Dy G<GA,GE
GA& flag-transitive on Dy G* flag-transitive on Dy ~ A

Symmetric 2-(vovi, koki, A) design D
G flag-transitive point-imprimitive on D

on

Latin square
of order rp + 1

Affine resolvable \
2-(vo, ko, Ao) design Dy : \
Symmetric

H flag-transitive : s
2-(v1, k1, A1) design Dy A specific sub-
with ks =rnp=v; — 1

group of H! K ’

K flag-transitive
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Examples arising from Cameron-Praeger construction

Examples 3

@ the two 2-(16,6,2) designs with G = [24].S, < AGL4(2) described by
O'Relly-Reguerio (2006). Here, Dy = AG,(2).

@ the 2-(45,12,3) with G = [3%].(10.4) < Al'L1(81) constructed by
Praeger (2007). Here, Dy = AGy(3).

© D the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard
(2007). Here, Dy = AGx(4).

Q D is the 2-(227,27=1(2" — 1),27=1(2"=1 — 1)) design S~(n) with
n > 2 described by Cameron-Seidel (1973), and G =2 22" : GLy(n).
Here, Dy = AG,(2).

@ D is a 2-(1408,336,80) design constructed by Cameron-Praeger
(2016) and G =2 2% : ((3- Map) : 2). Here, Dy = AG3(4).

. .
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An Open Problem

Does every flag-transitive, point-imprimitive symmetric 2-design
arise from the Cameron-Praeger construction?
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On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P, B) be a symmetric 2-(v, k, A) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition X of P with v; classes of size vy. If Dy is affine
resolvable and k; = vy — 1, then one of the following holds:

© D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

@ D is the 2-(144,66, 30) design constructed by Lempken (1999), and
G = M.
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On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P, B) be a symmetric 2-(v, k, \) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition > of P with v; classes of size vy. If Dy is affine
resolvable and k; = vy — 1, then one of the following holds:

@ D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

@ D is the 2-(144,66,30) design constructed by Lempken (1999), and
G = M.

Remark

| A

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each L5(10).
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On the strenght of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

Let D = (P, B) be a symmetric 2-(v, k, \) design admitting a
flag-transitive, point-imprimitive insoluble automorphism group G
preserving a partition > of P with v; classes of size vy. If Dy is affine
resolvable and k; = vy — 1, then one of the following holds:

@ D is one of the examples arising from the Cameron-Praeger
contruction (showed above);

@ D is the 2-(144,66,30) design constructed by Lempken (1999), and
G = M.

Remark

| A

In order to establish whether the Lempken example arises or not from the
CP-construction, we should check each L5(10). The number of L5(10) is
greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

.
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@ The parameters of Dy are known as a consequence of a result of Bose
(1942) on affine resolvable designs;
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Classification of the flag-transitive affine resolvable designs

@ The parameters of Dy are known as a consequence of a result of Bose
(1942) on affine resolvable designs;
@ The replication number ry of Dy is coprime to Ag.

Theorem [Alavi, Biliotti, Daneshkhah, M., Zhou et al. (2022)]

One of the following holds for (Do, Gﬁ):

() GX is almost simple and one of the following holds:
(a) Do is AG3(2) and G{ = PSLy(7);
(b) Dy is a 2-(12,6,5) Witt design and My; < GX < My;
(1) GX is of affine type and Dy is a 2-(p, p/, \o) design with either

XA =1or )\ = % for some z | i such that ged(j,z,i/z) =1,

or Ag = % for some a | pgcdlii) — 1.
The points and blocks of Dy are the points and (certain) j-subspaces
of AG;(p).

. .



Open Problems

o Affine resolvable 2-(vp, ko, Ao) design Dy

Symmetric
o Symmetric 2-(vi, ki, A1) design D; with 2-(vov1, kok1, \) design
kh=rn=v-1 D = F(Dy, D1, L)

o L = {l;} is a Latin square of order ry + 1
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Open Problems

o Affine resolvable 2-(vp, ko, Ao) design Dy

Symmetric
o Symmetric 2-(vi, ki, A1) design D; with 2-(vovi, koki, \) design
ki=rn=v-1 D = F(Dy, D1, L)

o L = {l;} is a Latin square of order ry + 1

Definition

Two latin squares L = {/;} and L = {/};} of order ro + 1 are isotopic if
and only if there are a, 8,7 € Sy 41 such that y(/;;) = /év(i)ﬁ(j) for all 7, j.
The triple (o, 8,7) is called isotopism.

© L and L’ are isotopic D= F(Do,D1,L) = F(Dy, Dy, L") =D
@ D= F(Dy,Ds,L) L [ is based on a group.
© Try to settle the G-soluble case.
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Flag-transitive point-primitive 2-designs with small A

Theorem

Let D be a non-trivial 2-(v, k, \) design admitting a flag-transitive
point-primitive automorphism group G. If G £ AT'L;(v), v power of a
prime, then (D, G) is classified in the following cases:

Conditions on D Conditions on G Author(s)

A= Buekenhout, Delandtsheer,
Doyen, Kleidman, Liebeck
Saxl, 1990

A=2,v=0>b O'Relly-Reguerio, 2005

A=2,v<b G almost simple Alavi, Devillers,

Daneshkah, Liang,

M., Praeger, Xia,

Zhou et. al 2016-2025
A=2,v<b G affine Liang-M., 2025
2<A<10,v=b G affine Alavi-Daneshkhah-M., 2025+
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A Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let D be a nontrivial 2-(v, k, \) design with A prime admitting a
flag-transitive and point-primitive automorphism group G. Then the socle

T of G is either nonabelian simple, or an elementary abelian p-group for
some prime p.
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A Prime: Reduction & Alternating Case

Theorem (Zhang-Chen, 2023)

Let D be a nontrivial 2-(v, k, \) design with A prime admitting a
flag-transitive and point-primitive automorphism group G. Then the socle

T of G is either nonabelian simple, or an elementary abelian p-group for
some prime p.

Theorem (Zhang-Chen-Zhou, 2024)

Let D be a nontrivial 2-(v, k, A) design with A prime admitting a
flag-transitive and point-primitive automorphism group G with socle
T =2 A,, n>5. Then one of the following holds:

Q Dis a 2-(6,3,2) design and G = As;

@ Dis a 2-(10,4,2) design and G = As, S5, As, PXL2(9);
@ D is a 2-(10,6,5) design and G = As, Ss, Ag, Se;

Q D is a 2-(15,7,3) design and G = A;, As.




Sporadic Groups

. .



Sporadic Groups

Theorem (Alavi-Daneshkhah-M., 2025)
Let D be a nontrivial 2-(v, k, \) design with A prime admitting a

flag-transitive and point-primitive automorphism group G with socle T a
simple sporadic group. Then (D, G) is (up to isomorphism) as one of the

rows in the following table.

Table: Sporadic simple groups and flag-transitive 2-designs with A prime.

Line v b r k XN G Ga Gg

1 12 22 11 6 5 Mn PSLo(11) A
2 2 77 21 6 5 M PSU3(4) 2% Ag
22 77 21 6 5 Mxn:2 PSU3(4):2 2%Se

3 176 1100 50 8 2 HS PSU3(5):2  Sg
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Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v, k, \) design with A prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
finite exceptional simple group. Then one of the following holds
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Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v, k, \) design with A prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
finite exceptional simple group. Then one of the following holds

@ T is 2By(q) with g?**! > 8 even, and D is the 2-(¢> + 1,q9,q9 — 1)

design, where ¢ — 1 is a Mersenne prime, arising from the Suzuki-Tits
ovoid;
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ovoid;
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Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let D be a nontrivial 2-(v, k, \) design with A prime admitting a
flag-transitive and point-primitive automorphism group G with socle T a
finite exceptional simple group. Then one of the following holds
@ T is 2By(q) with g?**! > 8 even, and D is the 2-(¢> + 1,q9,q9 — 1)
design, where g — 1 is a Mersenne prime, arising from the Suzuki-Tits
ovoid;

@ T is Ga(q) with g > 4 even, and D is the 2—(%3(q3 ~1),%,q9+ 1)

design, where g + 1 a Fermat prime, and it is identified with the coset
geometry cos(T, H, K), where H = SU3(q) : Zs and K = [¢°] : Z;—1;

Example 4
Using the Higman-McLaughlin setting: cos(T,H, K) = (P,B,Z), where
e P={Hx:xe T}, B={Ky:ye T}
e Hx T Ky if and only if Hx N Ky # @.
] 34/37
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The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let D be a nontrivial symmetric design with A prime admitting a
flag-transitive and point-primitive automorphism group G of affine type.
Then G < Al'Li(q), or D is a symmetric 2-(16, 6,2) design with full
automorphism group 2* : S¢ and point-stabilizer Sg.
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The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let D be a nontrivial symmetric design with A prime admitting a
flag-transitive and point-primitive automorphism group G of affine type.
Then G < Al'Li(q), or D is a symmetric 2-(16, 6,2) design with full
automorphism group 2* : S¢ and point-stabilizer Sg.

Examples occur in the non-symmetric design case:

Example 5 (Buratti-Martinovi¢-Naki¢, 2025)

There are two non isomorphic flag-transitive 2-(33, 6, 5) designs with
AGL1(3%) < G < ATLy1(33).

. .



Future Works

. 3573



Future Works

e Complete the A prime case (joint work with S. H. Alavi, A.
Daneshkhah).
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Future Works

e Complete the A prime case (joint work with S. H. Alavi, A.
Daneshkhah).

o Study the flag-transitive 2-(v, k, A)-designs with k | v. Focus on the
resolvable ones (joint work with E. Romano, Z. Lu, S. Zhou).
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Future Works

e Complete the A prime case (joint work with S. H. Alavi, A.
Daneshkhah).

o Study the flag-transitive 2-(v, k, A)-designs with k | v. Focus on the
resolvable ones (joint work with E. Romano, Z. Lu, S. Zhou).

@ Use the previous case to investigate the Cameron-Praeger
construction in the non-symmetric design case.
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