

# 2-designs admitting a flag-transitive automorphism group

Alessandro Montinaro



UNIVERSITÀ  
DEL SALENTO

5<sup>th</sup> Pythagorean Conference  
Kalamata (Greece) 1–6 June 2025

## 1 Preliminaries

## 2 Flag-transitive point-imprimitive 2-designs

## 3 Flag-transitive point-primitive 2-designs

## 2-designs

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

- In general, the number of blocks  $b := |\mathcal{B}|$  is at least  $v$  by Fisher's inequality, and  $\mathcal{D}$  is said to be **symmetric** if  $b = v$ ;

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

- In general, the number of blocks  $b := |\mathcal{B}|$  is at least  $v$  by Fisher's inequality, and  $\mathcal{D}$  is said to be **symmetric** if  $b = v$ ;
- $r = \frac{(v-1)\lambda}{k-1}$  is the number of blocks of  $\mathcal{D}$  containing any fixed point, and it is called the **replication number** of  $\mathcal{D}$ . It results  $bk = vr$ ;

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

- In general, the number of blocks  $b := |\mathcal{B}|$  is at least  $v$  by Fisher's inequality, and  $\mathcal{D}$  is said to be **symmetric** if  $b = v$ ;
- $r = \frac{(v-1)\lambda}{k-1}$  is the number of blocks of  $\mathcal{D}$  containing any fixed point, and it is called the **replication number** of  $\mathcal{D}$ . It results  $bk = vr$ ;
- $\mathcal{D}$  is **non-trivial** if  $2 < k < v - 1$ .

## 2-designs

### Definition

A **2- $(v, k, \lambda)$  design**  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  consists of a set  $\mathcal{P}$  of  $v$  **points**, and a set  $\mathcal{B}$  of  $k$ -element subsets of  $\mathcal{P}$ , called **blocks**, such that every pair of distinct points is contained in exactly  $\lambda$  blocks.

- In general, the number of blocks  $b := |\mathcal{B}|$  is at least  $v$  by Fisher's inequality, and  $\mathcal{D}$  is said to be **symmetric** if  $b = v$ ;
- $r = \frac{(v-1)\lambda}{k-1}$  is the number of blocks of  $\mathcal{D}$  containing any fixed point, and it is called the **replication number** of  $\mathcal{D}$ . It results  $bk = vr$ ;
- $\mathcal{D}$  is **non-trivial** if  $2 < k < v - 1$ .
- A **flag** is any incident point-block pair of  $\mathcal{D}$ .

# Automorphisms of 2-designs

# Automorphisms of 2-designs

## Definition

An **automorphism** of  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  is a permutation of the point-set  $\mathcal{P}$  preserving the block-set  $\mathcal{B}$ .

# Automorphisms of 2-designs

## Definition

An **automorphism** of  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  is a permutation of the point-set  $\mathcal{P}$  preserving the block-set  $\mathcal{B}$ . The set of all automorphisms of  $\mathcal{D}$  is a group, called **the full automorphism group of  $\mathcal{D}$** , denoted by  $Aut(\mathcal{D})$ .

# A Classical Problem

# A Classical Problem

## Problem

**Determine/classify the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-design admitting  $G$  as an automorphism group,**

# A Classical Problem

## Problem

Determine/classify the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-design admitting  $G$  as an automorphism group, provided some conditions on

# A Classical Problem

## Problem

Determine/classify the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-design admitting  $G$  as an automorphism group, provided some conditions on

- $\mathcal{D}$  (for instance, on its parameters), or

# A Classical Problem

## Problem

Determine/classify the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-design admitting  $G$  as an automorphism group, provided some conditions on

- $\mathcal{D}$  (for instance, on its parameters), or
- $G$  (like some transitivity property of  $G$  on some subset of points, blocks or flags of  $\mathcal{D}$ ).

# A Classical Problem

## Problem

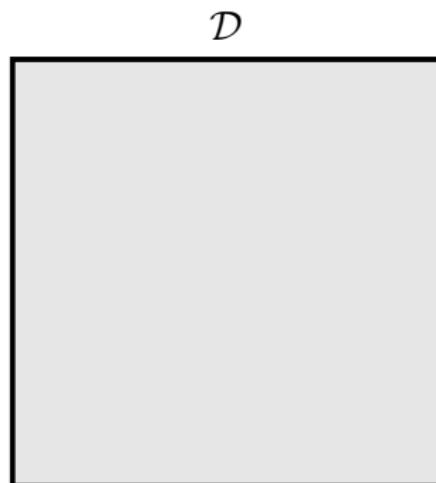
Determine/classify the pairs  $(\mathcal{D}, G)$ , where  $\mathcal{D}$  is a 2-design admitting  $G$  as an automorphism group, provided some conditions on

- $\mathcal{D}$  (for instance, on its parameters), or
- $G$  (like some transitivity property of  $G$  on some subset of points, blocks or flags of  $\mathcal{D}$ ).

We are interested in the case where  $G$  acts flag-transitively on  $\mathcal{D}$ .

## Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

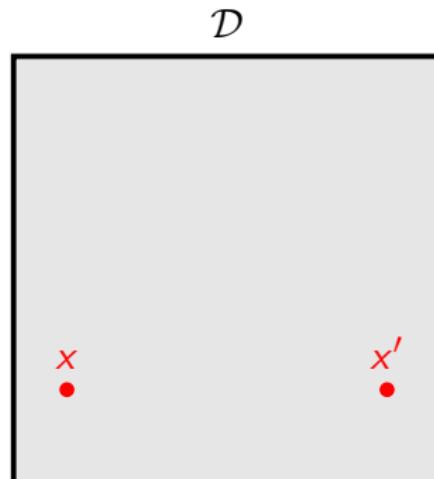
Let  $G \leq \text{Aut}(\mathcal{D})$ , then



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

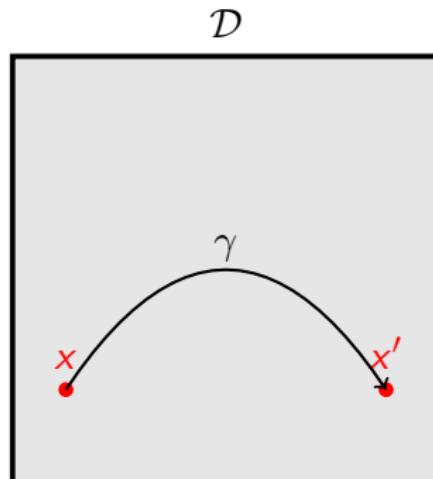
- $G$  acts **point-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

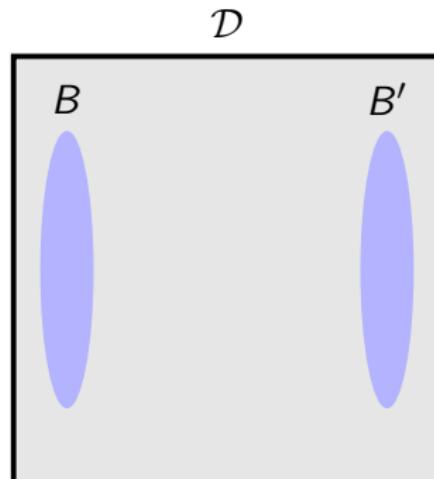
- $G$  acts **point-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

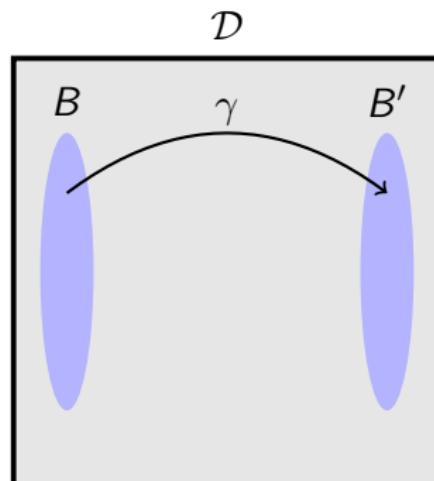
- $G$  acts **block-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

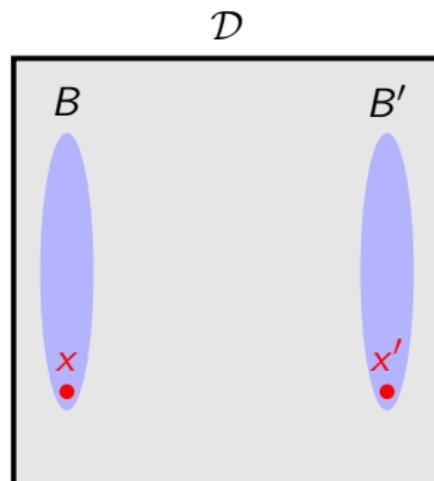
- $G$  acts **block-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

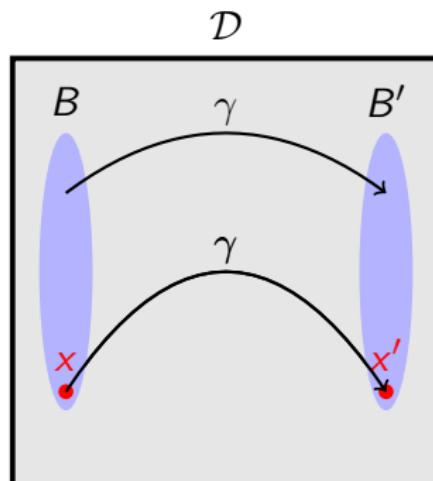
- $G$  acts **flag-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

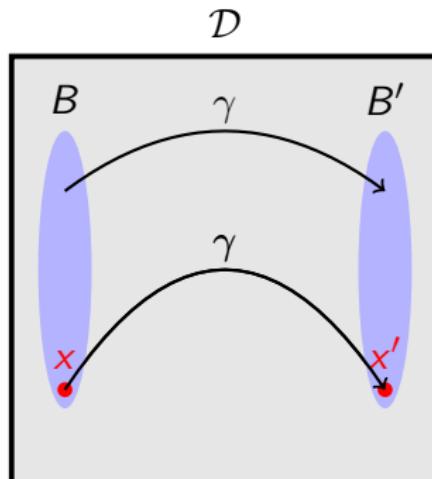
- $G$  acts **flag-transitively** on  $\mathcal{D}$ :



# Flag-transitivity $\Rightarrow$ Block-transitivity $\Rightarrow$ Point-transitivity

Let  $G \leq \text{Aut}(\mathcal{D})$ , then

- $G$  acts **flag-transitively** on  $\mathcal{D}$ :



**flag-transitivity  $\Rightarrow$  block-transitivity  $\Rightarrow$  point-transitivity**

# Flag-transitivity & Point-primitivity

# Flag-transitivity & Point-primitivity

## Definition

A point-transitive automorphism group  $G$  of  $\mathcal{D}$  is said to be **point-imprimitive** if  $G$  preserves a partition  $\Sigma$  of the point-set of  $\mathcal{D}$  in classes of size  $v_0$  with  $1 < v_0 < v$ .

# Flag-transitivity & Point-primitivity

## Definition

A point-transitive automorphism group  $G$  of  $\mathcal{D}$  is said to be **point-imprimitive** if  $G$  preserves a partition  $\Sigma$  of the point-set of  $\mathcal{D}$  in classes of size  $v_0$  with  $1 < v_0 < v$ . Otherwise,  $G$  is said to be **point-primitive**.

# Flag-transitivity & Point-primitivity

## Definition

A point-transitive automorphism group  $G$  of  $\mathcal{D}$  is said to be **point-imprimitive** if  $G$  preserves a partition  $\Sigma$  of the point-set of  $\mathcal{D}$  in classes of size  $v_0$  with  $1 < v_0 < v$ . Otherwise,  $G$  is said to be **point-primitive**.

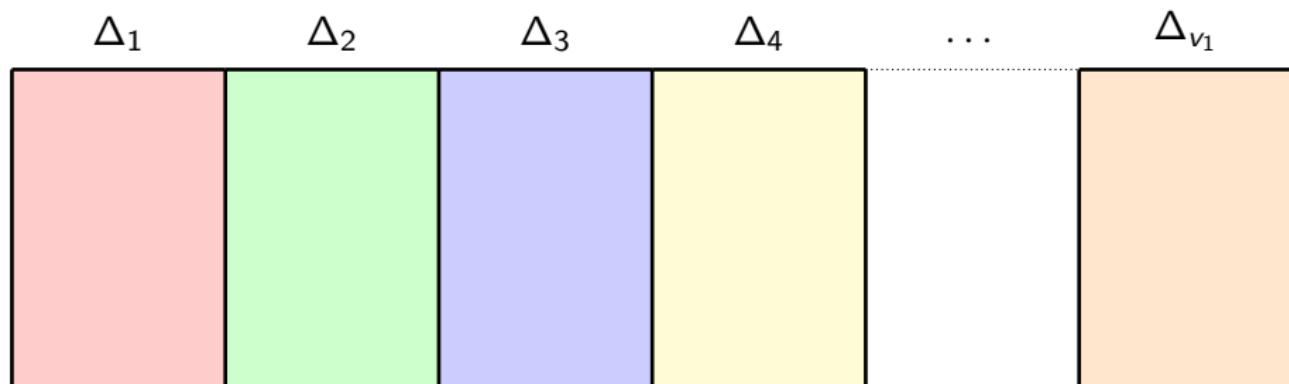
Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  is a  $G$ -invariant partition of the point-set of  $\mathcal{D}$  in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .

# Flag-transitivity & Point-primitivity

## Definition

A point-transitive automorphism group  $G$  of  $\mathcal{D}$  is said to be **point-imprimitive** if  $G$  preserves a partition  $\Sigma$  of the point-set of  $\mathcal{D}$  in classes of size  $v_0$  with  $1 < v_0 < v$ . Otherwise,  $G$  is said to be **point-primitive**.

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  is a  $G$ -invariant partition of the point-set of  $\mathcal{D}$  in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .

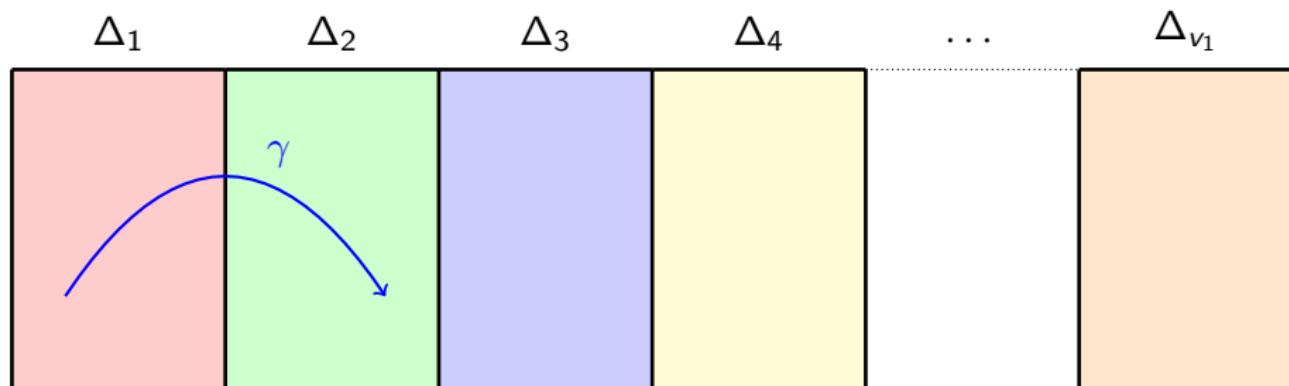


# Flag-transitivity & Point-primitivity

## Definition

A point-transitive automorphism group  $G$  of  $\mathcal{D}$  is said to be **point-imprimitive** if  $G$  preserves a partition  $\Sigma$  of the point-set of  $\mathcal{D}$  in classes of size  $v_0$  with  $1 < v_0 < v$ . Otherwise,  $G$  is said to be **point-primitive**.

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  is a  $G$ -invariant partition of the point-set of  $\mathcal{D}$  in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .

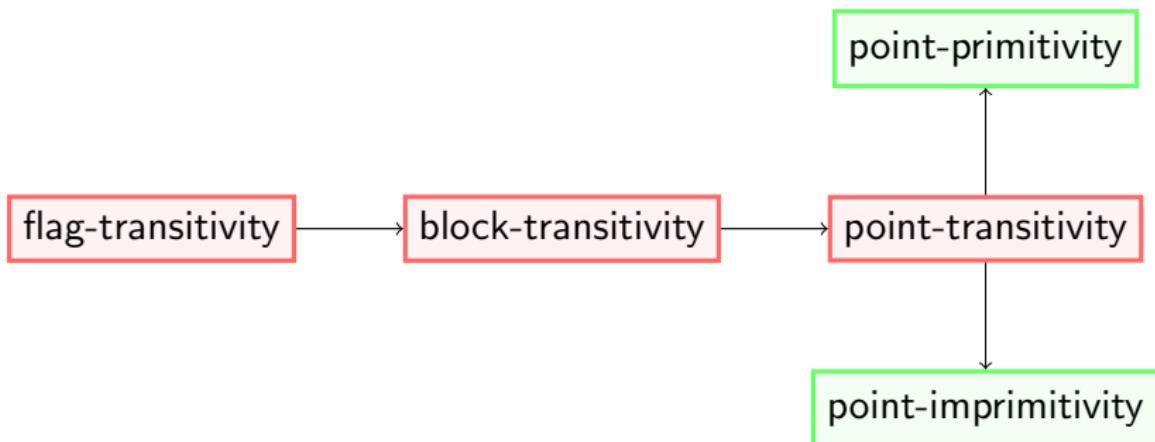


# Flag-transitivity & Point-primitivity

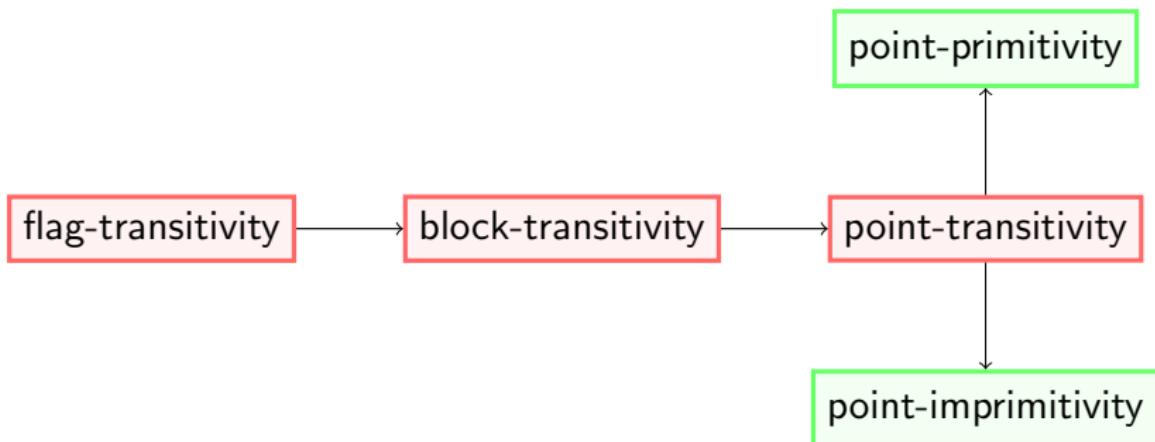
# Flag-transitivity & Point-primitivity



# Flag-transitivity & Point-primitivity

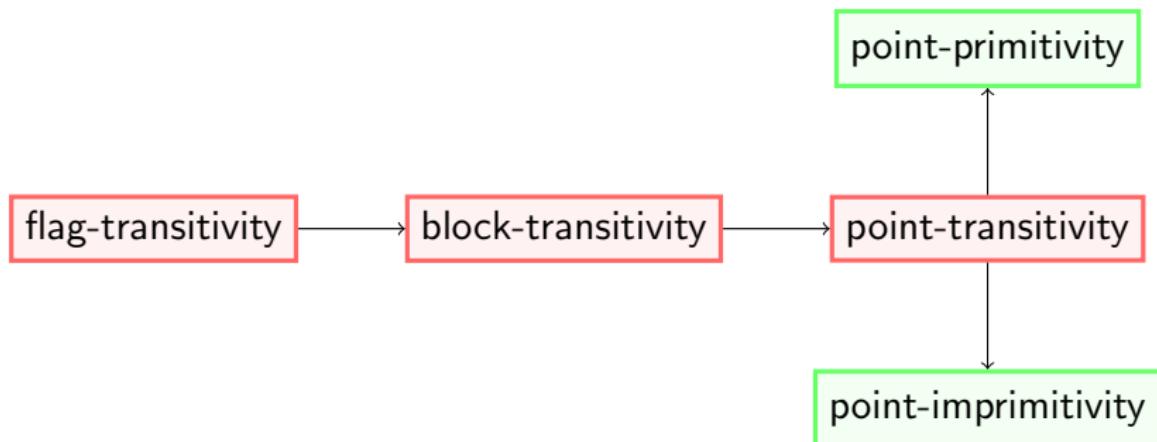


# Flag-transitivity & Point-primitivity



- $G$  acts flag-transitively and point-imprimitively on  $\mathcal{D}$ ;

# Flag-transitivity & Point-primitivity



- $G$  acts flag-transitively and point-imprimitively on  $\mathcal{D}$ ;
- $G$  acts flag-transitively and point-primitively on  $\mathcal{D}$ .

# The Higman-McLaughlin Theorem

# The Higman-McLaughlin Theorem

Theorem (Higman-McLaughlin, 1961)

Any flag-transitive automorphism group of a 2-design with  $\lambda = 1$  acts point-primitively.

# Flag-Transitive Point-Imprimitive Examples

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

- $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ , respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Reilly-Reguerio (2005));

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

- $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ , respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Reilly-Reguerio (2005));
- $\mathcal{D}$  is the complementary design of  $PG_n(2)$ ,  $n$  odd, and  $G \cong P\Gamma L_{(n+1)/2}(4)$  (Cameron-Kantor, 1978);

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

- $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ , respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Reilly-Reguerio (2005));
- $\mathcal{D}$  is the complementary design of  $PG_n(2)$ ,  $n$  odd, and  $G \cong P\Gamma L_{(n+1)/2}(4)$  (Cameron-Kantor, 1978);
- $\mathcal{D}$  is the 2- $(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$  (Praeger, 2007);

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

- $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ , respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Reilly-Reguerio (2005));
- $\mathcal{D}$  is the complementary design of  $PG_n(2)$ ,  $n$  odd, and  $G \cong P\Gamma L_{(n+1)/2}(4)$  (Cameron-Kantor, 1978);
- $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$  (Praeger, 2007);
- $\mathcal{D}$  is one of the four  $2-(96, 20, 4)$  designs (several  $G$ ) (Law-Praeger-Reichard, 2009).

# Flag-Transitive Point-Imprimitive Examples

## Example 1

Examples of flag-transitive point-imprimitive 2-designs exist for  $\lambda > 1$ :

- $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ , respectively, (Husain (1945) and, independently, by Nandi (1946), and O'Reilly-Reguerio (2005));
- $\mathcal{D}$  is the complementary design of  $PG_n(2)$ ,  $n$  odd, and  $G \cong P\Gamma L_{(n+1)/2}(4)$  (Cameron-Kantor, 1978);
- $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$  (Praeger, 2007);
- $\mathcal{D}$  is one of the four  $2-(96, 20, 4)$  designs (several  $G$ ) (Law-Praeger-Reichard, 2009).

## Theorem (Davies, 1987)

For any fixed  $\lambda$ , there are only finitely many  $2-(v, k, \lambda)$  designs with a flag-transitive point-imprimitive automorphism group.

## Conditions ensuring point-primitivity

# Conditions ensuring point-primitivity

## Theorem

Let  $G$  be any flag-transitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . Then  $G$  acts point-primitively on  $\mathcal{D}$ , provided that at least one of the following conditions on the parameters of  $\mathcal{D}$  holds:

| Line | Condition                                         | Author(s)               |
|------|---------------------------------------------------|-------------------------|
| 1    | $\lambda > (r, \lambda) \cdot ((r, \lambda) - 1)$ | Dembowski, 1968, or     |
| 2    | $(r, \lambda) = 1$                                | Kantor, 1969            |
| 3    | $(r - \lambda, k) = 1$                            |                         |
| 4    | $r > \lambda(k - 3)$                              |                         |
| 5    | $(v - 1, k - 1) = 1$ or 2                         |                         |
| 6    | $k > 2\lambda^2(\lambda - 1)$                     | Devillers-Praeger, 2021 |
| 7    | $v > (2\lambda^2(\lambda - 1) - 1)^2$             |                         |
| 8    | $(v - 1, k - 1)^2 \leq v - 1$                     | Zhong-Zhou, 2023        |
| 9    | $(v - 1, k - 1) = 3$ or 4                         |                         |
| 10   | $k$ prime                                         |                         |

1 Preliminaries

2 Flag-transitive point-imprimitive 2-designs

3 Flag-transitive point-primitive 2-designs

# Flag-transitive point-imprimitive 2-designs with $\lambda \leq 4$

# Flag-transitive point-imprimitive 2-designs with $\lambda \leq 4$

# Flag-transitive point-imprimitive 2-designs with $\lambda \leq 4$

## Theorem (Devillers-Praeger, 2024)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . If  $v < 100$  and  $\lambda \leq 4$ , then one of the following holds:

- ①  $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ ;
- ②  $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$ ;
- ③  $\mathcal{D}$  is the  $2-(15, 8, 4)$  design and  $A_5 \trianglelefteq G \leq S_5$ ;
- ④  $\mathcal{D}$  is one of the two  $2-(16, 6, 4)$  designs;
- ⑤  $\mathcal{D}$  is the  $2-(36, 6, 4)$  design;
- ⑥  $\mathcal{D}$  is one of the four  $2-(96, 20, 4)$  designs (several  $G$ ).

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

## Theorem (M., 2025)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . If  $\lambda$  is a prime, then one of the following holds:

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

## Theorem (M., 2025)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a 2- $(v, k, \lambda)$  design  $\mathcal{D}$ . If  $\lambda$  is a prime, then one of the following holds:

- ①  $\mathcal{D}$  is one of the two 2-(16, 6, 2) biplanes with  $G$  isomorphic to  $(\mathbb{Z}_2)^4 : S_4$  or  $(\mathbb{Z}_2 \times \mathbb{Z}_8).(\mathbb{S}_4.\mathbb{Z}_2)$ ;

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

## Theorem (M., 2025)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . If  $\lambda$  is a prime, then one of the following holds:

- ①  $\mathcal{D}$  is one of the two  $2-(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(\mathbb{Z}_2)^4 : S_4$  or  $(\mathbb{Z}_2 \times \mathbb{Z}_8).(\mathbb{S}_4 \cdot \mathbb{Z}_2)$ ;
- ②  $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$ ;

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

## Theorem (M., 2025)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . If  $\lambda$  is a prime, then one of the following holds:

- ①  $\mathcal{D}$  is one of the two  $2-(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ ;
- ②  $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$ ;
- ③  $\mathcal{D}$  is a  $2-(2^{2j+1}(2^{2j} + 2), 2^{2j}(2^{2j} + 1), 2^{2j} + 1)$  design when  $2^{2j} + 1 > 3$  is a Fermat prime.

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime

## Theorem (M., 2025)

Let  $G$  be any flag-transitive point-imprimitive automorphism group of a  $2-(v, k, \lambda)$  design  $\mathcal{D}$ . If  $\lambda$  is a prime, then one of the following holds:

- ①  $\mathcal{D}$  is one of the two  $2-(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ ;
- ②  $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$ ;
- ③  $\mathcal{D}$  is a  $2-(2^{2j+1}(2^{2j} + 2), 2^{2j}(2^{2j} + 1), 2^{2j} + 1)$  design when  $2^{2j} + 1 > 3$  is a Fermat prime.

**There are no known examples corresponding to case (3).**

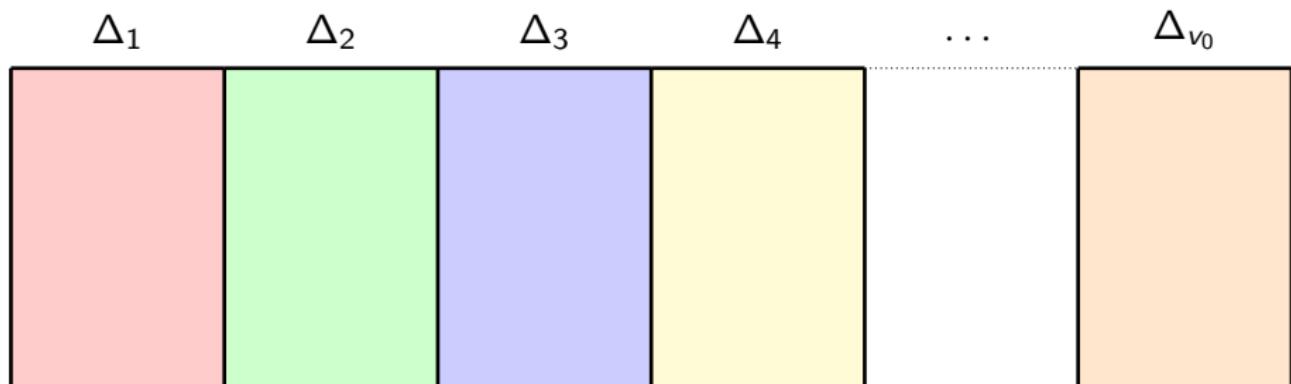
# A Fundamental Tool: the Theorem of Camina-Zieschang

## A Fundamental Tool: the Theorem of Camina-Zieschang

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .

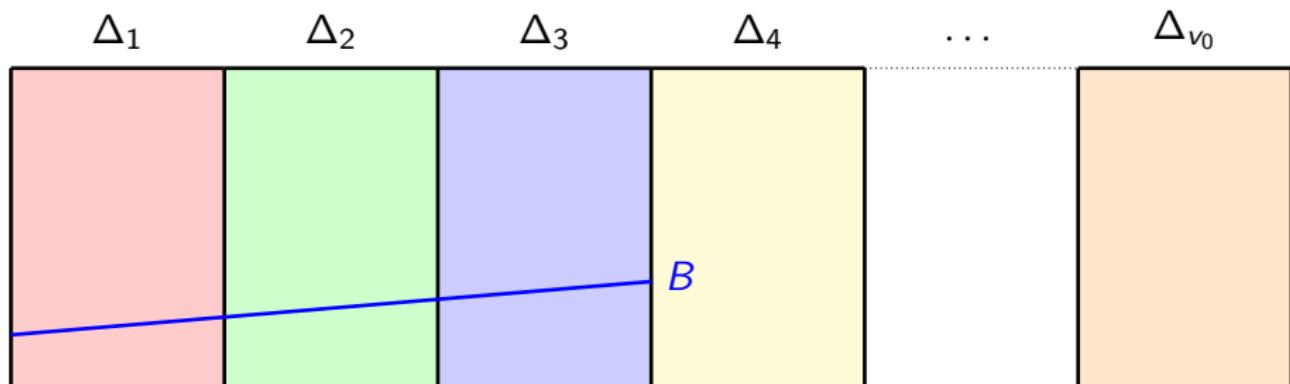
## A Fundamental Tool: the Theorem of Camina-Zieschang

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



## A Fundamental Tool: the Theorem of Camina-Zieschang

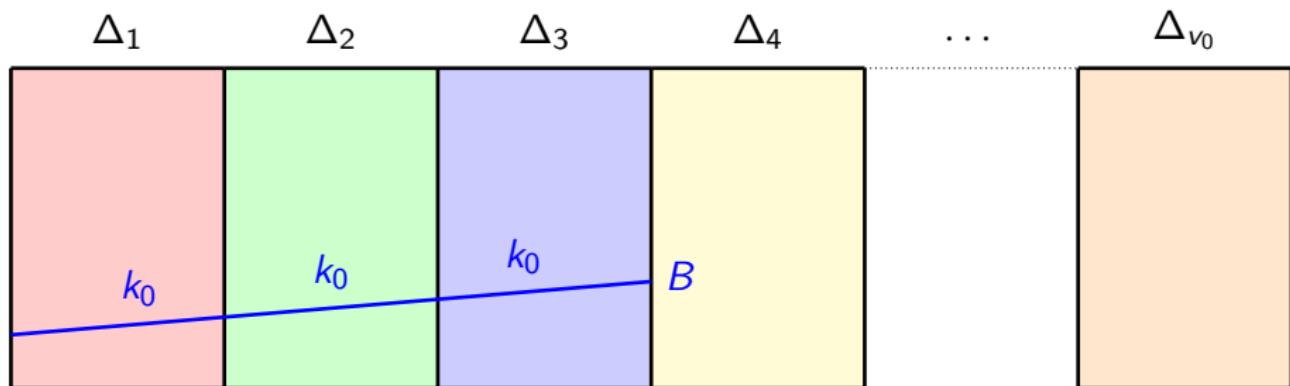
Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



There is a constant  $k_0 \geq 2$  such that  $|B \cap \Delta| = 0$  or  $k_0$  for each  $B \in \mathcal{B}$  and  $\Delta \in \Sigma$ . Moreover,  $k_0$  divides  $k$ .

## A Fundamental Tool: the Theorem of Camina-Zieschang

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .

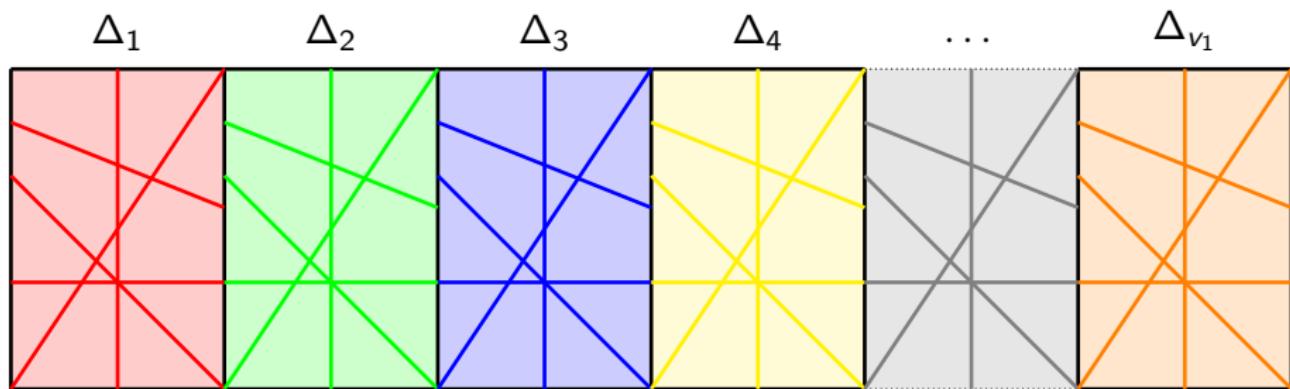


There is a constant  $k_0 \geq 2$  such that  $|B \cap \Delta| = 0$  or  $k_0$  for each  $B \in \mathcal{B}$  and  $\Delta \in \Sigma$ . Moreover,  $k_0$  divides  $k$ .

# A Fundamental Tool: the Camina-Zieschang Theorem

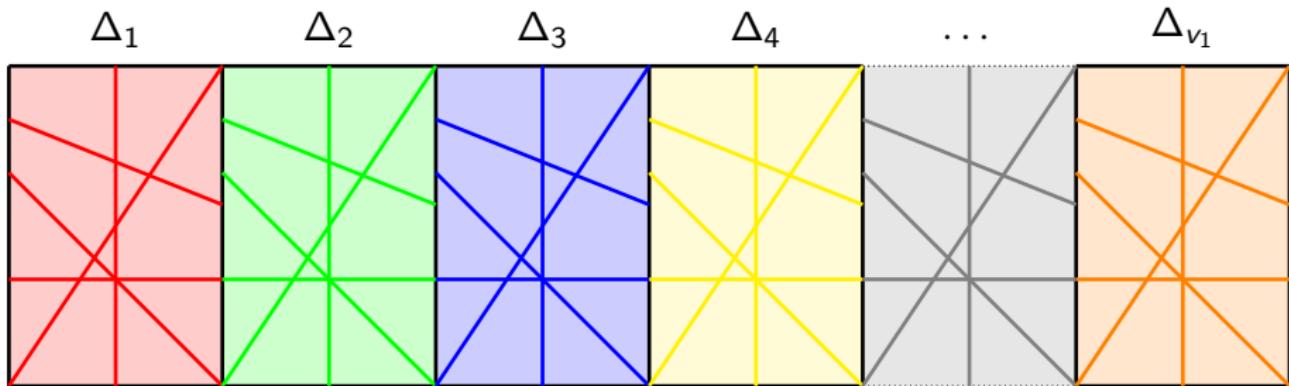
## A Fundamental Tool: the Camina-Zieschang Theorem

Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



## A Fundamental Tool: the Camina-Zieschang Theorem

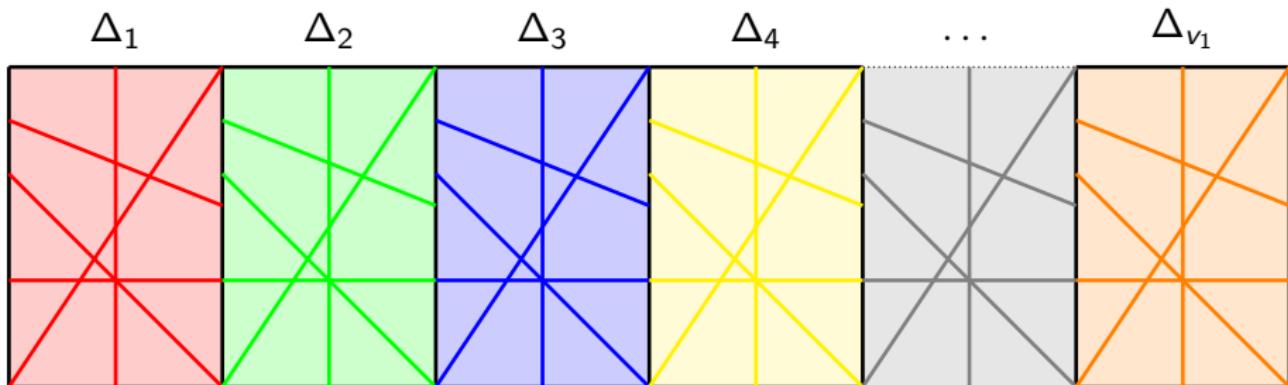
Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



- For each  $i = 1, \dots, v_1$  the incidence structure  $\mathcal{D}_{\Delta_i} = (\Delta_i, \mathcal{B}_{\Delta_i})$ , where  $\mathcal{B}_{\Delta_i} = \{B \cap \Delta_i \neq \emptyset : B \in \mathcal{B}\}$ , is a  $2-(v_0, k_0, \lambda_0)$  design;

# A Fundamental Tool: the Camina-Zieschang Theorem

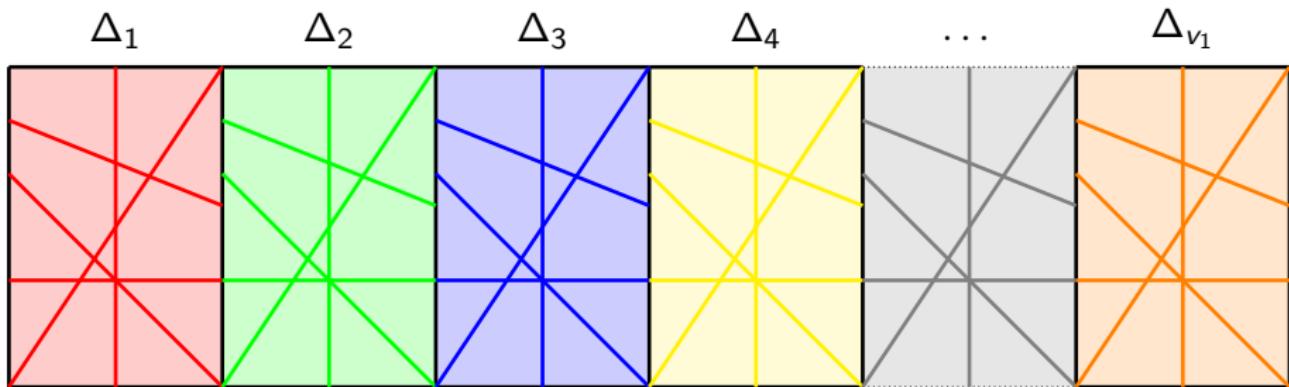
Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



- For each  $i = 1, \dots, v_1$  the incidence structure  $\mathcal{D}_{\Delta_i} = (\Delta_i, \mathcal{B}_{\Delta_i})$ , where  $\mathcal{B}_{\Delta_i} = \{B \cap \Delta_i \neq \emptyset : B \in \mathcal{B}\}$ , is a  $2-(v_0, k_0, \lambda_0)$  design;
- $G_{\Delta_i}^{\Delta_i}$  acts flag-transitively on  $\mathcal{D}_{\Delta_i}$ .

# A Fundamental Tool: the Camina-Zieschang Theorem

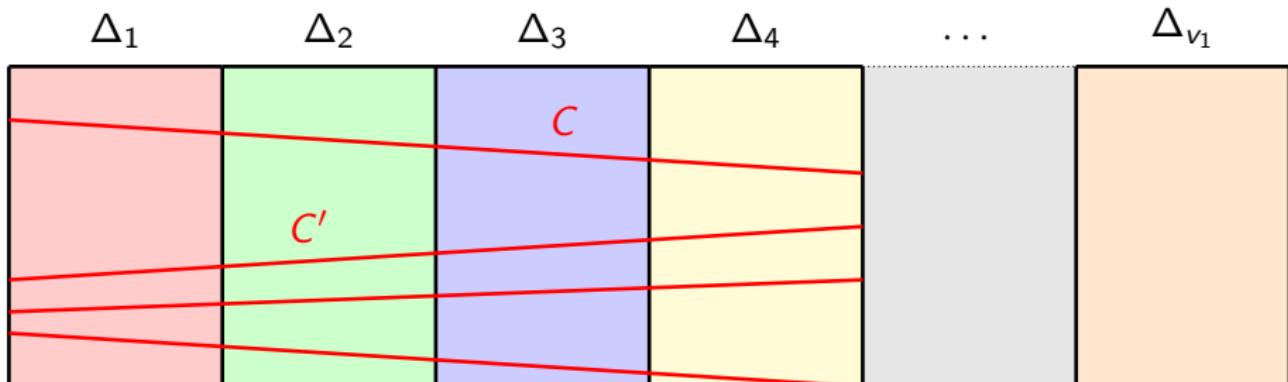
Let  $\Sigma = \{\Delta_1, \dots, \Delta_{v_1}\}$  be a  $G$ -invariant partition in  $v_1$  classes each of size  $v_0$  with  $1 < v_0 < v$ . Hence,  $v = v_0 v_1$ .



- For each  $i = 1, \dots, v_1$  the incidence structure  $\mathcal{D}_{\Delta_i} = (\Delta_i, \mathcal{B}_{\Delta_i})$ , where  $\mathcal{B}_{\Delta_i} = \{B \cap \Delta_i \neq \emptyset : B \in \mathcal{B}\}$ , is a  $2-(v_0, k_0, \lambda_0)$  design;
- $G_{\Delta_i}^{\Delta_i}$  acts flag-transitively on  $\mathcal{D}_{\Delta_i}$ .

**As the incidence structures corresponding to distinct classes  $\Delta_i, \Delta_j \in \Sigma$  are isomorphic under elements of  $G$  mapping  $\Delta_i$  to  $\Delta_j$  we refer to  $\mathcal{D}_{\Delta_i}$  as  $\mathcal{D}_0$ .**

# A fundamental Tool: the Theorem of Camina-Zieschang



- ① for each block  $C$  of  $\mathcal{D}$  the set  $C(\Sigma) = \{\Delta \in \Sigma : C \cap \Delta \neq \emptyset\}$  has a constant size  $k_1 = \frac{k}{k_0}$ ;
- ② Let  $\mathcal{B}^\Sigma$  be the quotient set defined by the equivalence relation  $\mathcal{R} = \{(C, C') \in \mathcal{B} \times \mathcal{B} : C(\Sigma) = C'(\Sigma)\}$  on  $\mathcal{B}$ ;
- ③ the incidence structure  $\mathcal{D}_1 = (\Sigma, \mathcal{B}^\Sigma, \mathcal{I})$ , where  $\mathcal{I} = \{(\Delta, C^\Sigma) \in \Sigma \times \mathcal{B}^\Sigma : \Delta \in C(\Sigma)\}$ , is a  $2-(v_1, k_1, \lambda_1)$  design;
- ④  $G^\Sigma$  acts flag-transitively on  $\mathcal{D}_1$ .

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime: proof main ingredients.

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime: proof main ingredients.

- apply the Theorem of Camina-Zieschang (1989);

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime: proof main ingredients.

- apply the Theorem of Camina-Zieschang (1989);
- determine  $(\mathcal{D}_0, G_\Delta^\Delta)$  using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime: proof main ingredients.

- apply the Theorem of Camina-Zieschang (1989);
- determine  $(\mathcal{D}_0, G_\Delta^\Delta)$  using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;
- determine  $(\mathcal{D}_1, G^\Sigma)$  using the above mentioned bounds by Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group theory;

# The Higman-McLaughlin theorem for 2-designs with $\lambda$ prime: proof main ingredients.

- apply the Theorem of Camina-Zieschang (1989);
- determine  $(\mathcal{D}_0, G_\Delta^\Delta)$  using the Liebeck-Saxl result (1985) on primitive permutation groups containing elements of large prime order;
- determine  $(\mathcal{D}_1, G^\Sigma)$  using the above mentioned bounds by Devillers-Praeger (2021) and Zhong-Zhou (2023), plus some group theory;
- match the results obtained on  $(\mathcal{D}_0, G_\Delta^\Delta)$  and on  $(\mathcal{D}_1, G^\Sigma)$ .

# The Symmetric Case

# The Symmetric Case

## Theorem (Praeger-Zhou, 2006)

Let  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  be any symmetric  $2-(v, k, \lambda)$  design admitting a flag-transitive, point-imprimitive automorphism group  $G$  preserving a nontrivial partition  $\Sigma$  of  $\mathcal{P}$  with  $v_1$  classes of size  $v_0$ , where  $v = v_0 v_1$ . If  $k > \lambda(\lambda - 3)/2$ , then admissible parameters for  $\mathcal{D}$ ,  $\mathcal{D}_0$  and  $\mathcal{D}_1$  are as in the following table:

**Table:** Admissible parameters for  $\mathcal{D}$ ,  $\mathcal{D}_0$  and  $\mathcal{D}_1$

| Line | $v$                                                    | $k$                            | $v_0$                 | $k_0$     | $v_1$                              | $k_1$                          |
|------|--------------------------------------------------------|--------------------------------|-----------------------|-----------|------------------------------------|--------------------------------|
| 1    | $\lambda^2(\lambda + 2)$                               | $\lambda(\lambda + 1)$         | $\lambda^2$           | $\lambda$ | $\lambda + 2$                      | $\lambda + 1$                  |
| 2    |                                                        |                                |                       | 2         | $\lambda^2$                        | $\lambda(\lambda + 1)/2$       |
| 3    | $\frac{\lambda+2}{2}$ $\frac{\lambda^2-2\lambda+2}{2}$ | $\frac{\lambda^2}{2}$          | $\frac{\lambda+2}{2}$ | 2         | $\frac{\lambda^2-2\lambda+2}{2}$   | $\frac{\lambda^2}{4}$          |
| 4    | $(\lambda + 6)$ $\frac{\lambda^2-2+4\lambda-1}{4}$     | $\frac{\lambda(\lambda+5)}{2}$ | $\lambda + 6$         | 3         | $\frac{\lambda^2-2+4\lambda-1}{4}$ | $\frac{\lambda(\lambda+5)}{6}$ |

## The Symmetric case

# The Symmetric case

## Theorem (M., 2024)

Let  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  be any symmetric  $2-(v, k, \lambda)$  design admitting a flag-transitive, point-imprimitive automorphism group  $G$ . If  $k > \lambda(\lambda - 3)/2$ , then

- ①  $\mathcal{D}$  is one of the two  $(16, 6, 2)$  biplanes with  $G$  isomorphic to  $(Z_2)^4 : S_4$  or  $(Z_2 \times Z_8).(S_4.Z_2)$ ;
- ②  $\mathcal{D}$  is the  $2-(45, 12, 3)$  design and  $G \leq A\Gamma L_1(3^4)$ ;
- ③  $\mathcal{D}$  is the  $2-(15, 8, 4)$  design and  $A_5 \trianglelefteq G \leq S_5$ ;
- ④  $\mathcal{D}$  is one of the four  $2-(96, 20, 4)$  designs (several possibilities for  $G$ ).

# Affine Resolvable Designs

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ .

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

- (i)  $AG_n(q)$  with the hyperplanes as blocks.

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

- (i)  $AG_n(q)$  with the hyperplanes as blocks.
- (ii) Any affine plane.

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

- (i)  $AG_n(q)$  with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

- (i)  $AG_n(q)$  with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.
- (iv) 2-(12, 6, 5) Witt design  $W_{12}$ .

# Affine Resolvable Designs

## Definition

A **resolution** of a 2-design  $\mathcal{D}_0 = (\mathcal{P}_0, \mathcal{B}_0)$  is any partition of  $\mathcal{B}_0$  into sets, called **parallel classes**, each of which is a partition of  $\mathcal{P}_0$ . Any 2-design admitting a resolution is called **resolvable**.

## Examples 2

- (i)  $AG_n(q)$  with the hyperplanes as blocks.
- (ii) Any affine plane.
- (iii) The hermitian unital or the Ree unital.
- (iv) 2-(12, 6, 5) Witt design  $W_{12}$ .

## Definition

A resolvable 2-design  $\mathcal{D}_0$  in which blocks in different classes have the same number of points in common is called **affine resolvable**.

# Latin Squares

# Latin Squares

## Definition

A **Latin square** of order  $n$  is a  $n \times n$  array containing the symbols  $1, \dots, n$  in such a way that each symbol occurs once in each row and once in each column of the array.

# Latin Squares

## Definition

A **Latin square** of order  $n$  is a  $n \times n$  array containing the symbols  $1, \dots, n$  in such a way that each symbol occurs once in each row and once in each column of the array.

A Latin square of order 4

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

# Latin Squares

## Definition

A **Latin square** of order  $n$  is a  $n \times n$  array containing the symbols  $1, \dots, n$  in such a way that each symbol occurs once in each row and once in each column of the array.

A Latin square of order 4

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

- The multiplication table (Caley table) of a group is a Latin square. The converse is not true!

# Latin Squares

## Definition

A **Latin square** of order  $n$  is a  $n \times n$  array containing the symbols  $1, \dots, n$  in such a way that each symbol occurs once in each row and once in each column of the array.

A Latin square of order 4

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

- The multiplication table (Caley table) of a group is a Latin square.  
The converse is not true!
- Latin squares and Quasigroups are equivalent objects.

# Camina-Zieschang Thm. & Cameron-Praeger Construction

# Camina-Zieschang Thm. & Cameron-Praeger Construction

Symmetric 2- $(v_0 v_1, k_0 k_1, \lambda)$  design  $\mathcal{D}$   
 $G$  flag-transitive point-imprimitive on  $\mathcal{D}$

# Camina-Zieschang Thm. & Cameron-Praeger Construction

2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$   
 $G_\Delta^\Delta$  flag-transitive on  $\mathcal{D}_0$

2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$   
 $G^\Sigma$  flag-transitive on  $\mathcal{D}_1$

Symmetric 2- $(v_0v_1, k_0k_1, \lambda)$  design  $\mathcal{D}$   
 $G$  flag-transitive point-imprimitive on  $\mathcal{D}$



# Camina-Zieschang Thm. & Cameron-Praeger Construction

2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$   
 $G_\Delta^\Delta$  flag-transitive on  $\mathcal{D}_0$

2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$   
 $G^\Sigma$  flag-transitive on  $\mathcal{D}_1$

$G \lesssim G_\Delta^\Delta \wr G^\Sigma$

Symmetric 2- $(v_0v_1, k_0k_1, \lambda)$  design  $\mathcal{D}$   
 $G$  flag-transitive point-imprimitive on  $\mathcal{D}$

# Camina-Zieschang Thm. & Cameron-Praeger Construction

2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$   
 $G_\Delta^\Delta$  flag-transitive on  $\mathcal{D}_0$

2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$   
 $G^\Sigma$  flag-transitive on  $\mathcal{D}_1$

$G \lesssim G_\Delta^\Delta \wr G^\Sigma$

Symmetric 2- $(v_0 v_1, k_0 k_1, \lambda)$  design  $\mathcal{D}$   
 $G$  flag-transitive point-imprimitive on  $\mathcal{D}$

Affine resolvable  
2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$   
 $H$  flag-transitive

Symmetric  
2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$   
with  $k_1 = r_0 = v_1 - 1$   
 $K$  flag-transitive

Latin square  
of order  $r_0 + 1$

A specific sub-  
group of  $H \wr K$

# The role of the Latin square in the CP-construction

## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;

## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;

## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

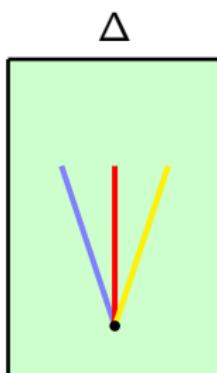
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

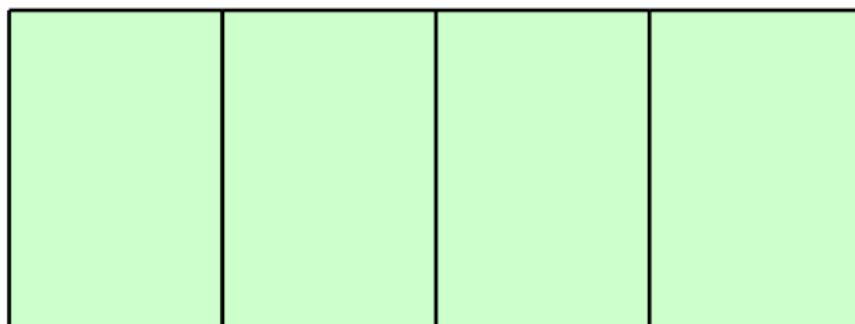
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

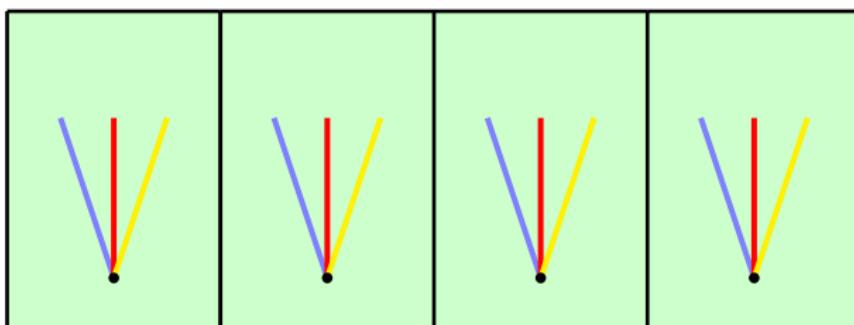
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

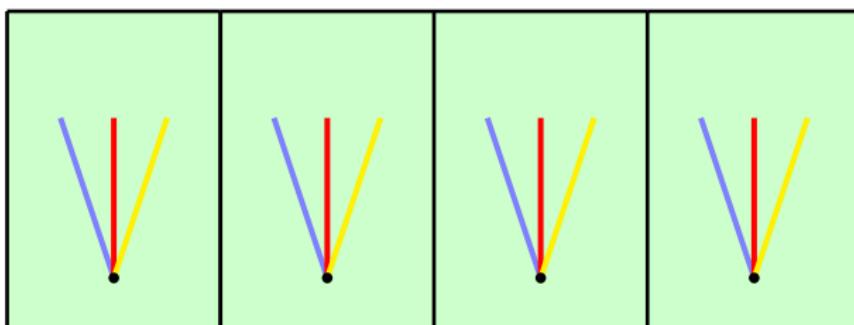
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

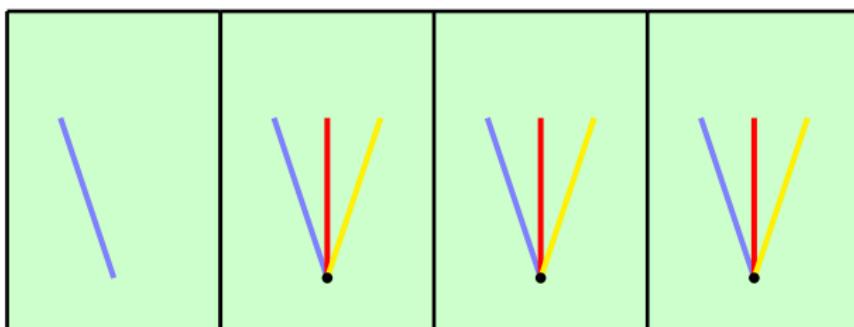
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

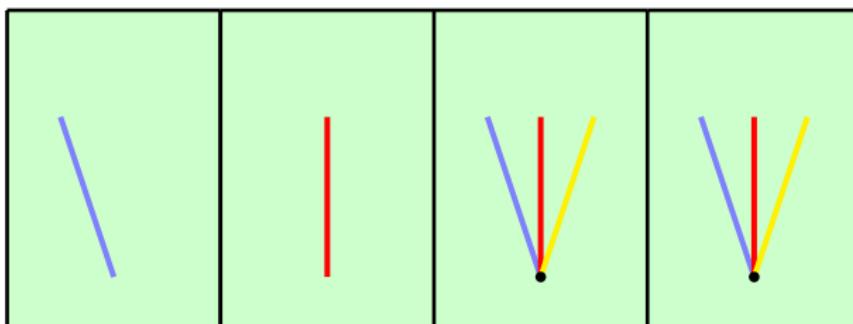
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

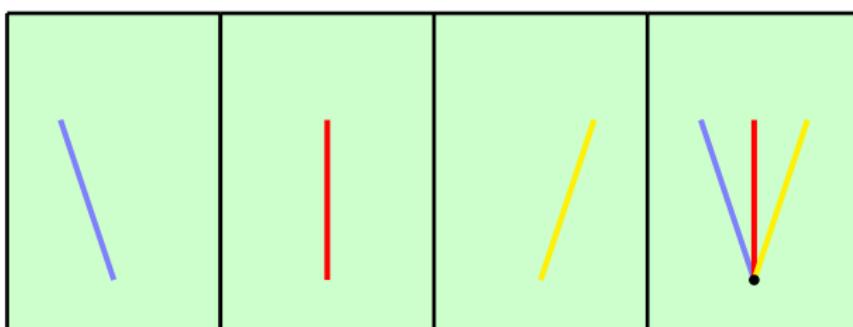
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

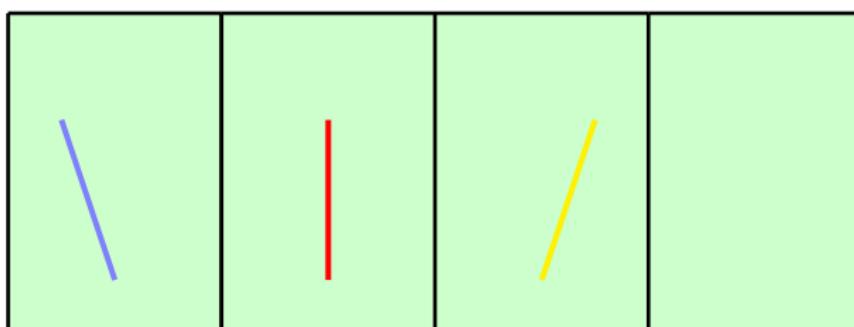
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

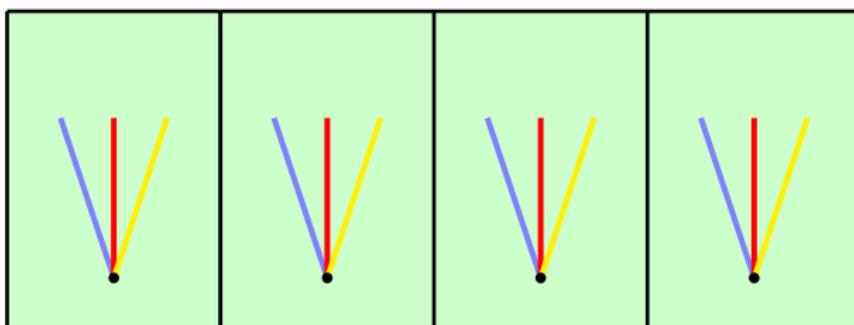
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

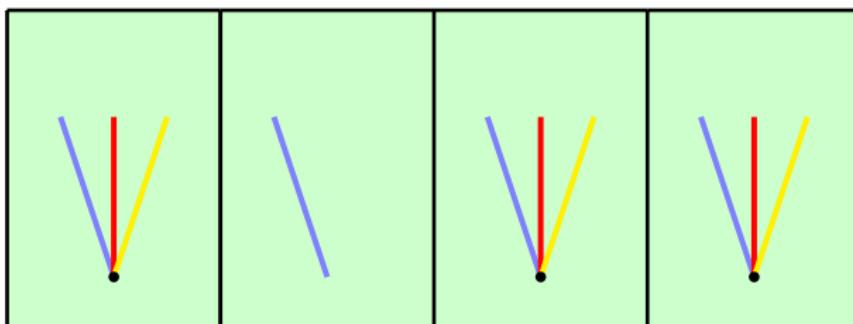
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

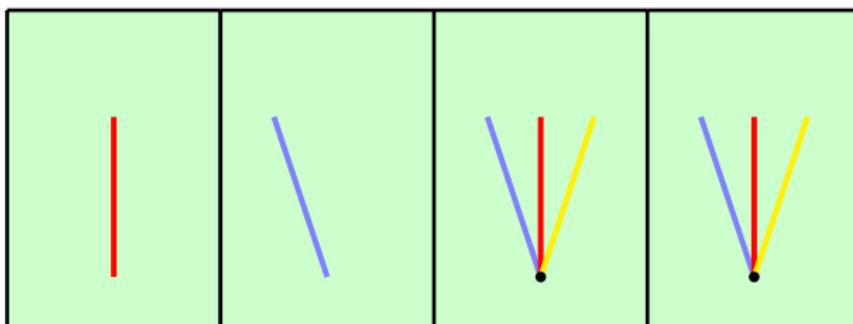
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

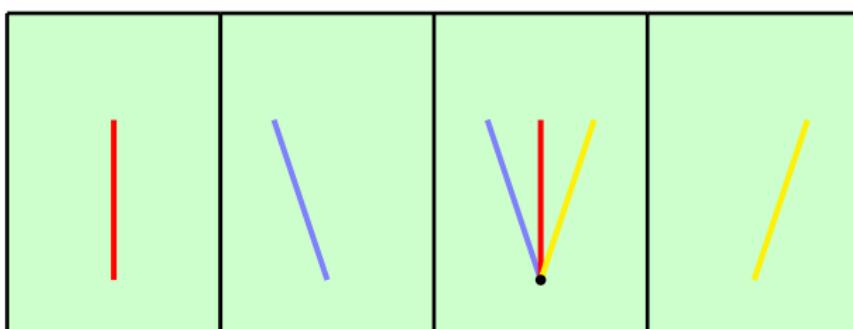
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## The role of the Latin square in the CP-construction

- $\mathcal{D}_0 \cong \text{AG}_2(2)$  with point set  $\Delta$ ;
- $\mathcal{D}_1$  is the trivial 2-(4, 3, 2) design with point set  $\{1, 2, 3, 4\}$ ;
- $LS(4)$  :

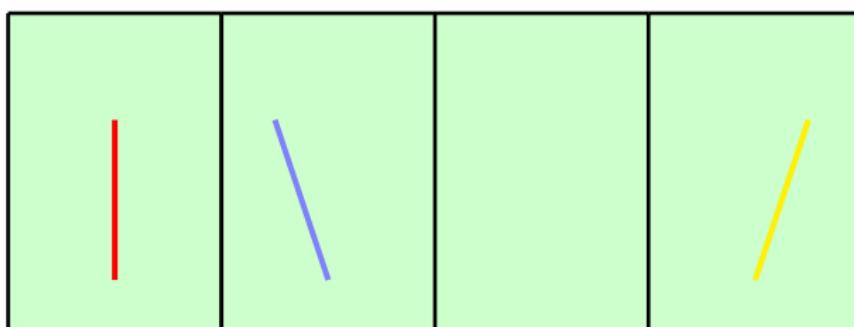
|   |   |   |   |
|---|---|---|---|
| 1 | 2 | 3 | 4 |
| 2 | 1 | 4 | 3 |
| 3 | 4 | 1 | 2 |
| 4 | 3 | 2 | 1 |

$\Delta \times \{1\}$

$\Delta \times \{2\}$

$\Delta \times \{3\}$

$\Delta \times \{4\}$



## Examples arising from Cameron-Praeger construction

# Examples arising from Cameron-Praeger construction

## Examples 3

- ① the two 2-(16, 6, 2) designs with  $G \cong [2^4].S_4 < AGL_4(2)$  described by O'Reilly-Reguerio (2006). Here,  $\mathcal{D}_0 \cong AG_2(2)$ .
- ② the 2-(45, 12, 3) with  $G = [3^4].(10.4) < A\Gamma L_1(81)$  constructed by Praeger (2007). Here,  $\mathcal{D}_0 \cong AG_2(3)$ .
- ③  $\mathcal{D}$  the four 2-(96, 20, 4) designs constructed by Law-Praeger-Reichard (2007). Here,  $\mathcal{D}_0 \cong AG_2(4)$ .
- ④  $\mathcal{D}$  is the 2- $(2^{2n}, 2^{n-1}(2^n - 1), 2^{n-1}(2^{n-1} - 1))$  design  $S^-(n)$  with  $n \geq 2$  described by Cameron-Seidel (1973), and  $G \cong 2^{2n} : GL_2(n)$ . Here,  $\mathcal{D}_0 \cong AG_n(2)$ .
- ⑤  $\mathcal{D}$  is a 2-(1408, 336, 80) design constructed by Cameron-Praeger (2016) and  $G \cong 2^6 : ((3 \cdot M_{22}) : 2)$ . Here,  $\mathcal{D}_0 \cong AG_3(4)$ .

# An Open Problem

# An Open Problem

## Problem

**Does every flag-transitive, point-imprimitive symmetric 2-design arise from the Cameron-Praeger construction?**

# On the strength of the Cameron-Praeger construction

Theorem [M., Praeger (2025+)]

# On the strength of the Cameron-Praeger construction

## Theorem [M., Praeger (2025+)]

Let  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  be a symmetric 2- $(v, k, \lambda)$  design admitting a flag-transitive, point-imprimitive **insoluble** automorphism group  $G$  preserving a partition  $\Sigma$  of  $\mathcal{P}$  with  $v_1$  classes of size  $v_0$ . If  $\mathcal{D}_0$  is affine resolvable and  $k_1 = v_1 - 1$ , then one of the following holds:

- ①  $\mathcal{D}$  is one of the examples arising from the Cameron-Praeger construction (showed above);
- ②  $\mathcal{D}$  is the 2-(144, 66, 30) design constructed by Lempken (1999), and  $G \cong M_{12}$ .

# On the strength of the Cameron-Praeger construction

## Theorem [M., Praeger (2025+)]

Let  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  be a symmetric  $2-(v, k, \lambda)$  design admitting a flag-transitive, point-imprimitive **insoluble** automorphism group  $G$  preserving a partition  $\Sigma$  of  $\mathcal{P}$  with  $v_1$  classes of size  $v_0$ . If  $\mathcal{D}_0$  is affine resolvable and  $k_1 = v_1 - 1$ , then one of the following holds:

- ①  $\mathcal{D}$  is one of the examples arising from the Cameron-Praeger construction (showed above);
- ②  $\mathcal{D}$  is the  $2-(144, 66, 30)$  design constructed by Lempken (1999), and  $G \cong M_{12}$ .

## Remark

In order to establish whether the Lempken example arises or not from the CP-construction, we should check each  $LS(10)$ .

# On the strength of the Cameron-Praeger construction

## Theorem [M., Praeger (2025+)]

Let  $\mathcal{D} = (\mathcal{P}, \mathcal{B})$  be a symmetric  $2-(v, k, \lambda)$  design admitting a flag-transitive, point-imprimitive **insoluble** automorphism group  $G$  preserving a partition  $\Sigma$  of  $\mathcal{P}$  with  $v_1$  classes of size  $v_0$ . If  $\mathcal{D}_0$  is affine resolvable and  $k_1 = v_1 - 1$ , then one of the following holds:

- ①  $\mathcal{D}$  is one of the examples arising from the Cameron-Praeger construction (showed above);
- ②  $\mathcal{D}$  is the  $2-(144, 66, 30)$  design constructed by Lempken (1999), and  $G \cong M_{12}$ .

## Remark

In order to establish whether the Lempken example arises or not from the CP-construction, we should check each  $LS(10)$ . The number of  $LS(10)$  is greater than 7580721483160132811489280 (McKay-Rogoyski, 1995).

# Classification of the flag-transitive affine resolvable designs

## Classification of the flag-transitive affine resolvable designs

- The parameters of  $\mathcal{D}_0$  are known as a consequence of a result of Bose (1942) on affine resolvable designs;

## Classification of the flag-transitive affine resolvable designs

- The parameters of  $\mathcal{D}_0$  are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number  $r_0$  of  $\mathcal{D}_0$  is coprime to  $\lambda_0$ .

# Classification of the flag-transitive affine resolvable designs

- The parameters of  $\mathcal{D}_0$  are known as a consequence of a result of Bose (1942) on affine resolvable designs;
- The replication number  $r_0$  of  $\mathcal{D}_0$  is coprime to  $\lambda_0$ .

Theorem [Alavi, Biliotti, Daneshkhah, M., Zhou et al. (2022)]

One of the following holds for  $(\mathcal{D}_0, G_\Delta^\Delta)$ :

- (I)  $G_\Delta^\Delta$  is **almost simple** and one of the following holds:
- (a)  $\mathcal{D}_0$  is  $AG_3(2)$  and  $G_\Delta^\Delta = PSL_2(7)$ ;
  - (b)  $\mathcal{D}_0$  is a 2-(12, 6, 5) Witt design and  $M_{11} \leq G_\Delta^\Delta \leq M_{12}$ ;
- (II)  $G_\Delta^\Delta$  is **of affine type** and  $\mathcal{D}_0$  is a 2- $(p^i, p^j, \lambda_0)$  design with either  $\lambda_0 = 1$  or  $\lambda_0 = \frac{p^j - 1}{p^{\gcd(j, i/z)} - 1}$  for some  $z \mid i$  such that  $\gcd(j, z, i/z) = 1$ , or  $\lambda_0 = \frac{p^j - 1}{a}$  for some  $a \mid p^{\gcd(j, i)} - 1$ .

The points and blocks of  $\mathcal{D}_0$  are the points and (certain)  $j$ -subspaces of  $AG_i(p)$ .

# Open Problems

- Affine resolvable 2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$
- Symmetric 2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$  with  $k_1 = r_0 = v_1 - 1$
- $L = \{l_{ij}\}$  is a Latin square of order  $r_0 + 1$



Symmetric  
2- $(v_0 v_1, k_0 k_1, \lambda)$  design  
 $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L)$

# Open Problems

- Affine resolvable 2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$
- Symmetric 2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$  with  $k_1 = r_0 = v_1 - 1$
- $L = \{l_{ij}\}$  is a Latin square of order  $r_0 + 1$



Symmetric  
2- $(v_0 v_1, k_0 k_1, \lambda)$  design  
 $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L)$

## Definition

Two latin squares  $L = \{l_{ij}\}$  and  $L' = \{l'_{ij}\}$  of order  $r_0 + 1$  are **isotopic** if and only if there are  $\alpha, \beta, \gamma \in S_{r_0+1}$  such that  $\gamma(l_{ij}) = l'_{\alpha(i)\beta(j)}$  for all  $i, j$ .  
The triple  $(\alpha, \beta, \gamma)$  is called **isotopism**.

# Open Problems

- Affine resolvable 2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$
- Symmetric 2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$  with  $k_1 = r_0 = v_1 - 1$
- $L = \{l_{ij}\}$  is a Latin square of order  $r_0 + 1$



Symmetric  
2- $(v_0 v_1, k_0 k_1, \lambda)$  design  
 $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L)$

## Definition

Two latin squares  $L = \{l_{ij}\}$  and  $L' = \{l'_{ij}\}$  of order  $r_0 + 1$  are **isotopic** if and only if there are  $\alpha, \beta, \gamma \in S_{r_0+1}$  such that  $\gamma(l_{ij}) = l'_{\alpha(i)\beta(j)}$  for all  $i, j$ .  
The triple  $(\alpha, \beta, \gamma)$  is called **isotopism**.

- ①  $L$  and  $L'$  are isotopic  $\stackrel{?}{\implies} \mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L) \cong F(\mathcal{D}_0, \mathcal{D}_1, L') = \mathcal{D}'$ .

# Open Problems

- Affine resolvable 2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$
- Symmetric 2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$  with  $k_1 = r_0 = v_1 - 1$
- $L = \{l_{ij}\}$  is a Latin square of order  $r_0 + 1$



Symmetric  
2- $(v_0 v_1, k_0 k_1, \lambda)$  design  
 $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L)$

## Definition

Two latin squares  $L = \{l_{ij}\}$  and  $L' = \{l'_{ij}\}$  of order  $r_0 + 1$  are **isotopic** if and only if there are  $\alpha, \beta, \gamma \in S_{r_0+1}$  such that  $\gamma(l_{ij}) = l'_{\alpha(i)\beta(j)}$  for all  $i, j$ .  
The triple  $(\alpha, \beta, \gamma)$  is called **isotopism**.

- ①  $L$  and  $L'$  are isotopic  $\xrightarrow{?} \mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L) \cong F(\mathcal{D}_0, \mathcal{D}_1, L') = \mathcal{D}'$ .
- ②  $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L) \xrightarrow{?} L$  is based on a group.

# Open Problems

- Affine resolvable 2- $(v_0, k_0, \lambda_0)$  design  $\mathcal{D}_0$
- Symmetric 2- $(v_1, k_1, \lambda_1)$  design  $\mathcal{D}_1$  with  $k_1 = r_0 = v_1 - 1$
- $L = \{l_{ij}\}$  is a Latin square of order  $r_0 + 1$



Symmetric  
2- $(v_0 v_1, k_0 k_1, \lambda)$  design  
 $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L)$

## Definition

Two latin squares  $L = \{l_{ij}\}$  and  $L' = \{l'_{ij}\}$  of order  $r_0 + 1$  are **isotopic** if and only if there are  $\alpha, \beta, \gamma \in S_{r_0+1}$  such that  $\gamma(l_{ij}) = l'_{\alpha(i)\beta(j)}$  for all  $i, j$ .  
The triple  $(\alpha, \beta, \gamma)$  is called **isotopism**.

- ①  $L$  and  $L'$  are isotopic  $\xrightarrow{?} \mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L) \cong F(\mathcal{D}_0, \mathcal{D}_1, L') = \mathcal{D}'$ .
- ②  $\mathcal{D} = F(\mathcal{D}_0, \mathcal{D}_1, L) \xrightarrow{?} L$  is based on a group.
- ③ Try to settle the  $G$ -soluble case.

- 1 Preliminaries
- 2 Flag-transitive point-imprimitive 2-designs
- 3 Flag-transitive point-primitive 2-designs

# Flag-transitive point-primitive 2-designs with small $\lambda$

# Flag-transitive point-primitive 2-designs with small $\lambda$

## Theorem

Let  $\mathcal{D}$  be a non-trivial 2- $(v, k, \lambda)$  design admitting a flag-transitive point-primitive automorphism group  $G$ . If  $G \not\leq A\Gamma L_1(v)$ ,  $v$  power of a prime, then  $(\mathcal{D}, G)$  is classified in the following cases:

| Conditions on $\mathcal{D}$  | Conditions on $G$ | Author(s)                                                                   |
|------------------------------|-------------------|-----------------------------------------------------------------------------|
| $\lambda = 1$                |                   | Buekenhout, Delandtsheer, Doyen, Kleidman, Liebeck<br>Saxl, 1990            |
| $\lambda = 2, v = b$         |                   | O'Reilly-Reguero, 2005                                                      |
| $\lambda = 2, v < b$         | $G$ almost simple | Alavi, Devillers, Daneshkah, Liang, M., Praeger, Xia, Zhou et. al 2016–2025 |
| $\lambda = 2, v < b$         | $G$ affine        | Liang-M., 2025                                                              |
| $2 < \lambda \leq 10, v = b$ | $G$ affine        | Alavi-Daneshkhah-M., 2025+                                                  |

# $\lambda$ Prime: Reduction & Alternating Case

## $\lambda$ Prime: Reduction & Alternating Case

### Theorem (Zhang-Chen, 2023)

Let  $\mathcal{D}$  be a nontrivial 2- $(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$ . Then the socle  $T$  of  $G$  is either nonabelian simple, or an elementary abelian  $p$ -group for some prime  $p$ .

## $\lambda$ Prime: Reduction & Alternating Case

### Theorem (Zhang-Chen, 2023)

Let  $\mathcal{D}$  be a nontrivial 2- $(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$ . Then the socle  $T$  of  $G$  is either nonabelian simple, or an elementary abelian  $p$ -group for some prime  $p$ .

### Theorem (Zhang-Chen-Zhou, 2024)

Let  $\mathcal{D}$  be a nontrivial 2- $(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T \cong A_n$ ,  $n \geq 5$ . Then one of the following holds:

- ①  $\mathcal{D}$  is a 2- $(6, 3, 2)$  design and  $G \cong A_5$ ;
- ②  $\mathcal{D}$  is a 2- $(10, 4, 2)$  design and  $G \cong A_5, S_5, A_6, P\Sigma L_2(9)$ ;
- ③  $\mathcal{D}$  is a 2- $(10, 6, 5)$  design and  $G \cong A_5, S_5, A_6, S_6$ ;
- ④  $\mathcal{D}$  is a 2- $(15, 7, 3)$  design and  $G \cong A_7, A_8$ .

# Sporadic Groups

# Sporadic Groups

## Theorem (Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a simple sporadic group. Then  $(\mathcal{D}, G)$  is (up to isomorphism) as one of the rows in the following table.

**Table:** Sporadic simple groups and flag-transitive 2-designs with  $\lambda$  prime.

| Line | $v$ | $b$  | $r$ | $k$ | $\lambda$ | $G$        | $G_\alpha$   | $G_B$     |
|------|-----|------|-----|-----|-----------|------------|--------------|-----------|
| 1    | 12  | 22   | 11  | 6   | 5         | $M_{11}$   | $PSL_2(11)$  | $A_6$     |
| 2    | 22  | 77   | 21  | 6   | 5         | $M_{22}$   | $PSU_3(4)$   | $2^4:A_6$ |
|      | 22  | 77   | 21  | 6   | 5         | $M_{22}:2$ | $PSU_3(4):2$ | $2^4:S_6$ |
| 3    | 176 | 1100 | 50  | 8   | 2         | HS         | $PSU_3(5):2$ | $S_8$     |

# Exceptional Lie Type Groups

# Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a finite exceptional simple group. Then one of the following holds

# Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a finite exceptional simple group. Then one of the following holds

- ①  $T$  is  ${}^2B_2(q)$  with  $q^{2a+1} \geq 8$  even, and  $\mathcal{D}$  is the  $2-(q^2 + 1, q, q - 1)$  design, where  $q - 1$  is a Mersenne prime, arising from the Suzuki-Tits ovoid;

# Exceptional Lie Type Groups

## Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a finite exceptional simple group. Then one of the following holds

- ①  $T$  is  $^2B_2(q)$  with  $q^{2a+1} \geq 8$  even, and  $\mathcal{D}$  is the  $2-(q^2 + 1, q, q - 1)$  design, where  $q - 1$  is a Mersenne prime, arising from the Suzuki-Tits ovoid;
- ②  $T$  is  $G_2(q)$  with  $q \geq 4$  even, and  $\mathcal{D}$  is the  $2-\left(\frac{q^3}{2}(q^3 - 1), \frac{q^3}{2}, q + 1\right)$  design, where  $q + 1$  a Fermat prime,

# Exceptional Lie Type Groups

Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a finite exceptional simple group. Then one of the following holds

- ①  $T$  is  ${}^2B_2(q)$  with  $q^{2a+1} \geq 8$  even, and  $\mathcal{D}$  is the  $2-(q^2 + 1, q, q - 1)$  design, where  $q - 1$  is a Mersenne prime, arising from the Suzuki-Tits ovoid;
- ②  $T$  is  $G_2(q)$  with  $q \geq 4$  even, and  $\mathcal{D}$  is the  $2-\left(\frac{q^3}{2}(q^3 - 1), \frac{q^3}{2}, q + 1\right)$  design, where  $q + 1$  a Fermat prime, and it is identified with the coset geometry  $\text{cos}(T, H, K)$ , where  $H = \text{SU}_3(q) : \mathbb{Z}_2$  and  $K = [q^6] : \mathbb{Z}_{q-1}$ ;

# Exceptional Lie Type Groups

## Theorem (Zhang-Shen, 2024 & Alavi-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial  $2-(v, k, \lambda)$  design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  with socle  $T$  a finite exceptional simple group. Then one of the following holds

- ①  $T$  is  ${}^2B_2(q)$  with  $q^{2a+1} \geq 8$  even, and  $\mathcal{D}$  is the  $2-(q^2 + 1, q, q - 1)$  design, where  $q - 1$  is a Mersenne prime, arising from the Suzuki-Tits ovoid;
- ②  $T$  is  $G_2(q)$  with  $q \geq 4$  even, and  $\mathcal{D}$  is the  $2-\left(\frac{q^3}{2}(q^3 - 1), \frac{q^3}{2}, q + 1\right)$  design, where  $q + 1$  a Fermat prime, and it is identified with the coset geometry  $\cos(T, H, K)$ , where  $H = \mathrm{SU}_3(q) : \mathrm{Z}_2$  and  $K = [q^6] : \mathrm{Z}_{q-1}$ ;

## Example 4

Using the Higman-McLaughlin setting:  $\cos(T, H, K) = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ , where

- $\mathcal{P} = \{Hx : x \in T\}$ ,  $\mathcal{B} = \{Ky : y \in T\}$ ;
- $Hx \mathcal{I} Ky$  if and only if  $Hx \cap Ky \neq \emptyset$ .

# The Affine Case

## The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial symmetric design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  of affine type. Then  $G \leq A\Gamma L_1(q)$ , or  $\mathcal{D}$  is a symmetric 2-(16, 6, 2) design with full automorphism group  $2^4 : S_6$  and point-stabilizer  $S_6$ .

## The Affine Case

Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial symmetric design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  of affine type. Then  $G \leq A\Gamma L_1(q)$ , or  $\mathcal{D}$  is a symmetric 2-(16, 6, 2) design with full automorphism group  $2^4 : S_6$  and point-stabilizer  $S_6$ .

Examples occur in the non-symmetric design case:

## The Affine Case

### Theorem (Alavi-Bayat-Daneshkhah-M., 2025)

Let  $\mathcal{D}$  be a nontrivial symmetric design with  $\lambda$  prime admitting a flag-transitive and point-primitive automorphism group  $G$  of affine type. Then  $G \leq A\Gamma L_1(q)$ , or  $\mathcal{D}$  is a symmetric 2-(16, 6, 2) design with full automorphism group  $2^4 : S_6$  and point-stabilizer  $S_6$ .

Examples occur in the non-symmetric design case:

### Example 5 (Buratti-Martinović-Nakić, 2025)

There are two non isomorphic flag-transitive 2-(3<sup>3</sup>, 6, 5) designs with  $AGL_1(3^3) \trianglelefteq G \leq A\Gamma L_1(3^3)$ .

## Future Works

## Future Works

- Complete the  $\lambda$  prime case (joint work with S. H. Alavi, A. Daneshkhah).

## Future Works

- Complete the  $\lambda$  prime case (joint work with S. H. Alavi, A. Daneshkhah).
- Study the flag-transitive  $2-(v, k, \lambda)$ -designs with  $k \mid v$ . Focus on the resolvable ones (joint work with E. Romano, Z. Lu, S. Zhou).

## Future Works

- Complete the  $\lambda$  prime case (joint work with S. H. Alavi, A. Daneshkhah).
- Study the flag-transitive  $2-(v, k, \lambda)$ -designs with  $k \mid v$ . Focus on the resolvable ones (joint work with E. Romano, Z. Lu, S. Zhou).
- Use the previous case to investigate the Cameron-Praeger construction in the non-symmetric design case.

THANK YOU FOR YOUR ATTENTION!

Σας ευχαριστώ για την προσοχή σας!

