

On some Galois subcovers of the Hermitian curve

Arianna Dionigi

Joint work with Barbara Gatti

Università degli Studi di Perugia (Italy)

5th Pythagorean conference
June 1-6, 2025 - Kalamata

INdAM - GNSAGA Project, codice CUP E53C24001950001

Notation

- \mathbb{F}_{q^2} finite field with q^2 elements
- \mathcal{X} projective, non-singular, geometrically irreducible, algebraic curve defined over \mathbb{F}_{q^2}
- $\mathcal{X}(\mathbb{F}_{q^2})$ set of the \mathbb{F}_{q^2} -rational points of \mathcal{X}
- $g = g(\mathcal{X})$ genus of \mathcal{X} , $g = \frac{(d-1)(d-2)}{2}$
- $\text{Aut}(\mathcal{X}) = \{\phi : \mathcal{X} \longrightarrow \mathcal{X} \mid \phi \text{ birational}\}$

Quotient curves

Let G be a finite subgroup of $\text{Aut}(\mathcal{X})$, then G acts faithfully on \mathcal{X} and has a finite number of short orbits $\Omega_1, \dots, \Omega_n$.

Definition

The curve \mathcal{X}/G whose points are the G -orbits of \mathcal{X} is called **quotient curve** of \mathcal{X} by G .

Maximal curves

Theorem (Hasse-Weil bound)

Let $\mathcal{X}(\mathbb{F}_{q^2})$ be the number of \mathbb{F}_{q^2} -rational points of \mathcal{X} , then

$$q^2 + 1 - 2gq \leq |\mathcal{X}(\mathbb{F}_{q^2})| \leq q^2 + 1 + 2gq.$$

Maximal curves

Theorem (Hasse-Weil bound)

Let $\mathcal{X}(\mathbb{F}_{q^2})$ be the number of \mathbb{F}_{q^2} -rational points of \mathcal{X} , then

$$q^2 + 1 - 2gq \leq |\mathcal{X}(\mathbb{F}_{q^2})| \leq q^2 + 1 + 2gq.$$

Definition

If \mathcal{X} attains the Hasse-Weil upper bound it is called \mathbb{F}_{q^2} -maximal.

Hermitian curve

Example **Hermitian curve** \mathcal{H}_q

Two different models:

$$X^{q+1} - Y^q - Y = 0$$

$$\omega X^{q+1} + Y^q - Y = 0 \quad \omega \in \mathbb{F}_{q^2} \text{ such that } \omega^{q+1} = -1$$

$$g = \frac{q(q-1)}{2}$$

$$|\mathcal{H}_q(\mathbb{F}_{q^2})| = q^3 + 1 = q^2 + 1 + 2gq$$

Hermitian curve

Theorem

$$\mathrm{Aut}(\mathcal{H}_q) \cong \mathrm{PGU}(3, q)$$

Hermitian curve

Theorem

$$\mathrm{Aut}(\mathcal{H}_q) \cong \mathrm{PGU}(3, q)$$

Theorem (Stichtenoth, 1973)

$|\mathrm{Aut}(\mathcal{X})| \leq 16g^4$, unless \mathcal{X} is a Hermitian curve.

Hermitian curve

Theorem

$$\mathrm{Aut}(\mathcal{H}_q) \cong \mathrm{PGU}(3, q)$$

Theorem (Stichtenoth, 1973)

$|\mathrm{Aut}(\mathcal{X})| \leq 16g^4$, unless \mathcal{X} is a Hermitian curve.

$\mathrm{PGU}(3, q)$ has plenty of subgroups!

Maximal curves

Theorem (Kleiman-Serre)

If \mathcal{X} is \mathbb{F}_{q^2} -maximal and \mathcal{Y} is a quotient curve of \mathcal{X} then \mathcal{Y} is \mathbb{F}_{q^2} -maximal.

Maximal curves

Theorem (Kleiman-Serre)

If \mathcal{X} is \mathbb{F}_{q^2} -maximal and \mathcal{Y} is a quotient curve of \mathcal{X} then \mathcal{Y} is \mathbb{F}_{q^2} -maximal.

Theorem (Ihara 1981)

The largest genus for an \mathbb{F}_{q^2} -maximal curve is

$$g = \frac{q(q-1)}{2}.$$

Maximal curves

Theorem (Kleiman-Serre)

If \mathcal{X} is \mathbb{F}_{q^2} -maximal and \mathcal{Y} is a quotient curve of \mathcal{X} then \mathcal{Y} is \mathbb{F}_{q^2} -maximal.

Theorem (Ihara 1981)

The largest genus for an \mathbb{F}_{q^2} -maximal curve is

$$g = \frac{q(q-1)}{2}.$$

Theorem (Rück-Stichtenoth 1994)

If a curve \mathcal{X} is \mathbb{F}_{q^2} -maximal and has genus $g = \frac{q(q-1)}{2}$, then

$$\mathcal{X} \cong \mathcal{H}_q.$$

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

- García-Stichtenoth-Xing (2000)

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

- García-Stichtenoth-Xing (2000)
- Cossidente-Korchmáros-Torres (2000)

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

- García-Stichtenoth-Xing (2000)
- Cossidente-Korchmáros-Torres (2000)
- Giulietti-Hirschfeld-Korchmáros-Torres (2006)

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

- García-Stichtenoth-Xing (2000)
- Cossidente-Korchmáros-Torres (2000)
- Giulietti-Hirschfeld-Korchmáros-Torres (2006)
- Gatti-Korchmáros (2024)

Known results

- Montanucci-Zini (2018)

$$q \equiv 1 \pmod{4}$$

- García-Stichtenoth-Xing (2000)
- Cossidente-Korchmáros-Torres (2000)
- Giulietti-Hirschfeld-Korchmáros-Torres (2006)
- Gatti-Korchmáros (2024)
- Subgroups of order dp , $d \neq p$: this work

GOAL: To determine explicit equations for each quotient curve of \mathcal{H}_q by subgroups G of order dp with $d \neq p$ a prime and $d, p > 3$

GOAL: To determine explicit equations for each quotient curve of \mathcal{H}_q by subgroups G of order dp with $d \neq p$ a prime and $d, p > 3$

Theorem (D.-Gatti 2025)

① \mathcal{H}_q/G has genus $g = \frac{1}{2d}(q - d + 1) \left(\frac{q}{p} - 1 \right)$ and equation

$$\sum_{i=0}^{h-1} Y^{p^i} + \omega X^{(q+1)/d} = 0$$

② \mathcal{H}_q/G has genus $g = \frac{q}{2d} \left(\frac{q}{p} - 1 \right)$ and equation

$$\omega X^{(q-1)/d} - Y + X^{2(p-1)/d}Y^p + \dots + X^{2(p^{h-1}-1)/d}Y^{q/p} = 0$$

③ \mathcal{H}_q/G has genus $g = \frac{q}{2dp}(q - 1)$ and equation

$$\omega \left(\frac{Y^2}{X^d} \right)^{(q-1)/d} + 1 - A(X, Y) = 0 \text{ where}$$

$$A(X, Y) = \sum_{i=0}^{h-1} \sum_{j=0}^{h-1} \left(\frac{Y^2}{X^d} \right)^{(p^i-1)/2d} \left(\frac{Y^2}{X^d} \right)^{(p^j-1)/2d} X^{(p^i+p^j)/2}.$$

Background

- The stabilizer S_{P_∞} of P_∞ in $\text{Aut}(\mathcal{H}_q)$ consists of all maps

$$\psi_{a,b,\lambda} : (x, y) \longmapsto (\lambda x + a, a^q \lambda x + \lambda^{q+1} y + b)$$

$$a \in \mathbb{F}_{q^2}, \quad \lambda \in \mathbb{F}_{q^2}^*, \quad b^q + b = a^{q+1}$$

for the model $X^{q+1} - Y^q - Y = 0$

or

$$\varphi_{a,b,\lambda} : (x, y) \longmapsto (\lambda x + a, a^q \lambda \omega x + \lambda^{q+1} y + b)$$

$$a \in \mathbb{F}_{q^2}, \quad \lambda \in \mathbb{F}_{q^2}^*, \quad b^q - b = -\omega^{q+1}$$

for the model $\omega X^{q+1} + Y^q - Y = 0$

and

$$S_{P_\infty} = S_p \rtimes C.$$

In the former case, $S_p = \left\{ \psi_{a,b,1} \mid b^q + b = a^{q+1}, a, b \in \mathbb{F}_{q^2} \right\}$
 and $C = \left\{ \psi_{0,0,\lambda} \mid \lambda \in \mathbb{F}_{q^2}^* \right\}.$

Background

- The center $Z(S_p)$ of S_p has order q and it consists of all maps $\psi_{0,b,1}$ with $b^q + b = 0$, $b \in \mathbb{F}_{q^2}$
- $Z(S_p)$ is an elementary abelian p -group
- The non-trivial elements of S_p form two conjugacy classes in S_{P_∞} in $\text{Aut}(\mathcal{H}_q)$, one comprises all non-trivial elements of $Z(S_p)$, the other does the remaining $q^3 - q$ elements
- The elements of S_{P_∞} other than those in $Z(S_p)$ have order p or $p^2 = 4$ according as $p > 2$ or $p = 2$
- Let G be a group of order uv where u and v are prime numbers with $u < v$. Then
 - (I) if $u \nmid (v - 1)$ G is a cyclic group
 - (II) if $u|(v - 1)$ either G is a cyclic group or G is a semidirect product $C_v \rtimes C_u$

Background

Theorem (Cossidente-Korchmáros-Torres 2000)

Let H be a subgroup of $\text{Aut}(\mathcal{H}_q)$ of order p . Then either

(1) $\mathcal{H}_q/H : \sum_{i=1}^h \eta^{q/p^i} + \omega \xi^{q+1} = 0$ with $\omega^{q-1} = -1$,

$g(\mathcal{H}_q/H) = \frac{1}{2}q\left(\frac{q}{p} - 1\right)$, and H is in the center of a Sylow p -subgroup of $\text{Aut}(\mathcal{H}_q)$;

(2) $\mathcal{H}_q/H : \eta^q + \eta - \left(\sum_{i=1}^h \xi^{q/p^i}\right)^2 = 0$ for $p > 2$,

$g(\mathcal{H}_q/H) = \frac{1}{2}\frac{q}{p}(q-1)$, and H is not in the center of a Sylow p -subgroup of $\text{Aut}(\mathcal{H}_q)$.

Lemma

A subgroup G of $PGU(3, q)$ of order dp , with $d, p > 3$, two different prime integers, is a subgroup of the stabilizer of P_∞ and there are three possibilities for G

- (I) $G = \Sigma_p \times \Sigma_d$ with $\Sigma_p = \langle \varphi_{0,1,1} \rangle$ and $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$, $\lambda^d = 1$, $d|(q+1)$;
- (II) $G = \Sigma_p \rtimes \Sigma_d$ with $\Sigma_p = \langle \varphi_{0,1,1} \rangle$ and $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$, $\lambda^d = 1$, $d|(p-1)$;
- (III) $G = \Sigma_p \rtimes \Sigma_d$ with $\Sigma_p = \langle \varphi_{1,\omega/2,1} \rangle$ and $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$, $\lambda^d = 1$, $d|(p-1)$.

Case (I)

Theorem

If G is of the type (I) then \mathcal{H}_q/G has genus

$$g = \frac{1}{2d} (q - d + 1) \left(\frac{q}{p} - 1 \right)$$

and equation

$$\sum_{i=0}^{h-1} \tau^{p^i} + \omega \zeta^{(q+1)/d} = 0$$

with $d|(q + 1)$.

Case (I)

$$G = \Sigma_p \times \Sigma_d$$

with $\Sigma_p = \langle \varphi_{0,1,1} \rangle$ and $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$, $\lambda^d = 1$, $d|(q+1)$

Steps:

1. $\mathcal{H}_q/G \cong (\mathcal{H}_q/\Sigma_p)/(G/\Sigma_p)$

2. $\xi = x$

$$\eta = y^p - y$$

$$\varphi_{0,1,1}(\xi) = \xi \text{ and } \varphi_{0,1,1}(\eta) = \eta$$

3. $\mathcal{H}_q/\Sigma_p : \sum_{i=1}^h \eta^{p^i} + \omega \xi^{q+1} = 0$

Case (I)

4. $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$ with $\lambda \in \mathbb{F}_{q^2}$ $\lambda^d = 1$
5. $\varphi_{0,0,\lambda}$ induces $\varphi : (\xi, \eta) \longrightarrow (\lambda \xi, \eta)$
6. $\Phi_\lambda = \langle \varphi \rangle$
7. $\zeta = \xi^d$ and $\tau = \eta \longrightarrow \text{Fix}(\Phi_\lambda) = \mathbb{F}_{q^2}(\zeta, \tau)$
8. $\sum_{i=1}^h \eta^{p^i} + \omega \xi^{q+1} = 0 \longrightarrow \sum_{i=0}^{h-1} \tau^{p^i} + \omega \zeta^{(q+1)/d} = 0$

Case (II)

Theorem

If G is of the type (II) then \mathcal{H}_q/G has genus

$$g = \frac{1}{2} \frac{q}{d} \left(\frac{q}{p} - 1 \right)$$

and equation

$$\omega \epsilon^{(q-1)/d} - A(\epsilon, \rho) = 0, \quad d \mid (p-1)$$

where

$$A(\epsilon, \rho) = \rho + \epsilon^{2(p-1)/d} \rho^p + \cdots + \epsilon^{2(p^{h-1}-1)/d} \rho^{q/p}.$$

Case (II)

$$G = \Sigma_p \rtimes \Sigma_d$$

with $\Sigma_p = \langle \varphi_{0,1,1} \rangle$ and $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$, $\lambda^d = 1$, $d|(p-1)$

Steps:

1. $\mathcal{H}_q/G \cong (\mathcal{H}_q/\Sigma_p)/(G/\Sigma_p)$
2. $\mathcal{H}_q/\Sigma_p : \sum_{i=1}^h \eta^{p^i} + \omega \xi^{q+1} = 0$
3. $\Sigma_d = \langle \varphi_{0,0,\lambda} \rangle$ with $\lambda \in \mathbb{F}_{q^2}$ $\lambda^d = 1$

Case (II)

4. $\varphi_{0,0,\lambda}$ induces $\varphi : (\xi, \eta) \longrightarrow (\lambda \xi, \lambda^2 \eta)$
5. $\Phi_\lambda = \langle \varphi \rangle$
6. $\epsilon = \xi^d$ and $\rho = \frac{\eta}{\xi^2} \longrightarrow \text{Fix}(\Phi_\lambda) = \mathbb{F}_{q^2}(\epsilon, \rho)$
7. $\sum_{i=1}^h \eta^{p^i} + \omega \xi^{q+1} = 0 \longrightarrow \omega \epsilon^{(q-1)/d} - A(\epsilon, \rho) = 0$ where

$$A(\epsilon, \rho) = \rho + \epsilon^{2(p-1)/d} \rho^p + \cdots + \epsilon^{2(p^{h-1}-1)/d} \rho^{q/p}$$

Case (III)

Theorem

If G is of the type (III) then \mathcal{H}_q/G has genus

$$g = \frac{q}{2dp} (q - 1)$$

and equation

$$\left(\frac{\tau^2}{\iota^d} \right)^{(q-1)/d} + 1 - A(\iota, \tau) = 0$$

where

$$A(\iota, \tau) = \sum_{i=0}^{h-1} \sum_{j=0}^{h-1} \left(\frac{\tau^2}{\iota^d} \right)^{(p^i-1)/2d} \left(\frac{\tau^2}{\iota^d} \right)^{(p^j-1)/2d} \iota^{(p^i+p^j)/2}.$$

