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On some Galois subcovers of the Hermitian curve

Notation

Fq2 finite field with q2 elements

X projective, non-singular, geometrically irreducible, algebraic
curve defined over Fq2

X (Fq2) set of the Fq2-rational points of X

g = g(X ) genus of X , g = (d− 1)(d− 2)
2

Aut(X ) = {ϕ : X −→ X | ϕ birational}
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Quotient curves

Let G be a finite subgroup of Aut(X ), then G acts faithfully on X
and has a finite number of short orbits Ω1, . . .Ωn.

Definition
The curve X/G whose points are the G-orbits of X is called
quotient curve of X by G.
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Maximal curves

Theorem (Hasse-Weil bound)
Let X (Fq2) be the number of Fq2-rational points of X , then

q2 + 1 − 2gq ≤ |X (Fq2)| ≤ q2 + 1 + 2gq.

Definition
If X attains the Hasse-Weil upper bound it is called Fq2-maximal.
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Hermitian curve

Example Hermitian curve Hq

Two different models:

Xq+1 − Y q − Y = 0

ωXq+1 + Y q − Y = 0 ω ∈ Fq2 such that ωq+1 = −1

g = q(q − 1)
2

|Hq(Fq2)| = q3 + 1 = q2 + 1 + 2gq
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Hermitian curve

Theorem

Aut(Hq) ∼= PGU(3, q)

Theorem (Stichtenoth, 1973)
|Aut(X )| ≤ 16g4, unless X is a Hermitian curve.

PGU(3, q) has plenty of subgroups!
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Maximal curves

Theorem (Kleiman-Serre)
If X is Fq2-maximal and Y is a quotient curve of X then Y is
Fq2-maximal.

Theorem (Ihara 1981)
The largest genus for an Fq2-maximal curve is

g = q(q − 1)
2 .

Theorem (Rück-Stichtenoth 1994)

If a curve X is Fq2-maximal and has genus g = q(q − 1)
2 , then

X ∼= Hq.
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Known results

Montanucci-Zini (2018)

q ≡ 1 (mod 4)

García-Stichtenoth-Xing (2000)
Cossidente-Korchmáros-Torres (2000)
Giulietti-Hirschfeld-Korchmáros-Torres (2006)
Gatti-Korchmáros (2024)
Subgroups of order dp, d ̸= p: this work
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GOAL: To determine explicit equations for each quotient curve of
Hq by subgroups G of order dp with d ̸= p a prime and d, p > 3

Theorem (D.-Gatti 2025)

1 Hq/G has genus g = 1
2d(q − d+ 1)

(
q

p
− 1

)
and equation

h−1∑
i=0

Y pi + ωX(q+1)/d = 0

2 Hq/G has genus g = q

2d

(
q

p
− 1

)
and equation

ωX(q−1)/d − Y +X2(p−1)/dY p + · · · +X2(ph−1−1)/dY q/p = 0
3 Hq/G has genus g = q

2dp(q − 1) and equation

ω

(
Y 2

Xd

)(q−1)/d

+ 1 −A(X,Y ) = 0 where

A(X,Y ) =
h−1∑
i=0

h−1∑
j=0

(Y
2

Xd
)(pi−1)/2d(Y

2

Xd
)(pj−1)/2dX(pi+pj)/2.
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Background

The stabilizer SP∞ of P∞ in Aut(Hq) consists of all maps

ψa,b,λ : (x, y) 7−→ (λx+ a, aqλx+ λq+1y + b)

a ∈ Fq2 , λ ∈ F∗
q2 , bq + b = aq+1

for the model Xq+1 − Y q − Y = 0
or

φa,b,λ : (x, y) 7−→ (λx+ a, aqλωx+ λq+1y + b)
a ∈ Fq2 , λ ∈ F∗

q2 , bq − b = −ωq+1

for the model ωXq+1 + Y q − Y = 0
and

SP∞ = Sp ⋊ C.

In the former case, Sp =
{
ψa,b,1 | bq + b = aq+1, a, b ∈ Fq2

}
and C =

{
ψ0,0,λ | λ ∈ F∗

q2

}
.
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Background

The center Z(Sp) of Sp has order q and it consists of all maps
ψ0,b,1 with bq + b = 0, b ∈ Fq2

Z(Sp) is an elementary abelian p-group
The non-trivial elements of Sp form two conjugacy classes in
SP∞ in Aut(Hq), one comprises all non-tivial elements of
Z(Sp), the other does the remaining q3 − q elements
The elements of SP∞ other than those in Z(Sp) have order p
or p2 = 4 according as p > 2 or p = 2
Let G be a group of order uv where u and v are prime
numbers with u < v. Then

(I) if u ∤ (v − 1) G is a cyclic group
(II) if u|(v − 1) either G is a cyclic group or G is a semidirect

product Cv ⋊ Cu
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Background

Theorem (Cossidente-Korchmáros-Torres 2000)
Let H be a subgroup of Aut(Hq) of order p. Then either

(1) Hq/H :
h∑

i=1
ηq/pi + ωξq+1 = 0 with ωq−1 = −1,

g(Hq/H) = 1
2q
(

q
p − 1

)
, and H is in the center of a Sylow

p-subgroup of Aut(Hq);

(2) Hq/H : ηq + η − (
h∑

i=1
ξq/pi)2 = 0 for p > 2,

g(Hq/H) = 1
2

q
p(q − 1), and H is not in the center of a Sylow

p-subgroup of Aut(Hq).
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Lemma
A subgroup G of PGU(3, q) of order dp, with d, p > 3, two
different prime integers, is a subroup of the stabilizer of P∞ and
there are three possibilities for G
(I) G = Σp × Σd with Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩, λd = 1,

d|(q + 1);
(II) G = Σp ⋊ Σd with Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩, λd = 1,

d|(p− 1);
(III) G = Σp ⋊ Σd with Σp = ⟨φ1,ω/2,1⟩ and Σd = ⟨φ0,0,λ⟩, λd = 1,

d|(p− 1).
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Case (I)

Theorem
If G is of the type (I) then Hq/G has genus

g = 1
2d (q − d+ 1)

(
q

p
− 1

)
and equation

h−1∑
i=0

τpi + ωζ(q+1)/d = 0

with d|(q + 1).
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Case (I)

G = Σp × Σd

with Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩, λd = 1, d|(q + 1)
Steps:

1. Hq/G ∼= (Hq/Σp)/(G/Σp)
2. ξ = x
η = yp − y

φ0,1,1(ξ) = ξ and φ0,1,1(η) = η

3. Hq/Σp :
h∑

i=1
ηpi + ωξq+1 = 0
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Case (I)

4. Σd = ⟨φ0,0,λ⟩ with λ ∈ Fq2 λd = 1
5. φ0,0,λ induces φ : (ξ, η) −→ (λξ, η)
6. Φλ = ⟨φ⟩
7. ζ = ξd and τ = η −→ Fix(Φλ) = Fq2(ζ, τ)

8.
h∑

i=1
ηpi + ωξq+1 = 0 −→

h−1∑
i=0

τpi + ωζ(q+1)/d = 0
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Case (II)

Theorem
If G is of the type (II) then Hq/G has genus

g = 1
2
q

d

(
q

p
− 1

)
and equation

ωϵ(q−1)/d −A(ϵ, ρ) = 0, d | (p− 1)

where

A(ϵ, ρ) = ρ+ ϵ2(p−1)/dρp + · · · + ϵ2(ph−1−1)/dρq/p.
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Case (II)

G = Σp ⋊ Σd

with Σp = ⟨φ0,1,1⟩ and Σd = ⟨φ0,0,λ⟩, λd = 1, d|(p− 1)
Steps:

1. Hq/G ∼= (Hq/Σp)/(G/Σp)

2. Hq/Σp :
h∑

i=1
ηpi + ωξq+1 = 0

3. Σd = ⟨φ0,0,λ⟩ with λ ∈ Fq2 λd = 1



On some Galois subcovers of the Hermitian curve

Case (II)

4. φ0,0,λ induces φ : (ξ, η) −→ (λξ, λ2η)
5. Φλ = ⟨φ⟩

6. ϵ = ξd and ρ = η

ξ2 −→ Fix(Φλ) = Fq2(ϵ, ρ)

7.
h∑

i=1
ηpi + ωξq+1 = 0 −→ ωϵ(q−1)/d −A(ϵ, ρ) = 0 where

A(ϵ, ρ) = ρ+ ϵ2(p−1)/dρp + · · · + ϵ2(ph−1−1)/dρq/p
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Case (III)

Theorem
If G is of the type (III) then Hq/G has genus

g = q

2dp (q − 1)

and equation (
τ2

ιd

)(q−1)/d

+ 1 −A(ι, τ) = 0

where

A(ι, τ) =
h−1∑
i=0

h−1∑
j=0

(
τ2

ιd

)(pi−1)/2d(
τ2

ιd

)(pj−1)/2d

ι(p
i+pj)/2.
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Thank you for your attention!


