

A Reducibility Theorem for Minihypers

Assia Rousseva
Sofia University

(joint work with Ivan Landjev and Konstantin Vorobev)

– 5th Pythagorean Conference, Kalamata, Greece, June 1-6, 2025 –

1. Preliminaries

Definition. An $[n, k, d]_q$ -code is a k -dimensional subspace of \mathbb{F}_q^n where d is the minimal Hamming weight of a non-zero codeword.

Definition. (n, w) -arc in $\text{PG}(r, q)$: a multiset \mathcal{K} with

- 1) $|\mathcal{K}| = n$;
- 2) for every hyperplane H : $\mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w) -blocking set (minihyper) in $\text{PG}(r, q)$: a multiset \mathcal{F} with

- 1) $|\mathcal{F}| = n$;
- 2) for every hyperplane H : $\mathcal{F}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{F}(H_0) = w$.

Theorem 1. The following objects are equivalent:

- (1) $[n, k, d]_q$ linear codes of full length and the maximal number of coordinate positions that are identical in all codewords is s ;
- (2) $(n, n - d)$ -arcs in $\text{PG}(k - 1, q)$ with a maximal point multiplicity s ;
- (3) $(sv_k - n, sv_{k-1} - n + d)$ -minihypers in $\text{PG}(k - 1, q)$.

Here: $v_k = \frac{q^k - 1}{q - 1}$.

Definition. An (n, w) -arc \mathcal{K} in $\text{PG}(r, q)$ is called ***t*-extendable** if there exists an $(n + t, w)$ -arc \mathcal{K}' in $\text{PG}(r, q)$ with

$$\mathcal{K}'(P) \geq \mathcal{K}(P)$$

for all points P in $\text{PG}(r, q)$.

Definition. An (n, w) -minihyper \mathcal{F} in $\text{PG}(r, q)$ is called ***t*-reducible** if there exists an $(n - t, w)$ -arc \mathcal{F}' in $\text{PG}(r, q)$ with

$$\mathcal{F}'(P) \leq \mathcal{F}(P)$$

for all points P in $\text{PG}(r, q)$.

Definition. An (n, w) -arc (or an (n, w) -minihyper) \mathcal{K} in $\text{PG}(r, q)$ is called **divisible** with divisor Δ if

$$\mathcal{K}(H) \equiv n \pmod{\Delta}$$

for every hyperplane H .

2. Classical Extension Results

Theorem 2. (R. Hill, P. Lizak, 1995) Let \mathcal{K} be an (n, w) -arc in $\text{PG}(r, q)$ with $w \equiv n + 1 \pmod{q}$. Assume that the multiplicities of all hyperplanes are congruent to n or $n + 1$ modulo q . Then \mathcal{K} can be extended to an $(n + 1, w)$ -arc.

Theorem 3. Let \mathcal{F} be an (n, w) -minihyper in $\text{PG}(r, q)$, $w \equiv n - 1 \pmod{q}$, such that the multiplicities of all hyperplanes are n or $n - 1$ modulo q , then \mathcal{F} can be reduced to an $(n - 1, w)$ -minihyper.

Theorem 4. (T. Maruta, 2001) Let \mathcal{K} be an (n, w) -arc in $\text{PG}(r, q)$, $q \geq 5$ odd, with $w \equiv n+2 \pmod{q}$. Assume that the multiplicities of all hyperplanes are congruent to $n, n+1$ or $n+2$ modulo q . Then \mathcal{K} can be doubly extendable to an $(n+2, w)$ -arc.

Theorem 5. Let \mathcal{F} be an (n, w) -minihyper in $\text{PG}(r, q)$, $q \geq 5$ odd, with $w \equiv n-2 \pmod{q}$, such that the multiplicities of all hyperplanes are $n, n-1$ or $n-2$ modulo q , then \mathcal{F} can be reduced to an $(n-2, w)$ -minihyper.

Theorem 6. (Hitoshi Kanda, 2020) Let \mathcal{K} be an (n, w) -arc in $\text{PG}(r, 3)$ with $w \equiv n + 2 \pmod{9}$ whose possible hyperplane multiplicities are all $n, n + 1$, or $n + 2 \pmod{9}$. Then \mathcal{K} is doubly extendable to an $(n + 2, w)$ -arc.

Theorem 7. Let \mathcal{F} be an (n, w) -minihyper in $\text{PG}(r, 3)$ with $w \equiv n - 2 \pmod{9}$ whose possible hyperplane multiplicities are all $n, n - 1$, or $n - 2 \pmod{9}$. Then \mathcal{F} is reducible to an $(n - 2, w)$ -minihyper.

3. The Main Theorem

Theorem 8. Let \mathcal{F} be an (n, w) -minihyper in $\text{PG}(r, q)$, $q = p^h$, with $w \equiv n - q^j \pmod{q^{j+1}}$, $j \geq 0$. Assume that \mathcal{F} has the following properties:

- (1) $\mathcal{F}(H) \equiv n - q^j$ or $n \pmod{q^{j+1}}$ for every hyperplane H in $\text{PG}(r, p)$;
- (2) for every hyperplane H with $\mathcal{F}(H) \equiv n - q^j \pmod{q^{j+1}}$, $\mathcal{F}|_H = \mathcal{F}_1 + \chi_S$ for a unique $(j - 1)$ -dimensional subspace S and \mathcal{F}_1 is a divisible minihyper with divisor q^j ;
- (3) for every hyperplane H with $\mathcal{F}(H) \equiv n \pmod{q^{j+1}}$, $\mathcal{F}|_H$ is a divisible minihyper with divisor q^j .

Then $\mathcal{F} = \mathcal{F}' + \chi_T$, where \mathcal{F}' is an $(n - v_{j+1}, w - v_j)$ -minihyper, and T is an j -dimensional subspace. In addition, the subspace T is uniquely determined.

Corollary. Let \mathcal{F} be an (n, w) -minihyper in $\text{PG}(r, q)$, with $w \equiv n - q \pmod{q^2}$. Assume that \mathcal{F} has the following properties:

- (1) $\mathcal{F}(H) \equiv n - q$ or $n \pmod{q^2}$ for every hyperplane H in $\text{PG}(r, q)$;
- (2) for every hyperplane H with $\mathcal{F}(H) \equiv n - q \pmod{q^2}$, $\mathcal{F}|_H$ is reducible to a divisible minihyper with divisor q ;
- (3) for every hyperplane H with $\mathcal{F}(H) \equiv n \pmod{q^2}$, $\mathcal{F}|_H$ is a divisible minihyper with divisor q .

Then $\mathcal{F} = \mathcal{F}' + \chi_L$, where \mathcal{F}' is an $(n - q - 1, w - 1)$ -minihyper, and L is a line.

4. An Application

Theorem 9. A $(70, 22)$ -minihyper in $\text{PG}(4, 3)$ is one of the following:

- (1) the sum of a solid and a $(30, 9)$ -minihyper in $\text{PG}(4, 3)$;
- (2) the sum of a $(66, 21)$ -minihyper in and a line in $\text{PG}(4, 3)$.

Sketch of proof.

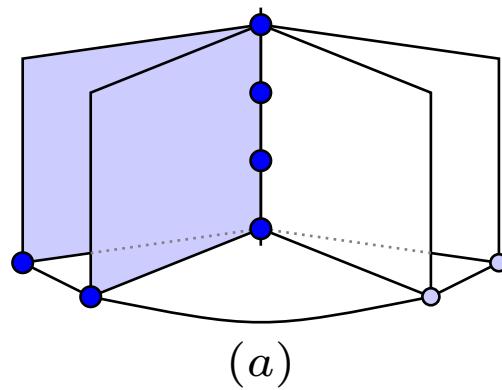
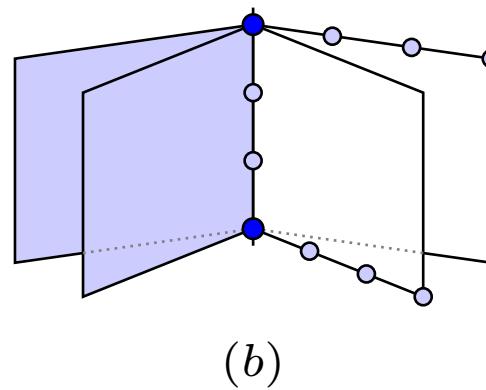
Step 1. Every $(70, 22)$ -minihyper \mathcal{F} is divisible by Ward's theorem, i.e. the possible hyperplane (solid) multiplicities are:

$$22, 25, 28, 31, 34, 37, 40, 43, 46, 49, \dots$$

Step 2. If there exists a solid of multiplicity ≥ 49 then \mathcal{F} is the sum of a $(40, 13)$ -minihyper and a $(30, 9)$ -minihyper

- $(40, 13)$ minihyper in $\text{PG}(4, 3)$ – a solid;
- $(30, 9)$ -minihyper in $\text{PG}(4, 3)$ – either canonical or a $(30, 9)$ -minihyper in $\text{PG}(3, 3)$.

(30, 9)-minihypers in $\text{PG}(3, 3)$



(c) The complement of a cap in $\text{PG}(3, 3)$

Step 3.

In case of $|\mathcal{F}|_H| < 49$:

- 28 -solids are impossible;
- 37 -solids are impossible;
- 46 -solids are impossible.

The possible hyperplane multiplicities are: $22, 25, 31, 34, 40, 43$.

Step 4.

There exists no $(70, 22)$ -minihyper in $\text{PG}(4, 3)$ with a 22 -hyperplane H such that $\mathcal{F}|_H$ is an irreducible $(22, 6)$ -minihyper in $\text{PG}(3, 3)$ and all solids have multiplicity ≤ 43 .

Step 5.

Let \mathcal{F} be a $(70, 22)$ -minihyper with a maximal hyperplane multiplicity 43.

- If H is a hyperplane of multiplicity 22, then $\mathcal{F}|_H$ is reducible to a $(21, 6)$ -minihyper;
- If H is a hyperplane of multiplicity 31, then $\mathcal{F}|_H$ is reducible to a $(30, 9)$ -minihyper;
- If H is a hyperplane of multiplicity 40, then $\mathcal{F}|_H$ is reducible to a divisible $(39, 12)$ -minihyper;

Step 6.

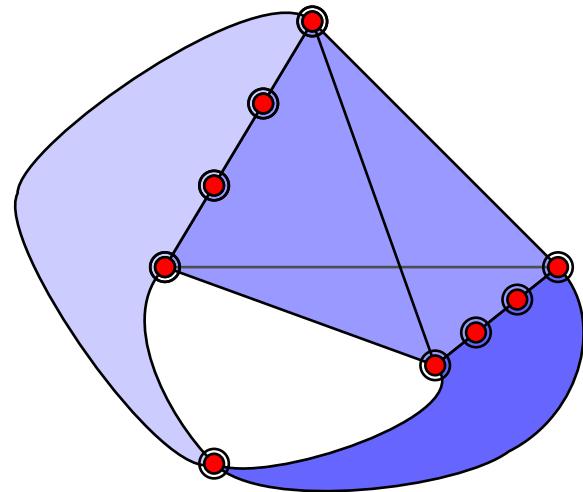
Let \mathcal{F} be a $(70, 22)$ -minihyper with a maximal hyperplane multiplicity 43 .

- If H is a hyperplane of multiplicity 25 , then $\mathcal{F}|_H$ is a divisible $(25, 7)$ -minihyper;
- If H is a hyperplane of multiplicity 34 , then $\mathcal{F}|_H$ is a divisible $(34, 10)$ -minihyper;
- If H is a hyperplane of multiplicity 43 , then $\mathcal{F}|_H$ is a divisible $(43, 13)$ -minihyper;

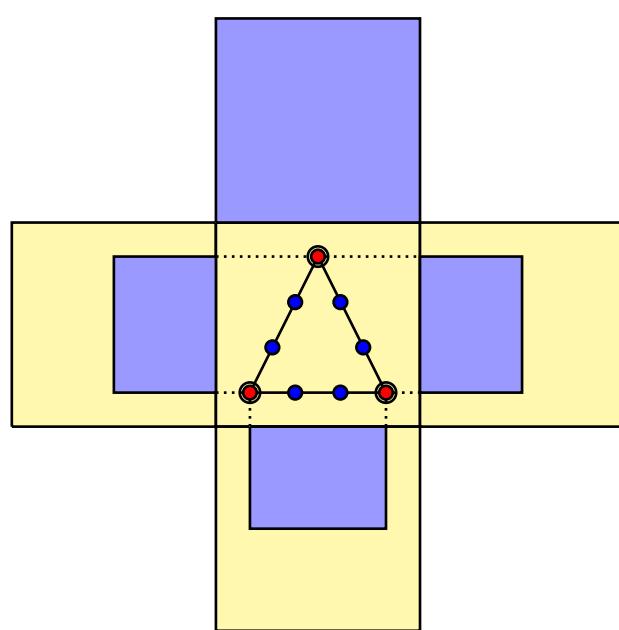
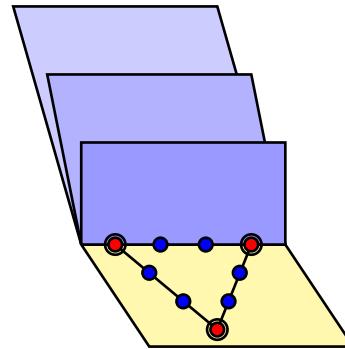
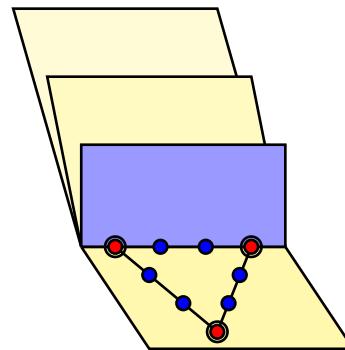
Hence the condition of Theorem 8 are satisfied and we get the minihyper from Theorem 9(2).

THANK YOU FOR YOUR ATTENTION!

(A) (66, 21) in $\text{PG}(4, 3)$



(B) $(66, 21)$ in $\text{PG}(4, 3)$



(C) (66, 21) in $\text{PG}(4, 3)$

