

Combinatorial characterizations of ovoidal cones

Bart De Bruyn

Joint work with Geertrui Van de Voorde

Fifth Pythagorean Conference

- Characterizing point sets of projective spaces by their intersection numbers with respect to suitable subspaces.
- Special attention has been given to those point sets that arise as quadrics or Hermitean varieties.
- Also many other types of point sets have been considered.

Theorem (Segre)

A set of $q + 1$ points in $\text{PG}(2, q)$, q odd, is an irreducible conic if it intersects each line in at most two points.

An **ovoid** of $\text{PG}(3, q)$ is a set X of $q^2 + 1$ with the property that through each of its points x there exists a unique plane π_x for which:

- every line through x contained in π_x intersects X in $\{x\}$;
- every line through x not contained in π_x intersects X in exactly two points.

Classical examples: elliptic quadrics (nonsingular quadrics of Witt index 1)

Theorem (Barlotti, Panella)

The ovoids of $\text{PG}(3, q)$, q odd, are exactly the elliptic quadrics.

Theorem

A set of $q^2 + 1$ points of $\text{PG}(3, q)$ intersecting each plane in either 1 or $q + 1$ points is an ovoid.

Theorem (Qvist)

A set of $q^2 + 1$ points of $\text{PG}(3, q)$, $q \geq 3$, intersecting each line in at most two points is an ovoid.

Theorem

Consider the projective space $\text{PG}(n, q)$ with $n \geq 4$ and $q \geq 3$. Then any set of points having the same intersection numbers with respect to hyperplanes and co-dimension 2 subspaces as a nonsingular quadric or Hermitean variety living in $\text{PG}(n, q)$ must be such a quadric or Hermitean variety.

Consider in $\text{PG}(4, q)$ a point p , a solid (3-dimensional subspace) Π not containing p and an ovoid O in Π . The union of all lines connecting p with the points of O is then called an **ovoidal cone**.

- Intersection numbers (or sizes) with respect to planes: 1, $q + 1$ and $2q + 1$;
- Intersection numbers with respect to solids: $q + 1$, $q^2 + 1$ and $q^2 + q + 1$.
- Innamorati and Zuanni (2021): Classification of all point sets having the same plane intersection numbers
- De Bruyn and Van de Voorde (2023): Classification of all point sets having the same solid intersection numbers

Theorem

A set of points in $\text{PG}(4, q)$ such that every plane meets it in $1, q + 1$ or $2q + 1$ points is either:

- *a parabolic quadric $\mathcal{Q}(4, q)$,*
- *an ovoidal cone,*
- *or the dual complete 11-cap in $\text{PG}(4, 3)$.*

The dual complete 11-cap in PG(4, 3)

- Up to projective equivalence, there exists a unique cap X of 11 points in PG(4, 3) such that any four of its points generate a solid containing exactly five points of X .
- Every solid intersects X in either 2 or 5 points.
- The set of 55 solids intersecting X in exactly 2 points forms a set of points of PG(4, 3)* intersecting each plane of PG(4, 3)* in either 1, 4 or 7 points of PG(4, 3)*.

Characterisation result with respect to solid intersection numbers

- solid intersection numbers: $q + 1$, $q^2 + 1$ and $q^2 + q + 1$.

Known examples which also block all planes:

- ovoidal cones
- planes (intersection numbers $q + 1$ and $q^2 + q + 1$)

Theorem (BDB & Van de Voorde)

Let S be a set of points of $\text{PG}(4, q)$ which blocks all planes and has the same intersection numbers with respect to hyperplanes as an ovoidal cone. Then S is either a plane or an ovoidal cone.

What if we remove the blocking set condition?

Theorem

Let Y be an ovoidal cone in $\text{PG}(4, q)$ with vertex P . Let K be a line contained in Y , let Π_K be the unique solid intersecting Y in K and let L be a line in Π_K intersecting K in a single point distinct from P . The set $X := (Y \setminus K) \cup L$ then satisfies the following properties:

- (1) *every solid of $\text{PG}(4, q)$ intersects X in either $q + 1$, $q^2 + 1$ or $q^2 + q + 1$ points;*
- (2) *there is a plane in $\text{PG}(4, q)$ disjoint from X .*

Let us call these examples **modified ovoidal cones**.

Theorem

Let π_1 and π_2 be two planes in $\text{PG}(4, 2)$ intersecting in a single point P , and let H be a hyperoval of π_2 containing P . The set $X := (\pi_1 \cup H) \setminus \{P\}$ is then a set of 9 points of $\text{PG}(4, 2)$ satisfying the following properties:

- (1) every solid of $\text{PG}(4, 2)$ intersects X in either 3, 5 or 7 points;
- (2) there is a plane in $\text{PG}(4, 2)$ disjoint from X .

Sporadic example 2

Take a frame $(P_1, P_2, P_3, P_4, P_5, P_6)$ in $\text{PG}(4, 2)$ and let Q_1, Q_2 and Q_3 be the respective third points on the lines P_1P_2, P_3P_4 and P_5P_6 .

Theorem

The set $X := \{P_1, P_2, P_3, P_4, P_5, P_6, Q_1, Q_2, Q_3\}$ is a set of 9 points in $\text{PG}(4, 2)$ satisfying the following properties:

- (1) *every solid of $\text{PG}(4, 2)$ intersects X in either 3, 5 or 7 points;*
- (2) *there is a plane in $\text{PG}(4, 2)$ disjoint from X .*

Sporadic example 3

Take a frame $(P_1, P_2, P_3, P_4, P_5, P_6)$ in $\text{PG}(4, 2)$ and let Q_1, Q_2, Q_3, Q_4 and Q_5 be the respective third points on the lines P_1P_2 , P_2P_3 , P_3P_4 , P_4P_5 and P_1P_5 .

Theorem

The set $X := \{P_1, P_2, P_3, P_4, P_5, P_6, Q_1, Q_2, Q_3, Q_4, Q_5\}$ is a set of 11 points in $\text{PG}(4, 2)$ satisfying the following properties:

- (1) *every solid of $\text{PG}(4, 2)$ intersects X in either 3, 5 or 7 points;*
- (2) *there is a plane in $\text{PG}(4, 2)$ disjoint from X .*

Theorem (BDB & Van de Voorde)

Let S be a set of points of $\text{PG}(4, q)$ which does not block all planes and has the same intersection numbers with respect to hyperplanes as an ovoidal cone. Then S is either a modified ovoidal cone or one of the three sporadic examples described earlier.

Sketch of the proof

- Possible sizes for S are $q^2 + q + 1$, $q^3 + 1$, $q^3 + q + 1$ and $q^3 + q^2 + 1$, but $q^3 + 1$ cannot occur if q is distinct from 2, 3 and 5 (by counting the three types of solids)
- Exclusion of the size $q^3 + 1$ for $q = 3$ and $q = 5$
- Two examples of size $q^3 + 1 = 9$ for $q = 2$ (by computer)
- Sizes still need to be treated: $q^2 + q + 1$, $q^3 + q + 1$ and $q^3 + q^2 + 1$
- For each of these, we can determine how many solids there are of each type
- Examples of size $q^2 + q + 1$ are planes (easy, a few lines)
- Exclusion of the size $q^3 + q^2 + 1$ (1 page)
- Treatment of the size $q^3 + q + 1$ (13 pages)

- $q = 2$: by computer (two examples)
- Suppose $q \geq 3$.
- Focus on the $q^2 + 1$ solids that meet S in exactly $q + 1$ points.
- The following was essential in our treatment.

Lemma

If Π is a solid intersecting S in exactly $q + 1$ points, then $\Pi \cap S$ is either a line or a set of the form $(L \setminus \{P\}) \cup \{Q\}$, where L is a line, P is a point of L and Q is some point outside of L .

To show that a **modified ovoidal cone** arises, we needed to show that the point P is always the same point if the second possibility occurs (= vertex of ovoidal cone).

- For $q > 5$, this relied on a result of Dodunekov, Storme and Van de Voorde (see below, for $a = 1$ and $n = 3$).
- For $q \in \{3, 4, 5\}$: hard work (most difficult part in the proof).

Lemma

If S is a partial $(q + a)$ -cover of $\text{PG}(n, q)$, $a < \frac{q-2}{3}$, with at most q^{n-1} holes, then there are at least $q^{n-1} - aq^{n-2}$ holes and the holes are contained in one hyperplane.

Lemma

Suppose X is a set of $q + 1$ points of $\text{PG}(3, q)$, $q > 5$, which is not a plane blocking set for which there are at most q^2 disjoint planes. Then there are at least $q^2 - q$ planes in $\text{PG}(3, q)$ disjoint from X and all these planes go through a certain point P .

- But then $X \cup \{P\}$ is then a plane blocking set of size $q + 2$ in $\text{PG}(3, q)$.
- A result of Beutelspacher then implies that $X \cup \{P\}$ is a line L , plus some point Q .
- This implies that $X = (L \setminus \{P\}) \cup \{Q\}$.