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Classical problem in Projective Geometry

@ Characterizing point sets of projective spaces by their
intersection numbers with respect to suitable subspaces.

@ Special attention has been given to those point sets that
are arise as quadrics or Hermitean varieties.

@ Also many other types of point sets have been considered.
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Segre’s theorem characterising irreducible conics

Theorem (Segre)

A set of q + 1 points in PG(2, q), q odd, is an irreducible conic if
it intersects each line in at most two points.
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Ovoids and elliptic quadrics

An ovoid of PG(3, q) is a set X of g2 + 1 with the property that
through each of its points x there exists a unique plane my for
which:

@ every line through x contained in 7y intersects X in {x};

@ every line through x not contained in 7y intersects X in
exactly two points.

Classical examples: elliptic quadrics (nonsingular quadrics of
Witt index 1)

Theorem (Barlotti, Panella)
The ovoids of PG(3, q), q odd, are exactly the elliptic quadrics.
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Characterising ovoids (and elliptic quadrics for g odd)

A set of g% + 1 points of PG(3, q) intersecting each plane in
either 1 or g + 1 points is an ovoid.

\,

Theorem (Quist)

A set of g° + 1 points of PG(3, q), g > 3, intersecting each line
in at most two points is an ovoid.

€
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A result of De Winter - Schillewaert (2010)

Consider the projective space PG(n, q) withn > 4 and q > 3.
Then any set of points having the same intersection numbers
with respect to hyperplanes and co-dimension 2 subspaces as
a nonsingular quadric or Hermitean variety living in PG(n, q)
must be such a quadric or Hermitean variety.
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Ovoidal cones

Consider in PG(4, g) a point p, a solid (3-dimensional
subspace) I not containing p and an ovoid O in I. The union
of all lines connecting p with the points of O is then called an
ovoidal cone.

@ Intersection numbers (or sizes) with respect to planes: 1,
g+1and2q+1;

@ Intersection numbers with respect to solids: g + 1, g% + 1
andg® +q+1.

@ Innamorati and Zuanni (2021): Classification of all point
sets having the same plane intersection numbers

@ De Bruyn and Van de Voorde (2023): Classification of all
point sets having the same solid intersection numbers
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The result of Innamorati and Zuanni

A set of points in PG(4, q) such that every plane meets it in
1,9+ 1 or2q + 1 points is either:

@ a parabolic quadric Q(4,q),

@ an ovoidal cone,

@ or the dual complete 11-cap in PG(4, 3).

.
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The dual complete 11-cap in PG(4, 3)

@ Up to projective equivalence, there exists a unique cap X
of 11 points in PG(4, 3) such that any four of its points
generate a solid containing exactly five points of X.

@ Every solid intersects X in either 2 or 5 points.

@ The set of 55 solids intersecting X in exactly 2 points forms
a set of points of PG(4, 3)* intersecting each plane of
PG(4,3)* in either 1, 4 or 7 points of PG(4, 3)*.
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Characterisation result with respect to solid
intersection numbers

@ solid intersection numbers: g +1,¢> +1and > + g+ 1.

Known examples which also block all planes:
@ ovoidal cones
@ planes (intersection numbers g + 1 and g°> + g + 1)
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Main Theorem 1

Theorem (BDB & Van de Voorde)

Let S be a set of points of PG(4, q) which blocks all planes and
has the same intersection numbers with respect to hyperplanes
as an ovoidal cone. Then S is either a plane or an ovoidal cone.

What if we remove the blocking set condition?
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An infinite family of examples

Let Y be an ovoidal cone in PG(4, q) with vertex P. Let K be a
line contained in Y, let Tk be the unique solid intersecting Y in
K and let L be a line in Mg intersecting K in a single point
distinct from P. The set X := (Y \ K) U L then satisfies the
following properties:

(1) every solid of PG(4, q) intersects X in either g + 1, g + 1
or ¢ + q + 1 points;
(2) there is a plane in PG(4, q) disjoint from X.

Let us call these examples modified ovoidal cones.
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Sporadic example 1

Let 1 and o be two planes in PG(4, 2) intersecting in a single
point P, and let H be a hyperoval of o containing P. The set
X = (m UH)\ {P} is then a set of 9 points of PG(4, 2)
satisfying the following properties:

(1) every solid of PG(4,2) intersects X in either 3,5 or7
points;

(2) there is a plane in PG(4,2) disjoint from X.
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Sporadic example 2

Take a frame (P, P2, P3, P4, Ps, Pg) in PG(4,2) and let Qy, Q»
and Qs be the respective third points on the lines Py Ps, P3Py
and PsPs.

The set X := {Py, P2, P3, P4, Ps, P, Q1, Q2, Q3 } is a set of 9
points in PG(4, 2) satisfying the following properties:

(1) every solid of PG(4,2) intersects X in either 3,5 or7
points;

(2) there is a plane in PG(4,2) disjoint from X.
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Sporadic example 3

Take a frame (P4, Po, P3, Py, Ps, Pg) in PG(4,2) and let Qy, Qo,
Qs, Q4 and Qs be the respective third points on the lines Py Po,
P2P3, P3P4, P4P5 and P1 P5.

The set X := {P1, P>, P3, P4, Ps, Ps, Q1, Qo, Q3, Q4, Qs } is a set
of 11 points in PG(4, 2) satisfying the following properties:

(1) every solid of PG(4,2) intersects X in either 3,5 or7
points;

(2) there is a plane in PG(4,2) disjoint from X.
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Main Theorem 2

Theorem (BDB & Van de Voorde)

Let S be a set of points of PG(4, q) which does not block all
planes and has the same intersection numbers with respect to
hyperplanes as an ovoidal cone. Then S is either a modified
ovoidal cone or one of the three sporadic examples described
earlier.
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Sketch of the proof

@ Possible sizesforSare ¢ +q+1,¢+1,¢°+qg+1and
q® + g% + 1, but g® + 1 cannot occur if g is distinct from 2,
3 and 5 (by counting the three types of solids)

@ Exclusion of the size g® +1forg=3andg=5

@ Two examples of size g° + 1 = 9 for g = 2 (by computer)

@ Sizes still need to be treated: g> + g+ 1, ¢> + g+ 1 and
®+q*+1

@ For each of these, we can determine how many solids
there are of each type

@ Examples of size g°> + g + 1 are planes (easy, a few lines)

@ Exclusion of the size ¢° + g + 1 (1 page)

@ Treatment of the size g° + g+ 1 (13 pages)
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The case |S| = q° +q + 1

@ g = 2: by computer (two examples)
@ Suppose q > 3.

@ Focus on the g° + 1 solids that meet S in exactly g + 1
points.

@ The following was essential in our treatment.

IfT1 is a solid intersecting S in exactly g+ 1 points, thenTI NS is
either a line or a set of the form (L \ {P}) U{Q}, where L is a
line, P is a point of L and Q is some point outside of L.

To show that a modified ovoidal cone arises, we needed to
show that the point P is always the same point if the second
possibility occurs (= vertex of ovoidal cone).
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Proof of the essential lemma

@ For g > 5, this relied on a result of Dodunekov, Storme and
Van de Voorde (see below, for a= 1 and n = 3).

@ For g € {3,4,5}: hard work (most difficult part in the proof).

If S is a partial (q + a)-cover of PG(n, q), a < %2, with at most
q" ' holes, then there are at least "~' — aq"—2 holes and the
holes are contained in one hyperplane.
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Dual version for a = 1 and n = 3, and consequence

Suppose X is a set of q + 1 points of PG(3, q), q > 5, which is
not a plane blocking set for which there are at most g° disjoint
planes. Then there are at least g° — q planes in PG(3, q) disjoint
from X and all these planes go through a certain point P.

@ But then X U {P} is then a plane blocking set of size g + 2
in PG(3, q).

@ A result of Beutelspacher then implies that X U {P} is a
line L, plus some point Q.

@ This implies that X = (L \ {P}) U {Q}.
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