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Linear codes

Definition

® A g-ary linear code C is a k-dimensional subspace of [y .
e The dual code C* is defined as:

CLz{yngHx,y}:Ofor all z € C}.

It is itself a linear code of dimension n — k.
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Linear codes

Definition

® A g-ary linear code C is a k-dimensional subspace of [y .
e The dual code C* is defined as:

A n
C-={yelF,|(z,y) =0foralxeC}

It is itself a linear code of dimension n — k.

¢ The Hamming distance between two codewords ¢, € [y is the
number of positions where they differ:

du(e,d) = {i:c # c}l.
® The minimum Hamming distance of a code C' is:

d= min d N,
min u(c, )
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Linear Complementary Dual (LCD) Codes

Definition

A linear code C C IF(’; is an LCD code if its dual code Ct satisfies:
cnct ={0}.

Equivalently, there exists a generator matrix G such that GG is
nonsingular.
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Linear Complementary Dual (LCD) Codes

Definition

A linear code C C IF:; is an LCD code if its dual code Ct satisfies:

cnct ={0}.

Equivalently, there exists a generator matrix G such that GG is
nonsingular.

Lemma
Cis LCD < Ct is LCD
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Some cool application for LCD codes.

e Entanglement Assisted Quantum Error Correcting Codes

(EAQECC) from LCD Codes.
® Decoding with LCD codes.

® LCD codes against Side channel and Fault injection attacks
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Known Results and Open Questions on LCD Codes

® Every [n, k], code has an equivalent LCD code (reached through
monomial operations on the columns of G), as long as ¢ > 4.
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Known Results and Open Questions on LCD Codes

® Every [n, k], code has an equivalent LCD code (reached through
monomial operations on the columns of G), as long as ¢ > 4.
= via basis transformation, known constructions and decoding
algorithms can be adapted to LCD

® Every [n, kJom LCD code has an equivalent [nm, km]s LCD code.

® For ¢ = 2,3 the question of how to construct (and decode) good
LCD codes is open.

® Also open: the number of equivalence classes, the maximal
achievable distance, subcode behavior etc.
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Neighbors of Linear Codes

Definition }

Two [n, k|, codes are neighbors if they intersect in dimension k£ — 1.
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Neighbors of Linear Codes

Definition

Two [n, k|, codes are neighbors if they intersect in dimension k£ — 1.

Notation:

Co(v) :={ce C|{c,v) =0}
Definition

Let C C [y be a linear code and let v ¢ C'U C+. The associated
neighbor of C' with respect to v is defined as:

N(C,v) := (Cy(v),v).
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Associated Neighbors are Neighbors

Lemma
If C' is an associated neighbor of C w.r.t. v, then
CNN(C,v) = Cy(v)

and hence
dim(CNN(C,v)) =dimC — 1.
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Associated Neighbors are Neighbors

Lemma
If C' is an associated neighbor of C w.r.t. v, then
CNN(C,v) = Cy(v)

and hence
dim(CNN(C,v)) =dimC — 1.

... but not the other way around ...
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Associated Neighborship is not Symmetric

e Consider the neighboring [4, 2], codes C and C” generated by:

[t oo o0 , 1100
G_[0100]’G_[0010]'

— CnC' ={(1,1,0,0))
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Associated Neighborship is not Symmetric

e Consider the neighboring [4, 2], codes C and C” generated by:

[t oo o0 , 1100
G_[0100]’G_[0010]'

— CnC' ={(1,1,0,0))

Co((1,1,1,0)) = ((1,1,0,0))
= N(C,v)=C"
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Associated Neighborship is not Symmetric

e Consider the neighboring [4, 2], codes C and C” generated by:

[t oo o0 , 1100
G_[0100]’G_[0010]'

— ONnC ={(1,1,0,0))
Co((1,1,1,0)) = ((1,1,0,0))
= N(C,v)=C"

e However: for all v/ ¢ C"UC" L, C{(v') #CNC.

= N(C'W)#C
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Number of Neighbors

Proposition

Let C C FZL be a k-dimensional code. Then:

e C has % neighbors.

® C has at most
qn . ’C U CJ_| qn . qméx(k,nfk)
<
q—1 - q—1

associated neighbors with respect to some v € Fi \ (CUCY).
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Number of Neighbors

Proposition

Let C C IFZ be a k-dimensional code. Then:

e C has % neighbors.

® C has at most
qn . ’C U CJ_| qn . qméx(k,nfk)
<
q—1 - q—1

associated neighbors with respect to some v € Fy \ (C'U ch).

Note:

n

_ qméx(k,nfk) _ (qk o 1)<qnfk+1 . q)
qg—1 (¢ — 1)

q
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Duality of Neighbors

Proposition

C and C' are neighbors <= C*+ and C'*+ are neighbors.

C' is an associated neighbor of C <= C™ is an associated
neighbor of C'*.

If
C' = N(C,v)
then
Ct = N(C™* u—w)

for some u € C'\ Cy(v) with u —v € C+\ C"* .
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Neighborship as a Graph

® Neighborship relations between codes can be modeled as a graph.

e Each node in the graph represents a code (e.g., C, C").

® An edge between two nodes indicates that the corresponding codes
are neighbors.

® Since general neighborship is symmetric, the corresponding graph is
undirected. For associated neighborship we need a directed graph.

® This representation helps visualize relationships between codes,
allowing for easier analysis and exploration of code properties.
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Example: Associated Neighbors in F}
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LCD Neighbors of LCD Codes

Theorem
Let C C ]FZ be a k-dimensional LCD code. Then C has

n/2
%N — (%) @271 if q is odd, n is even, and k is odd,

qgl N otherwise,

neighbors that are LCD, where N := % is the overall
number of neighbors.

Corollary

® [or q =2, exactly half of the neighbors of any LCD code are LCD
themselves.

® As q grows, the fraction of LCD neighbors approaches 1.
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Symmetry of Associated Neighborship for LCD Codes

Theorem

If C and C'" are neighbors and LCD, then C is an associated neighbor to
C" if and only if C" is associated to C.

___Ofr-___

Let C be an [n, k], LCD code, let v € Fy \ (CU Ct), and let

C" = N(C,v) also be an LCD code. Then ' € F \ (C'UC™*) such
that C = N(C',v').

The number of associated neighbors is not constant, it depends on the
code.
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Neighbor Graphs



The Neighbor Graph of LCD Codes

Theorem
The undirected graph of LCD neighbors of dimension k in Fy

o Wi gt ] 1
24142
“ |B|=4V] -6

o The graph is regular of degree

n/2
5. q%qlN - (%) ¢V* Y if q is odd, n is even, and k is odd,

q%ql N otherwise.

® [t is generally (for non-trivial 1 <k <n—1)
® not strongly nor distance-reqular
® not edge-transitive,
® hence not symmetric.

!The exact formula depends on the parities of ¢, k and n.
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Vertex-Transitivity

Theorem

If g = 2, the LCD neighbor graph is vertex-transitive if and only if n is
even and k is odd. If q is odd, the LCD neighbor graph is
vertex-transitive only if n is even and k is odd.

Proof idea:

® For ¢ =2,n is even and k is odd, O(n, q) is transitive.

® In other cases, the orthogonal group splits LC'D|n, k], into several
orbits of different cardinalities.
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Connectedness and Diameter

Theorem

The [n, kl; LCD neighbor graph is connected and for odd q has diameter
min(k,n — k).
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Example: Connectedness and Diameter
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Example: Connectedness and Diameter
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The Associated Neighbor Graph of LCD Codes

Remember: The graph can be represented as an undirected graph, by
collapsing all pairs of directed edges with the same two vertices.

Theorem

The graph of LCD associated neighbors of dimension k in Fy :
® |V| as before
® [t is generally (for non-trivial 1 <k <n—1)

® not reqular,
® not vertex-transitive,
® not edge-transitive,
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LCD Neighbor Graph in F3

— non-associated neighbors — associated neighbors
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LCD Associated Neighbor Graph in F}
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Summary and Conclusions



Summary and Outlook

e LLCD codes have many applications in coding theory and
cryptography.

® Open problems include finding good codes for ¢ = 2,3 and
classifying them. = tackle with LCD neighbor graphs!
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Summary and Outlook

LCD codes have many applications in coding theory and
cryptography.
Open problems include finding good codes for ¢ = 2,3 and
classifying them. = tackle with LCD neighbor graphs!
Associated neighbors are easy to compute and define a subgraph of
the neighbor graph.
Main results: The [n, k|, LCD neighbor graph

® is regular and connected

® has diameter min{k,n — k} for odd ¢ and girth 3.
The associated neighbor graph is undirected (in the general case)
and otherwise not very structured.
Ongoing work: Count triangles, determine |E| in associated
neighbor graph, use cliques for classification, use Hermitian inner
product, etc.

Thank you for your attention!
Questions? — Comments?
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