

The Neighbor Graph of Linear Complementary Dual Codes

Carlos Vela

5th Pythagorean Conference
Kalamata, 5th June

Joint work with Javier de la Cruz, Anna-Lena Horlemann
Marc Newman and Wolfgang Willems.

supported by the Leading House Latin America Research Partnership Grant no. RPG2352.

Introduction to LCD Codes

Neighbors of Linear Codes

Neighbors of LCD Codes

Neighbor Graphs

Summary and Conclusions

Linear codes

Definition

- A q -ary linear code C is a k -dimensional subspace of \mathbb{F}_q^n .
- The dual code C^\perp is defined as:

$$C^\perp = \{y \in \mathbb{F}_q^n \mid \langle x, y \rangle = 0 \text{ for all } x \in C\}.$$

It is itself a linear code of dimension $n - k$.

Linear codes

Definition

- A q -ary linear code C is a k -dimensional subspace of \mathbb{F}_q^n .
- The dual code C^\perp is defined as:

$$C^\perp = \{y \in \mathbb{F}_q^n \mid \langle x, y \rangle = 0 \text{ for all } x \in C\}.$$

It is itself a linear code of dimension $n - k$.

- The Hamming distance between two codewords $c, c' \in \mathbb{F}_q^n$ is the number of positions where they differ:

$$d_H(c, c') = |\{i : c_i \neq c'_i\}|.$$

- The minimum Hamming distance of a code C is:

$$d = \min_{c \neq c' \in C} d_H(c, c').$$

Linear Complementary Dual (LCD) Codes

Definition

A linear code $C \subset \mathbb{F}_q^n$ is an LCD code if its dual code C^\perp satisfies:

$$C \cap C^\perp = \{0\}.$$

Equivalently, there exists a generator matrix G such that GG^\top is nonsingular.

Linear Complementary Dual (LCD) Codes

Definition

A linear code $C \subset \mathbb{F}_q^n$ is an LCD code if its dual code C^\perp satisfies:

$$C \cap C^\perp = \{0\}.$$

Equivalently, there exists a generator matrix G such that GG^\top is nonsingular.

Lemma

$$C \text{ is LCD} \iff C^\perp \text{ is LCD}$$

Some cool application for LCD codes.

- Entanglement Assisted Quantum Error Correcting Codes (EAQECC) from LCD Codes.
- Decoding with LCD codes.
- LCD codes against Side channel and Fault injection attacks

Known Results and Open Questions on LCD Codes

- Every $[n, k]_q$ code has an equivalent LCD code (reached through monomial operations on the columns of G), as long as $q \geq 4$.

Known Results and Open Questions on LCD Codes

- Every $[n, k]_q$ code has an equivalent LCD code (reached through monomial operations on the columns of G), as long as $q \geq 4$.
 \Rightarrow via basis transformation, known constructions and decoding algorithms can be adapted to LCD

Known Results and Open Questions on LCD Codes

- Every $[n, k]_q$ code has an equivalent LCD code (reached through monomial operations on the columns of G), as long as $q \geq 4$.
 \Rightarrow via basis transformation, known constructions and decoding algorithms can be adapted to LCD
- Every $[n, k]_{2^m}$ LCD code has an equivalent $[nm, km]_2$ LCD code.

Known Results and Open Questions on LCD Codes

- Every $[n, k]_q$ code has an equivalent LCD code (reached through monomial operations on the columns of G), as long as $q \geq 4$.
 \Rightarrow via basis transformation, known constructions and decoding algorithms can be adapted to LCD
- Every $[n, k]_{2^m}$ LCD code has an equivalent $[nm, km]_2$ LCD code.
- For $q = 2, 3$ the question of how to construct (and decode) good LCD codes is open.

Known Results and Open Questions on LCD Codes

- Every $[n, k]_q$ code has an equivalent LCD code (reached through monomial operations on the columns of G), as long as $q \geq 4$.
 \Rightarrow via basis transformation, known constructions and decoding algorithms can be adapted to LCD
- Every $[n, k]_{2^m}$ LCD code has an equivalent $[nm, km]_2$ LCD code.
- For $q = 2, 3$ the question of how to construct (and decode) good LCD codes is open.
- Also open: the number of equivalence classes, the maximal achievable distance, subcode behavior etc.

Introduction to LCD Codes

Neighbors of Linear Codes

Neighbors of LCD Codes

Neighbor Graphs

Summary and Conclusions

Neighbors of Linear Codes

Definition

Two $[n, k]_q$ codes are *neighbors* if they intersect in dimension $k - 1$.

Neighbors of Linear Codes

Definition

Two $[n, k]_q$ codes are *neighbors* if they intersect in dimension $k - 1$.

Notation:

$$C_0(v) := \{c \in C \mid \langle c, v \rangle = 0\}.$$

Definition

Let $C \subseteq \mathbb{F}_q^n$ be a linear code and let $v \notin C \cup C^\perp$. The *associated neighbor* of C with respect to v is defined as:

$$N(C, v) := \langle C_0(v), v \rangle.$$

Associated Neighbors are Neighbors

Lemma

If C' is an associated neighbor of C w.r.t. v , then

$$C \cap N(C, v) = C_0(v)$$

and hence

$$\dim(C \cap N(C, v)) = \dim C - 1.$$

Associated Neighbors are Neighbors

Lemma

If C' is an associated neighbor of C w.r.t. v , then

$$C \cap N(C, v) = C_0(v)$$

and hence

$$\dim(C \cap N(C, v)) = \dim C - 1.$$

... but not the other way around ...

Associated Neighborhood is not Symmetric

- Consider the neighboring $[4, 2]_2$ codes C and C' generated by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\implies C \cap C' = \langle (1, 1, 0, 0) \rangle$$

Associated Neighborhood is not Symmetric

- Consider the neighboring $[4, 2]_2$ codes C and C' generated by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\implies C \cap C' = \langle (1, 1, 0, 0) \rangle$$

-

$$C_0((1, 1, 1, 0)) = \langle (1, 1, 0, 0) \rangle$$

$$\implies N(C, v) = C'$$

Associated Neighborhood is not Symmetric

- Consider the neighboring $[4, 2]_2$ codes C and C' generated by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \quad G' = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

$$\implies C \cap C' = \langle (1, 1, 0, 0) \rangle$$

-

$$C_0((1, 1, 1, 0)) = \langle (1, 1, 0, 0) \rangle$$

$$\implies N(C, v) = C'$$

- However: for all $v' \notin C' \cup C' \perp$, $C'_0(v') \neq C \cap C'$.

$$\implies N(C', v') \neq C$$

Number of Neighbors

Proposition

Let $C \subseteq \mathbb{F}_q^n$ be a k -dimensional code. Then:

- C has $\frac{(q^k - 1)(q^{n-k+1} - q)}{(q - 1)^2}$ neighbors.
- C has at most

$$\frac{q^n - |C \cup C^\perp|}{q - 1} \leq \frac{q^n - q^{\max(k, n-k)}}{q - 1}$$

associated neighbors with respect to some $v \in \mathbb{F}_q^n \setminus (C \cup C^\perp)$.

Number of Neighbors

Proposition

Let $C \subseteq \mathbb{F}_q^n$ be a k -dimensional code. Then:

- C has $\frac{(q^k - 1)(q^{n-k+1} - q)}{(q - 1)^2}$ neighbors.
- C has at most

$$\frac{q^n - |C \cup C^\perp|}{q - 1} \leq \frac{q^n - q^{\max(k, n-k)}}{q - 1}$$

associated neighbors with respect to some $v \in \mathbb{F}_q^n \setminus (C \cup C^\perp)$.

Note:

$$\frac{q^n - q^{\max(k, n-k)}}{q - 1} < \frac{(q^k - 1)(q^{n-k+1} - q)}{(q - 1)^2}$$

Duality of Neighbors

Proposition

- 1 C and C' are neighbors $\iff C^\perp$ and C'^\perp are neighbors.
- 2 C' is an associated neighbor of C $\iff C^\perp$ is an associated neighbor of C'^\perp .

If

$$C' = N(C, v)$$

then

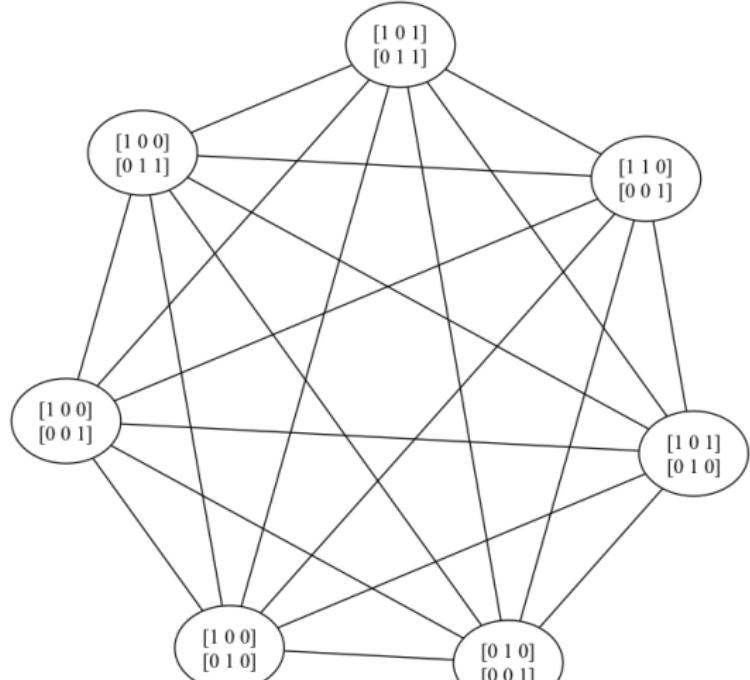
$$C^\perp = N(C'^\perp, u - v)$$

for some $u \in C \setminus C_0(v)$ with $u - v \in C^\perp \setminus C'^\perp$.

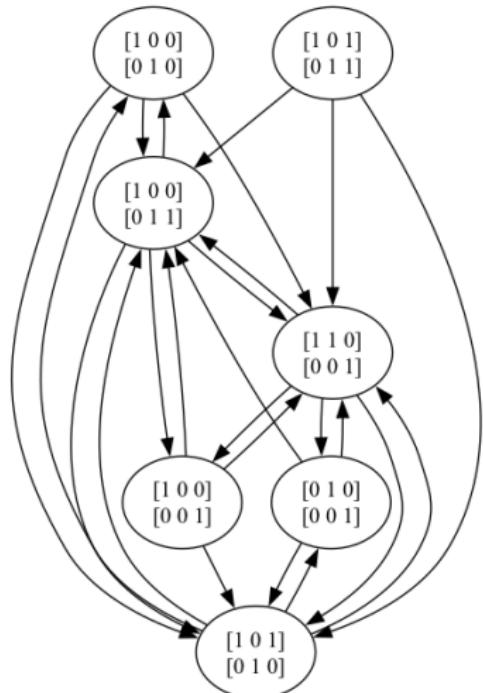
Neighborship as a Graph

- Neighborship relations between codes can be modeled as a graph.
- Each node in the graph represents a code (e.g., C , C').
- An edge between two nodes indicates that the corresponding codes are neighbors.
- Since general neighborship is symmetric, the corresponding graph is undirected. For associated neighborship we need a directed graph.
- This representation helps visualize relationships between codes, allowing for easier analysis and exploration of code properties.

Example in \mathbb{F}_2^3

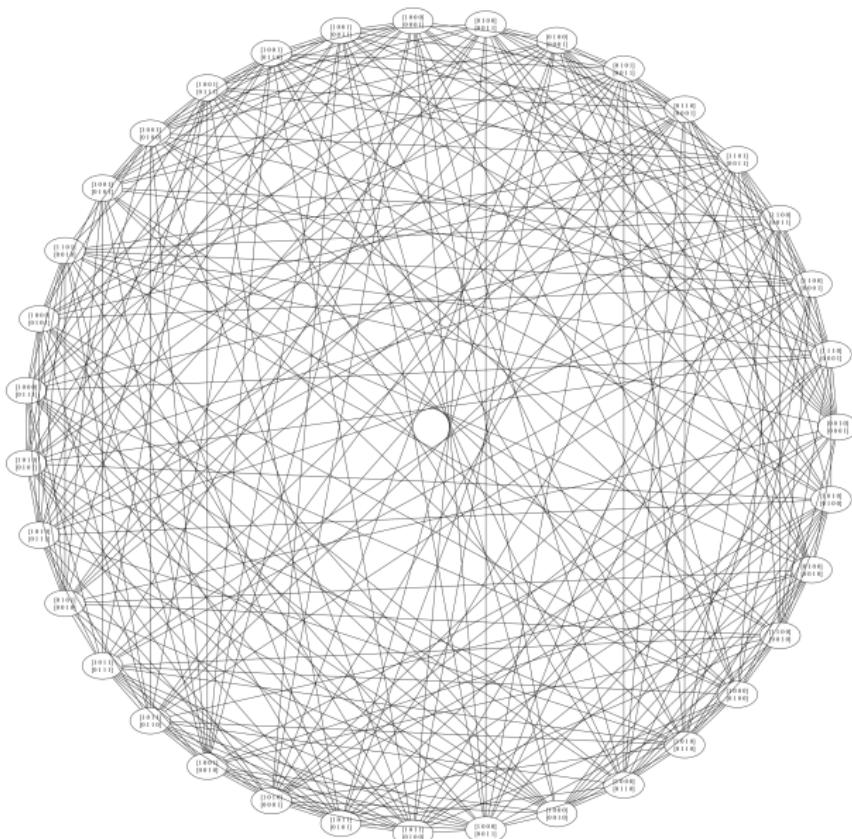


neighbors

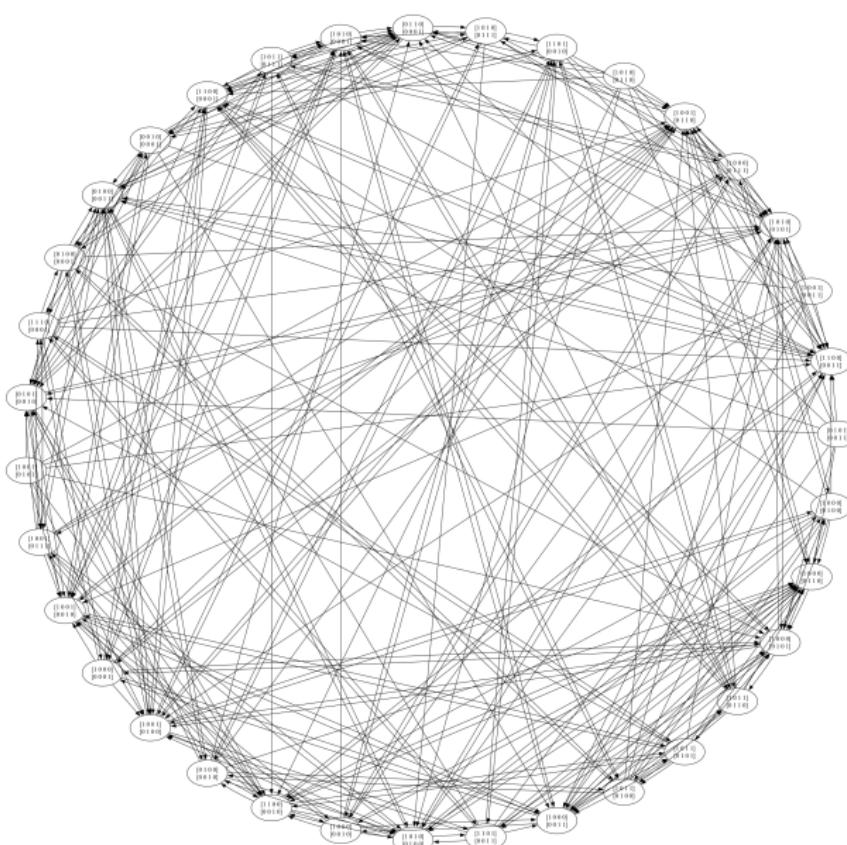


associated neighbors

Example: Neighbors in \mathbb{F}_2^4



Example: Associated Neighbors in \mathbb{F}_2^4



Introduction to LCD Codes

Neighbors of Linear Codes

Neighbors of LCD Codes

Neighbor Graphs

Summary and Conclusions

LCD Neighbors of LCD Codes

Theorem

Let $C \subseteq \mathbb{F}_q^n$ be a k -dimensional LCD code. Then C has

$$\begin{cases} \frac{q-1}{q}N - \left(\frac{-1}{q}\right)^{n/2} q^{n/2-1} & \text{if } q \text{ is odd, } n \text{ is even, and } k \text{ is odd,} \\ \frac{q-1}{q}N & \text{otherwise,} \end{cases}$$

neighbors that are LCD, where $N := \frac{(q^k-1)(q^{n-k+1}-q)}{(q-1)^2}$ is the overall number of neighbors.

Corollary

- For $q = 2$, exactly half of the neighbors of any LCD code are LCD themselves.
- As q grows, the fraction of LCD neighbors approaches 1.

Symmetry of Associated Neighborship for LCD Codes

Theorem

If C and C' are neighbors and LCD, then C is an associated neighbor to C' if and only if C' is associated to C .

— — — Or — — —

Let C be an $[n, k]_q$ LCD code, let $v \in \mathbb{F}_q^n \setminus (C \cup C^\perp)$, and let $C' = N(C, v)$ also be an LCD code. Then $\exists v' \in \mathbb{F}_q^n \setminus (C' \cup C'^\perp)$ such that $C = N(C', v')$.

The number of associated neighbors is not constant, it depends on the code.

Introduction to LCD Codes

Neighbors of Linear Codes

Neighbors of LCD Codes

Neighbor Graphs

Summary and Conclusions

The Neighbor Graph of LCD Codes

Theorem

The undirected graph of LCD neighbors of dimension k in \mathbb{F}_q^n :

- $|V| \approx q^{\lfloor \frac{k(n-k)}{2} \rfloor} \left[\begin{bmatrix} \lfloor \frac{n}{2} \rfloor \\ \lfloor \frac{k}{2} \rfloor \end{bmatrix}_{q^2} \right]$

1

- $|E| = \frac{1}{2}|V| \cdot \delta$
- The graph is regular of degree

$$\delta := \begin{cases} \frac{q-1}{q}N - \left(\frac{-1}{q}\right)^{n/2} q^{n/2-1} & \text{if } q \text{ is odd, } n \text{ is even, and } k \text{ is odd,} \\ \frac{q-1}{q}N & \text{otherwise.} \end{cases}$$

- It is generally (for non-trivial $1 < k < n - 1$)
 - not strongly nor distance-regular
 - not edge-transitive,
 - hence not symmetric.

¹The exact formula depends on the parities of q, k and n .

Vertex-Transitivity

Theorem

If $q = 2$, the LCD neighbor graph is vertex-transitive if and only if n is even and k is odd. If q is odd, the LCD neighbor graph is vertex-transitive only if n is even and k is odd.

Proof idea:

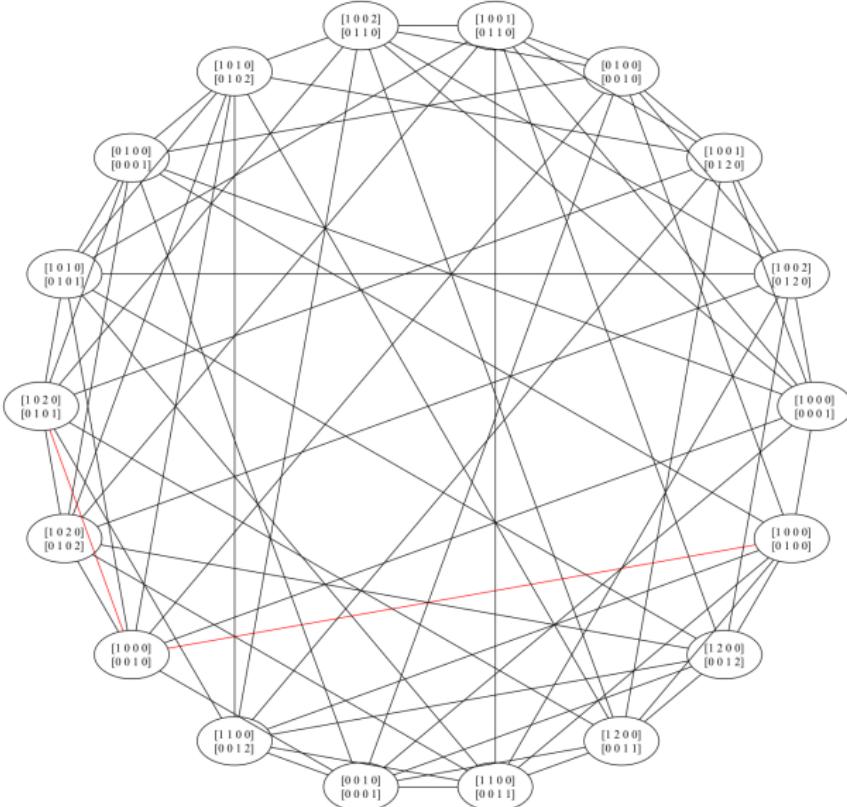
- For $q = 2, n$ is even and k is odd, $O(n, q)$ is transitive.
- In other cases, the orthogonal group splits $LCD[n, k]_q$ into several orbits of different cardinalities.

Connectedness and Diameter

Theorem

The $[n, k]_q$ LCD neighbor graph is connected and for odd q has diameter $\min(k, n - k)$.

Example: Connectedness and Diameter



Example: Connectedness and Diameter

$$C_0 : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad C_1 : \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \quad C_2 : \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 & 2 \\ 2 & 2 & 2 & 1 \\ 1 & 2 & 2 & 2 \\ 2 & 1 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

The Associated Neighbor Graph of LCD Codes

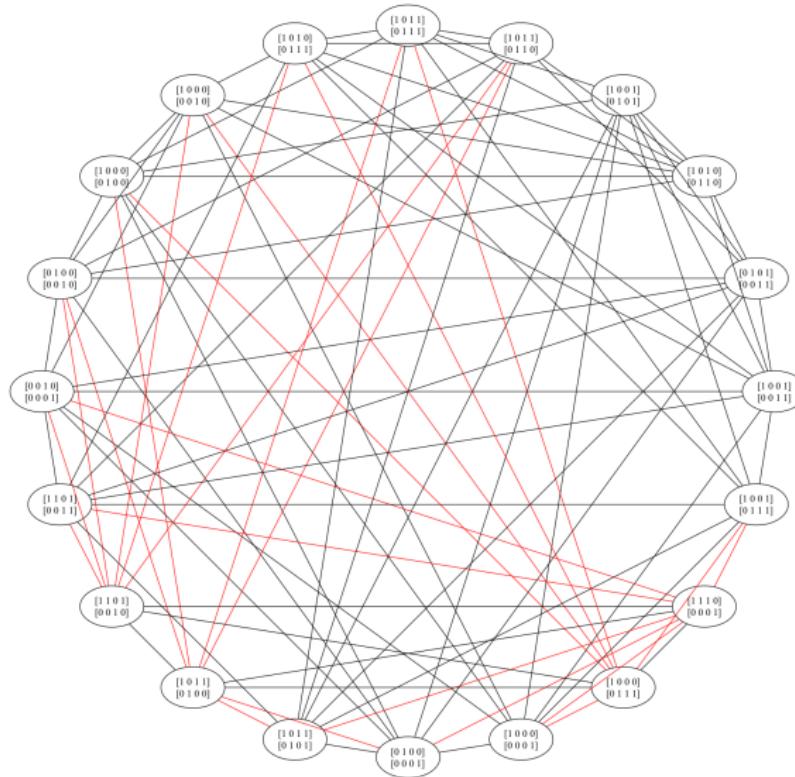
Remember: The graph can be represented as an undirected graph, by collapsing all pairs of directed edges with the same two vertices.

Theorem

The graph of LCD associated neighbors of dimension k in \mathbb{F}_q^n :

- $|V|$ as before
- It is generally (for non-trivial $1 < k < n - 1$)
 - not regular,
 - not vertex-transitive,
 - not edge-transitive,

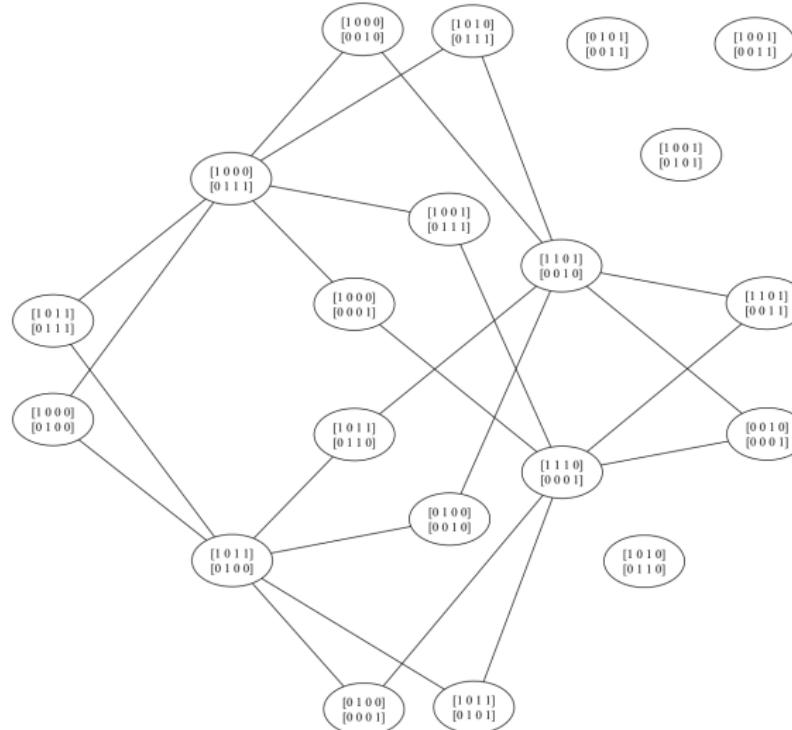
LCD Neighbor Graph in \mathbb{F}_2^4



— non-associated neighbors

— associated neighbors

LCD Associated Neighbor Graph in \mathbb{F}_2^4



Introduction to LCD Codes

Neighbors of Linear Codes

Neighbors of LCD Codes

Neighbor Graphs

Summary and Conclusions

Summary and Outlook

- LCD codes have many applications in coding theory and cryptography.
- Open problems include finding good codes for $q = 2, 3$ and classifying them. \implies tackle with LCD neighbor graphs!

Summary and Outlook

- LCD codes have many applications in coding theory and cryptography.
- Open problems include finding good codes for $q = 2, 3$ and classifying them. \implies tackle with LCD neighbor graphs!
- Associated neighbors are easy to compute and define a subgraph of the neighbor graph.

Summary and Outlook

- LCD codes have many applications in coding theory and cryptography.
- Open problems include finding good codes for $q = 2, 3$ and classifying them. \implies tackle with LCD neighbor graphs!
- Associated neighbors are easy to compute and define a subgraph of the neighbor graph.
- **Main results:** The $[n, k]_q$ LCD neighbor graph
 - is regular and connected
 - has diameter $\min\{k, n - k\}$ for odd q and girth 3.

The associated neighbor graph is undirected (in the general case) and otherwise not very structured.

Summary and Outlook

- LCD codes have many applications in coding theory and cryptography.
- Open problems include finding good codes for $q = 2, 3$ and classifying them. \implies tackle with LCD neighbor graphs!
- Associated neighbors are easy to compute and define a subgraph of the neighbor graph.
- **Main results:** The $[n, k]_q$ LCD neighbor graph
 - is regular and connected
 - has diameter $\min\{k, n - k\}$ for odd q and girth 3.

The associated neighbor graph is undirected (in the general case) and otherwise not very structured.

- **Ongoing work:** Count triangles, determine $|E|$ in associated neighbor graph, use cliques for classification, use Hermitian inner product, etc.

Summary and Outlook

- LCD codes have many applications in coding theory and cryptography.
- Open problems include finding good codes for $q = 2, 3$ and classifying them. \implies tackle with LCD neighbor graphs!
- Associated neighbors are easy to compute and define a subgraph of the neighbor graph.
- **Main results:** The $[n, k]_q$ LCD neighbor graph
 - is regular and connected
 - has diameter $\min\{k, n - k\}$ for odd q and girth 3.

The associated neighbor graph is undirected (in the general case) and otherwise not very structured.

- **Ongoing work:** Count triangles, determine $|E|$ in associated neighbor graph, use cliques for classification, use Hermitian inner product, etc.

Thank you for your attention!
Questions? – Comments?