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A binary d-code is a subset of {0,1}" such that any two
distinct elements differ in at least d positions.

How large can a code be? (1940s)
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All these upper bounds co-
0.6

me from a linear program
whose optimal solution is

unknown.

Gilbert-Varshamov bound (1952)
MRRW bound (1977)
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Design theory

A t-design is a collection Y of n-subsets of a
v-set V such that each t-subset of V' lies in

exactly A members of Y.

A t-Steiner system is a t-design with A = 1.

Do t-designs exist for all t7 (mid 19th century)
Teirlinck 1987
A t-design of (t + 1)-sets exists for all t.

Do t-Steiner systems exist for all t? (mid 19th century)
Keevash 2014, Glock-Kihn-Lo-Osthus 2016
A t-Steiner system exists if v is large enough and some natural

divisibility conditions are satisfied.
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Extremal combinatorics

How large can an intersecting family of n-subsets of a v-set be?

Erdos-Ko-Rado 1961

For v > 2n, the size of an intersecting family of n-subsets of a
v-set is at most (Z:})

Wilson 1984

For v sufficiently large compared to t, the size of a

t-intersecting family of n-subsets of a v-set is at most (;:;)
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Binary codes Constant-weight codes
n-tuples over {0, 1} n-subsets of a v-set
Rank-metric codes Subspace codes

m X n matrices over I, n-subspaces of Fy

» symmetric matrices
» alternating matrices .

» Hermitian matrices
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Polar spaces

TS T, ‘
X — X1X3 + XoXg S ®
Compute all the subspaces ‘

of 3 on which f vanishes.

Take a finite vector space V over [F, and a nondegenerate
form f. A polar space consists of all the subspaces of V on

which f vanishes.

The maximal subspaces have the same dimension, called the

rank of the polar space.



The six families of polar spaces

Up to isomorphism, there are six polar spaces of rank n.

form

name type
Hermitian Hermitian 2A,, 4
Hermitian Hermitian 2A,,
alternating symplectic C,
quadratic hyperbolic D,
quadratic parabolic B,
quadratic elliptic D,




Bipartite halves of D,

Pl e—)

[ s ——— ]

The hyperbolic Bipartite halves %DQ

polar space D,
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A d-code Y in Fy is a set of n-subspaces of [y such that
n—dim(xNy)>d for all distinct x,y € Y.

Singleton bound (Wang-Xing-Safavi-Naini 2003)
Every d-code Y in Ty satisfies

Y| < [”“V’“L.

n
n—d+1 q

This bound is sharp up to a constant factor.

This solves the coding problem asymptotically for these codes.
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Codes in polar spaces

A d-code Y in a polar space P of rank n is a set of n-spaces
of P such that n — dim(x Ny) > d for all distinct x,y € Y.

Joint with Kai-Uwe Schmidt:
Can we get bounds and con-
structions for codes in polar

spaces? Yes.

]F; 2A2n—1 %Dm
b g —q q°

c g -1 1/qorg
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Bounds

Let X be the set of n-spaces in F?, 2A,, 1, OF %Dm.

Theorem (Schmidt-W. 2023)
Every d-code Y in X with 1 < d < n (odd d for 2Az,_1)
satisfies s ,
gb® —1
Y| <|X
Vi< ot
A similar bound holds for even d in 2A,, 1.

This is the Singleton bound in case of [Fy.

Corollary (Schmidt-W. 2023)

The bounds in 2A,, ; and %Dm imply bounds for codes in all

other polar spaces.
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Are the bounds sharp?

Theorem (Schmidt-W. 2023)

The bounds are sharp up to a constant factor in the
® Hermitian polar space 2A,, 1 for odd d,
® symplectic polar space C, for odd d,
® parabolic polar space B, for odd d and even g,

® hyperbolic polar space D, except possibly for even n and
odd q.
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Are the bounds sharp?

Theorem (Schmidt-W. 2023)
The bounds are sharp up to a constant factor in the
® Hermitian polar space 2A,, 1 for odd d,
® symplectic polar space C, for odd d,
® parabolic polar space B, for odd d and even g,
® hyperbolic polar space D, except possibly for even n and

odd q.

This solves the coding problem in these cases asymptotically.

Remaining bounds are met up to a small power of g".
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A= J—-1 J—-1
J—=1 J—-1

0o /
A, =
(AlAl)x,y = #Z with (Al)x,z =1 and (Al)z,y =1
4 ifx=y

- 2 If (Al)x,y =1
4- If (A2)X7y - ].
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A distance-regular graph

A= J—1 J—-1
J—1 J—1
0 |/

A, —

(AlAl)x,y = #Z with (Al)x,z =1 and (Al)z,y =1

4 ifx=y
=92 if (A)xy =1
4 if (A)x, =1
AlAL=4-14+2- A +4- A
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A distance-regular graph

PR EY
J—1 J=1
0 !

A, =

The matrices /, Ay, A, generate a commutative algebra:

A1A2 - A1
A = 4] +2A; + 4A;
A2 =1

12
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Distance-regular graphs

Take a graph G of diameter n with a vertex set X and

adjacency matrix A;.
Let A; be the adjacency matrix of the distance-i graph.

The graph G is distance-regular if the vector space generated

by Ao =1, Aq,..., A, over R is a matrix algebra.

This algebra is called the Bose-Mesner algebra.

13



Classical examples

Johnson graph J(n, v)
for (n,v) = (2,4)

{1,2}
{2,4} {2,3}

{1,4} {1,3}

{3,4}

14



Classical examples

Johnson graph J(n, v)
for (n,v) = (2,4)

{1,2}

{2,4} {2,3}

1,4} {1,3}
3,4}

Path distance in the graph:
p(x,y) =n—IxNy|

14



Classical examples

Johnson graph J(n, v) Hamming graph H(n, q)
for (n,v) = (2,4) for (n,q) = (3,2)
{1,2}
2.4 2.3}
{1,4} {1,3}
{34}

Path distance in the graph:

p(x,y)=n—[xNy|
14



Classical examples

Johnson graph J(n, v) Hamming graph H(n, q)
for (n,v) = (2,4) for (n,q) = (3,2)
{1,2}
{2,4} {2,3}
{1,4} {1,3}
{34}
Path distance in the graph:
px,y) =n—|xNy| p(x,y) = #{i | xi # yi}

14
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The Bose-Mesner algebra

. is commutative. Therefore all its matrices can be
simultaneously diagonalized. There exists a basis of
idempotent matrices Eg, Ey, ..., E,.

Change of basis:

A=Y Pi(k)E Ei = X] > Q(i)A;
k=0

i=0

The number P;(k) is an eigenvalue of A; and the column

space of Ej is the corresponding eigenspace V.

So, Qk(/) corresponds to V.

15
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for some P; € R|[z] of degree i and some x, € R.
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Polynomial structures

Every distance-regular graph is P-polynomial, that is
Pi(k) = Pi(x«)

for some P; € R|[z] of degree i and some x, € R.

A distance-regular graph is Q-polynomial if
Qu(i) = Qu(z)

for some Qx € R[z] of degree k and some z; € R. Since Qx

corresponds to V/, this imposes an ordering on Vg, V4, ...

V.

16
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Examples

Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials

Polar space graph
X is the set of n-spaces in a polar space
| of rank n and p(x,y) = n—dim(x Ny).

This gives a Q-polynomial distance-
regular graph.

Here, g-Krawtchouk polynomials occur.

17
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vertex set X.
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Codes in distance-regular graphs

Let p be the path distance in a distance-regular graph on a

vertex set X.
A subset Y of X is called a d-code if

p(x,y) > d for all distinct x,y € Y.

How can we derive upper bounds on such codes?
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Let's try

Which polynomial F?

F(z)=c ﬁ(z —z) with c € R.

i=d
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Which polynomial F?
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Which polynomial F?
Let's try
z)=c][(z—z) withceR.
This gives a bound for d-codes Y in polar spaces of rank n:
|Y|§H1+q" ) (%)

Numerical comparison to the LP optimum shows:

In most cases, the bound (x) is not optimal!

20



Two special polar spaces

1

P )

The polar space D, Bipartite halves %Dz

21



Two special polar spaces

1

The polar space D, Bipartite halves 1D,

21



Two special polar spaces

1

The polar space D, Bipartite halves 1D,
—

21



Two special polar spaces

1

The polar space D, Bipartite halves %Dz
—

Each %Dm gives a Q-polynomial distance-regular graph.

21



Two special polar spaces

1

The polar space D, Bipartite halves %Dz

o

<

Each %Dm gives a Q-polynomial distance-regular graph.

The numbers Qx(7) come from g-Hahn polynomials.
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Two special polar spaces

The graph arising from the Hermitian polar space 2A,. 1 has
two orderings of the eigenspaces:

[ VN VR V. g-Krawtchouk polynomials

» WV, WV, VWV, - g-Hahn polynomials

22
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Q-numbers of F, Ay, 1, and :Dp,

FY A

q

Dr,

1
2

b q —q q°
c g~ -1 1/qoderq

Their Q-numbers come from g-Hahn polynomials:
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Q-numbers of F, Ay, 1, and 1D,

F; 2A2n—1 %Dm
b q —q q°
c g~ -1 1/qoderq

Their Q-numbers come from g-Hahn polynomials:

k

Qk(i) = Uk Z(—l)fb() —j(i+k—n—1) H m Hl 1_ (Cqb2n k— 5)

/=0 = (cbr2)™!

Delsarte’s LP with []7_,(z — z;)) and the g-Hahn polynomials

instead of the g-Krawtchouk polynomials gives our bounds.
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Linear programming optimum

Theorem (Schmidt-W. 2023)

Our bound for d-codes in a polar space is precisely the

optimum of Delsarte's linear program for the
® Hermitian polar space 2A,, 4,
® parabolic polar space B, for odd d,
® symplectic polar space C, for odd d,

® hyperbolic polar space D, for even d.
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l-intersecting.
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Intersecting sets

A subset Y of n-spaces in a polar space of rank n is called
t-intersecting if any two members of Y have an intersection of
dimension at least t.

Example. The set of all n-spaces through a fixed 1-space is
l-intersecting.

How large can a t-intersecting set be?
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History

1-intersecting

» Stanton (1980)

Upper bounds via Hoffman bound.

» Pepe-Storme-Vanhove (2011)

Classification of largest intersecting sets, except in 2A,, 4 for
odd n > 5.

» lhringer-Metsch (2012), Metsch (2016)

Improved bounds for 2A5,_1 with odd n > 5.

t-intersecting with t > 1
» |hringer-Metsch (2018)
Classification of largest t-intersecting sets for n 3 3t. Also
upper bounds via Hoffman bound for all g, n, t.
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Erdos-Ko-Rado-type bounds

Corollary (Schmidt-W. 2025+)
A t-intersecting set Y with 1 < t < n satisfies

RAP~S

n(n—t)

q

q
qn(n—t)/2

n(n—t—1)+1

q(n+1)(nft)/2

q
q(n—l)(n—t—l)/2

n(n—t—1)/2

in 2A,, 1 for even n — t,
in 2A,, 1 for odd n —t,

in B, or C, for odd n and t,

in B, or C, for even n and t,

in D, for odd n and even t,

in D, for even n and odd t.
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Erdos-Ko-Rado-type bounds

Corollary (Schmidt-W. 2025+)
A t-intersecting set Y with 1 < t < n satisfies

g"(n—1) in 2A,, 1 for even n — t,
gnin—t=1)+1 in 2A,, 1 for odd n —t,
< gn(n—1/2 in B, or C, for odd n and t,
| glrtD(n—t)/2 in B, or C, for even n and t,
gn(n—t-1)/2 in D, for odd n and even t,
gr=D(—=t=1/2 in D, for even n and odd t.

They improve the bounds from lhringer-Metsch (2018), but

are still far away from the largest known examples.
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Proof

A t-intersecting set Y in a polar space of rank n satisfies
p(x,y) =n—dim(xNy)<n—t

forall x,y € Y.
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Proof

A t-intersecting set Y in a polar space of rank n satisfies
p(x,y) =n—dim(xNy)<n—t

forall x,y € Y.

Lemma (Tarnanen 1999)

Let (X, (A;)) be a distance-regular graph of diameter n with
path distance p. If Y is a subset of X such that
p(x,y) < n—tforall x,y €Y, then

X
YN < ———.
M LP(n—t+1)

LP(n—t + 1) is the LP optimum for (n — t + 1)-codes.
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Designs over [,

A t-(v, k,\) design over I, is a collection Y of k-subspaces
of Fy such that each t-subspace of Fy lies in exactly A

members of Y. For A =1, it's called t-Steiner system over [F,.

Do t-designs over [ exist for all t?
Fazeli-Lovett-Vardy 2014: A t-(v, k, \) design over F, exists,
provided that v is large enough and k > 12(t + 1).

Do t-Steiner systems over [, exist for all t?
Keevash-Sah-Sawhney 2022: A t-Steiner system over F,
exists, provided that v is large enough and some natural
divisibility conditions are satisfied.

Both results use probabilistic methods.
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Steiner systems in polar spaces

A t-Steiner system in a polar space P of rank nis a
collection Y of n-spaces in P such that each t-space of P lies

in exactly one member of Y.
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Steiner systems in polar spaces

A t-Steiner system in a polar space P of rank nis a
collection Y of n-spaces in P such that each t-space of P lies

in exactly one member of Y.

® = [ ) U o0 0

The bipartite halves of D, are (n — 1)-Steiner systems in D,.
1-Steiner systems are spreads in polar spaces.

Except for %D,, and spreads in some polar spaces, no other
nontrivial Steiner systems are known.
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Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space P of rank n contains a t-Steiner
system with 1 < t < n. Then, one of the following holds
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Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space P of rank n contains a t-Steiner
system with 1 < t < n. Then, one of the following holds

(1) t=n—1and P = D,,

(2) t=n—1and P =2A,, or °D,1 for g > 3,

(3) t =2and P =2?Ay, or D, for odd n.

Proof: A t-Steiner system is an (n — t + 1)-code whose size is
larger than our bound in almost all cases.

Conjecture

1D, are the only nontrivial t-Steiner systems with t > 1.
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Designs in polar spaces

A t-(n, k, \) design in a polar space P of rank nis a
collection Y of k-spaces in P such that each t-space of P lies

in exactly A\ members of Y.
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Designs in polar spaces

A t-(n, k, \) design in a polar space P of rank nis a
collection Y of k-spaces in P such that each t-space of P lies

in exactly A\ members of Y.

Do t-designs in polar spaces exist for all t?
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Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)
There are 2-designs in the parabolic polar space Bs for

qg =3,5,7,11. There exists a 2-design in the elliptic polar
space 2D, for q = 2.
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Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)
There are 2-designs in the parabolic polar space Bs for

qg =3,5,7,11. There exists a 2-design in the elliptic polar
space 2D, for q = 2.

Kiermaier-Schmidt-Wassermann (2025)

They found many 2-(n, k, \) designs in nearly all polar spaces
(not the Hermitians) of small rank n with 2 < k < n and
qg=23.

Existence for all t > 37
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Existence of designs

Theorem (W. 2025)

Let P be a polar space of rank n. For all positive integers t
and k with k > 10.5t and for n large enough with n > k2,
there exists a t-(n, k, A) design in P whose size is at

most g21"t.
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Existence of designs

Theorem (W. 2025)

Let P be a polar space of rank n. For all positive integers t
and k with k > 10.5t and for n large enough with n > k2,
there exists a t-(n, k, A) design in P whose size is at

most g21"t.

The proof is nonconstructive, based on a probabilistic method
(by Kuperberg-Lovett-Peled, 2017).
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Let’s recap

Coding Theory

Bounds on codes

[
Classification of Linear programming
Steiner systems \ optimum
Polar
spaces
_ Extremal
Design Theory Combinatorics
Existence of @ o o ® Bounds on
designs 2 intersecting sets

Many open problems remain.
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