
Codes and Designs
in Polar Spaces

Charlene Weiß

University of Amsterdam



Coding theory
A binary d-code is a subset of {0, 1}n such that any two
distinct elements differ in at least d positions.

How large can a code be? (1940s)

0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

d
n

lim
n→∞

log2 A(n,d)
n

All these upper bounds co-
me from a linear program
whose optimal solution is
unknown.

Gilbert-Varshamov bound (1952)
MRRW bound (1977)
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Design theory

A t-design is a collection Y of n-subsets of a
v -set V such that each t-subset of V lies in
exactly λ members of Y .

A t-Steiner system is a t-design with λ = 1.

Do t-designs exist for all t? (mid 19th century)
Teirlinck 1987
A t-design of (t + 1)-sets exists for all t.

Do t-Steiner systems exist for all t? (mid 19th century)
Keevash 2014, Glock-Kühn-Lo-Osthus 2016
A t-Steiner system exists if v is large enough and some natural
divisibility conditions are satisfied.
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Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



Extremal combinatorics

How large can an intersecting family of n-subsets of a v -set be?

Erdős-Ko-Rado 1961
For v ≥ 2n, the size of an intersecting family of n-subsets of a
v -set is at most

(
v−1
n−1

)
.

Wilson 1984
For v sufficiently large compared to t, the size of a
t-intersecting family of n-subsets of a v -set is at most

(
v−t
n−t

)
.

3



q-analog problems

Binary codes Constant-weight codes
n-tuples over {0, 1} n-subsets of a v -set

Rank-metric codes Subspace codes
m × n matrices over Fq n-subspaces of Fv

q

▶ symmetric matrices

▶ alternating matrices

▶ Hermitian matrices

?
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Polar spaces

f : F4
2 → F2

x 7→ x1x3 + x2x4

Compute all the subspaces
of F4

2 on which f vanishes.

Take a finite vector space V over Fq and a nondegenerate
form f . A polar space consists of all the subspaces of V on
which f vanishes.

The maximal subspaces have the same dimension, called the
rank of the polar space.
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The six families of polar spaces
Up to isomorphism, there are six polar spaces of rank n.

form name type

Hermitian Hermitian 2A2n−1

Hermitian Hermitian 2A2n

alternating symplectic Cn

quadratic hyperbolic Dn

quadratic parabolic Bn

quadratic elliptic 2Dn+1

6



Bipartite halves of Dn

= ∪

The hyperbolic Bipartite halves 1
2D2

polar space D2

7



Subspace codes

A d-code Y in Fv
q is a set of n-subspaces of Fv

q such that

n − dim(x ∩ y) ≥ d for all distinct x , y ∈ Y .

Singleton bound (Wang-Xing-Safavi-Naini 2003)
Every d-code Y in Fv

q satisfies

|Y | ≤

[
v

n−d+1

]
q[

n
n−d+1

]
q

.

This bound is sharp up to a constant factor.
This solves the coding problem asymptotically for these codes.
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Codes in polar spaces

A d-code Y in a polar space P of rank n is a set of n-spaces
of P such that n − dim(x ∩ y) ≥ d for all distinct x , y ∈ Y .

Joint with Kai-Uwe Schmidt:
Can we get bounds and con-
structions for codes in polar
spaces? Yes.

Fv
q

2A2n−1
1
2Dm

b q −q q2

c qv−2n −1 1/q or q

9
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Bounds
Let X be the set of n-spaces in Fv

q, 2A2n−1, or 1
2Dm.

Theorem (Schmidt-W. 2023)
Every d-code Y in X with 1 ≤ d ≤ n (odd d for 2A2n−1)
satisfies

|Y | ≤ |X |
d−2∏
ℓ=0

qbℓ − 1
qcbn+ℓ − 1 .

A similar bound holds for even d in 2A2n−1.
This is the Singleton bound in case of Fv

q.

Corollary (Schmidt-W. 2023)
The bounds in 2A2n−1 and 1

2Dm imply bounds for codes in all
other polar spaces.
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Are the bounds sharp?

Theorem (Schmidt-W. 2023)
The bounds are sharp up to a constant factor in the

• Hermitian polar space 2A2n−1 for odd d ,
• symplectic polar space Cn for odd d ,
• parabolic polar space Bn for odd d and even q,
• hyperbolic polar space Dn except possibly for even n and

odd q.

This solves the coding problem in these cases asymptotically.

Remaining bounds are met up to a small power of qn.
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A distance-regular graph

A1 =
J − I J − I

J − I J − I


A2 =

0 I
I 0


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A1A1 = 4 · I + 2 · A1 + 4 · A2
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A distance-regular graph

A1 =
J − I J − I

J − I J − I


A2 =

0 I
I 0


The matrices I , A1, A2 generate a commutative algebra:

A1A2 = A1

A2
1 = 4I + 2A1 + 4A2

A2
2 = I .

12



Distance-regular graphs

Take a graph G of diameter n with a vertex set X and
adjacency matrix A1.

Let Ai be the adjacency matrix of the distance-i graph.

The graph G is distance-regular if the vector space generated
by A0 = I , A1, . . . , An over R is a matrix algebra.

This algebra is called the Bose-Mesner algebra.

13
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Classical examples
Johnson graph J(n, v)

Hamming graph H(n, q)

for (n, v) = (2, 4)

for (n, q) = (3, 2)
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Path distance in the graph:
ρ(x , y) = n − |x ∩ y | ρ(x , y) = #{i | xi ̸= yi}
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The Bose-Mesner algebra

. . . is commutative.

Therefore all its matrices can be
simultaneously diagonalized. There exists a basis of
idempotent matrices E0, E1, . . . , En.

Change of basis:

Ai =
n∑

k=0
Pi(k)Ek Ek = 1

|X |

n∑
i=0

Qk(i)Ai

The number Pi(k) is an eigenvalue of Ai and the column
space of Ek is the corresponding eigenspace Vk .

So, Qk(i) corresponds to Vk .
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Polynomial structures

Every distance-regular graph is P-polynomial, that is

Pi(k) = Pi(xk)

for some Pi ∈ R[z ] of degree i and some xk ∈ R.

A distance-regular graph is Q-polynomial if

Qk(i) = Qk(zi)

for some Qk ∈ R[z ] of degree k and some zi ∈ R. Since Qk

corresponds to Vk , this imposes an ordering on V0, V1, . . . , Vn.
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Examples

Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials

Polar space graph
X is the set of n-spaces in a polar space
of rank n and ρ(x , y) = n − dim(x ∩ y).

This gives a Q-polynomial distance-
regular graph.

Here, q-Krawtchouk polynomials occur.
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Codes in distance-regular graphs

Let ρ be the path distance in a distance-regular graph on a
vertex set X .

A subset Y of X is called a d-code if

ρ(x , y) ≥ d for all distinct x , y ∈ Y .

How can we derive upper bounds on such codes?

18
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The magic of linear programming
Theorem (Delsarte, 1973)
Let (X , (Ai)) be a Q-polynomial distance-regular graph.

Suppose there is a polynomial F in R[z ] with

F = F0Q0 + F1Q1 + · · · + FnQn

such that Fk ≥ 0, F0 = 1 and F (zi) ≤ 0 for all i = d , . . . , n.
Then every d-code Y satisfies

|Y | ≤ F (z0).

The smallest bound that can be obtained in this way is called
the linear programming (LP) optimum.
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Which polynomial F?

Let’s try

F (z) = c
n∏

i=d
(z − zi) with c ∈ R.

This gives a bound for d-codes Y in polar spaces of rank n:

|Y | ≤
n−d∏
i=0

(1 + qn−i+e). (∗)

Numerical comparison to the LP optimum shows:

In most cases, the bound (∗) is not optimal!
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Two special polar spaces

= ∪

The polar space D2 Bipartite halves 1
2D2

−→

Each 1
2Dm gives a Q-polynomial distance-regular graph.

The numbers Qk(i) come from q-Hahn polynomials.
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Two special polar spaces

The graph arising from the Hermitian polar space 2A2n−1 has
two orderings of the eigenspaces:

▶ V0 V1 · · · Vn q-Krawtchouk polynomials

▶ V0 Vn V1 Vn−1 V2 Vn−2 · · · q-Hahn polynomials
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Q-numbers of Fv
q, 2A2n−1, and 1

2Dm

Fv
q

2A2n−1
1
2Dm

b q −q q2

c qv−2n −1 1/q oder q

Their Q-numbers come from q-Hahn polynomials:

Qk(i) = µk

k∑
j=0

(−1)jb(j
2)−j(i+k−n−1)

[
k
j

]
b

[
i
j

]
b[

n
j

]
b

j−1∏
s=0

1 − (cqb2n−k−s)−1

1 − (cbn−s)−1

Delsarte’s LP with ∏n
i=d(z − zi) and the q-Hahn polynomials

instead of the q-Krawtchouk polynomials gives our bounds.
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Linear programming optimum

Theorem (Schmidt-W. 2023)
Our bound for d-codes in a polar space is precisely the
optimum of Delsarte’s linear program for the

• Hermitian polar space 2A2n−1,
• parabolic polar space Bn for odd d ,
• symplectic polar space Cn for odd d ,
• hyperbolic polar space Dn for even d .
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Intersecting sets

A subset Y of n-spaces in a polar space of rank n is called
t-intersecting if any two members of Y have an intersection of
dimension at least t.
Example. The set of all n-spaces through a fixed 1-space is
1-intersecting.

How large can a t-intersecting set be?

25
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History
1-intersecting

▶ Stanton (1980)
Upper bounds via Hoffman bound.
▶ Pepe-Storme-Vanhove (2011)
Classification of largest intersecting sets, except in 2A2n−1 for
odd n ≥ 5.
▶ Ihringer-Metsch (2012), Metsch (2016)
Improved bounds for 2A2n−1 with odd n ≥ 5.

t-intersecting with t > 1
▶ Ihringer-Metsch (2018)
Classification of largest t-intersecting sets for n ⪅ 3t. Also
upper bounds via Hoffman bound for all q, n, t.
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Erdős-Ko-Rado-type bounds
Corollary (Schmidt-W. 2025+)
A t-intersecting set Y with 1 < t < n satisfies

|Y | ⪅



qn(n−t) in 2A2n−1 for even n − t,

qn(n−t−1)+1 in 2A2n−1 for odd n − t,

qn(n−t)/2 in Bn or Cn for odd n and t,

q(n+1)(n−t)/2 in Bn or Cn for even n and t,

qn(n−t−1)/2 in Dn for odd n and even t,

q(n−1)(n−t−1)/2 in Dn for even n and odd t.

They improve the bounds from Ihringer-Metsch (2018), but
are still far away from the largest known examples.
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Proof
A t-intersecting set Y in a polar space of rank n satisfies

ρ(x , y) = n − dim(x ∩ y) ≤ n − t

for all x , y ∈ Y .

Lemma (Tarnanen 1999)
Let (X , (Ai)) be a distance-regular graph of diameter n with
path distance ρ. If Y is a subset of X such that
ρ(x , y) ≤ n − t for all x , y ∈ Y , then

|Y | ≤ |X |
LP(n − t + 1) .

LP(n − t + 1) is the LP optimum for (n − t + 1)-codes.
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Designs over Fq

A t-(v , k , λ) design over Fq is a collection Y of k-subspaces
of Fv

q such that each t-subspace of Fv
q lies in exactly λ

members of Y . For λ = 1, it’s called t-Steiner system over Fq.

Do t-designs over Fq exist for all t?
Fazeli-Lovett-Vardy 2014: A t-(v , k , λ) design over Fq exists,
provided that v is large enough and k > 12(t + 1).

Do t-Steiner systems over Fq exist for all t?
Keevash-Sah-Sawhney 2022: A t-Steiner system over Fq

exists, provided that v is large enough and some natural
divisibility conditions are satisfied.

Both results use probabilistic methods.
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Steiner systems in polar spaces

A t-Steiner system in a polar space P of rank n is a
collection Y of n-spaces in P such that each t-space of P lies
in exactly one member of Y .

= ∪

The bipartite halves of Dn are (n − 1)-Steiner systems in Dn.
1-Steiner systems are spreads in polar spaces.

Except for 1
2Dn and spreads in some polar spaces, no other

nontrivial Steiner systems are known.
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Classification of Steiner systems

Theorem (Schmidt-W. 2023)
Suppose that a polar space P of rank n contains a t-Steiner
system with 1 < t < n. Then, one of the following holds

(1) t = n − 1 and P = Dn,

(2) t = n − 1 and P = 2A2n or 2Dn+1 for q ≥ 3,

(3) t = 2 and P = 2A2n or 2Dn+1 for odd n.

Proof: A t-Steiner system is an (n − t + 1)-code whose size is
larger than our bound in almost all cases.

Conjecture
1
2Dn are the only nontrivial t-Steiner systems with t > 1.
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Designs in polar spaces

A t-(n, k , λ) design in a polar space P of rank n is a
collection Y of k-spaces in P such that each t-space of P lies
in exactly λ members of Y .

Do t-designs in polar spaces exist for all t?
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Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)
There are 2-designs in the parabolic polar space B3 for
q = 3, 5, 7, 11. There exists a 2-design in the elliptic polar
space 2D4 for q = 2.

Kiermaier-Schmidt-Wassermann (2025)
They found many 2-(n, k , λ) designs in nearly all polar spaces
(not the Hermitians) of small rank n with 2 < k ≤ n and
q = 2, 3.

Existence for all t ≥ 3?
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Existence of designs

Theorem (W. 2025)
Let P be a polar space of rank n. For all positive integers t
and k with k > 10.5 t and for n large enough with n > k2,
there exists a t-(n, k , λ) design in P whose size is at
most q21nt .

The proof is nonconstructive, based on a probabilistic method
(by Kuperberg-Lovett-Peled, 2017).
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Many open problems remain.
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