

Codes and Designs in Polar Spaces

Charlene Weiß

University of Amsterdam

Coding theory

A **binary d -code** is a subset of $\{0, 1\}^n$ such that any two distinct elements differ in at least d positions.

Coding theory

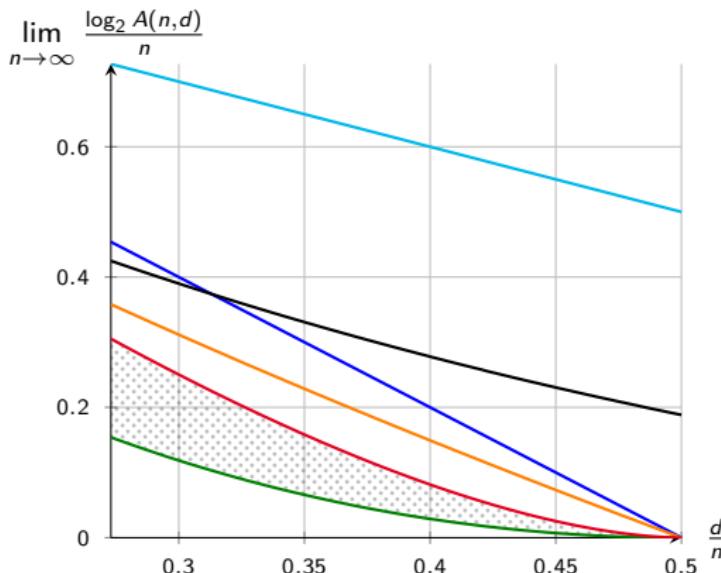
A **binary d -code** is a subset of $\{0, 1\}^n$ such that any two distinct elements differ in at least d positions.

How large can a code be? (1940s)

Coding theory

A **binary d -code** is a subset of $\{0, 1\}^n$ such that any two distinct elements differ in at least d positions.

How large can a code be? (1940s)



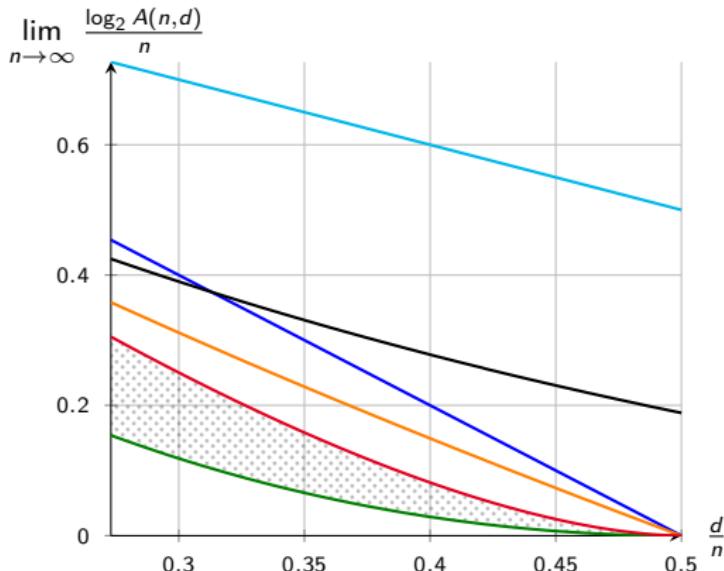
Gilbert-Varshamov bound (1952)

MRRW bound (1977)

Coding theory

A **binary d -code** is a subset of $\{0, 1\}^n$ such that any two distinct elements differ in at least d positions.

How large can a code be? (1940s)

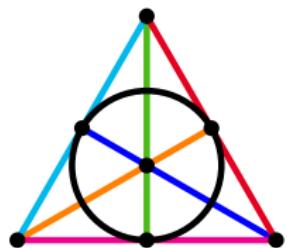


All these upper bounds come from a linear program whose optimal solution is unknown.

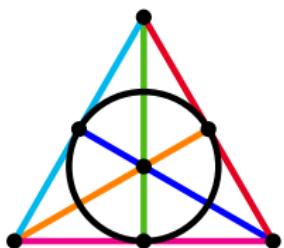
Gilbert-Varshamov bound (1952)

MRRW bound (1977)

Design theory

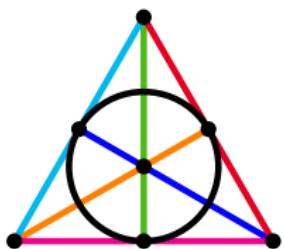


Design theory



A **t -design** is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

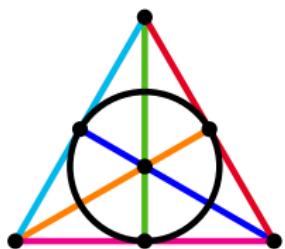
Design theory



A *t-design* is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

A *t-Steiner system* is a t -design with $\lambda = 1$.

Design theory

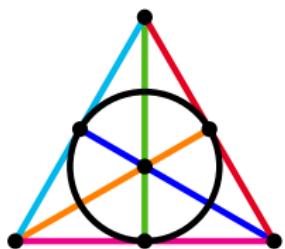


A *t-design* is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

A *t-Steiner system* is a *t*-design with $\lambda = 1$.

Do *t*-designs exist for all *t*? (mid 19th century)

Design theory



A *t*-design is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

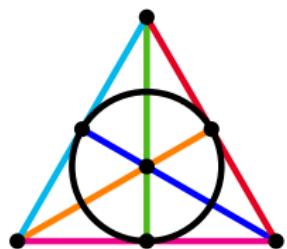
A *t*-Steiner system is a *t*-design with $\lambda = 1$.

Do *t*-designs exist for all *t*? (mid 19th century)

Teirlinck 1987

A *t*-design of $(t + 1)$ -sets exists for all *t*.

Design theory



A *t*-design is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

A *t*-Steiner system is a *t*-design with $\lambda = 1$.

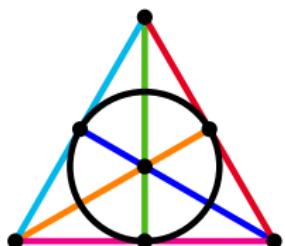
Do *t*-designs exist for all *t*? (mid 19th century)

Teirlinck 1987

A *t*-design of $(t + 1)$ -sets exists for all *t*.

Do *t*-Steiner systems exist for all *t*? (mid 19th century)

Design theory



A *t*-design is a collection Y of n -subsets of a v -set V such that each t -subset of V lies in exactly λ members of Y .

A *t*-Steiner system is a *t*-design with $\lambda = 1$.

Do *t*-designs exist for all *t*? (mid 19th century)

Teirlinck 1987

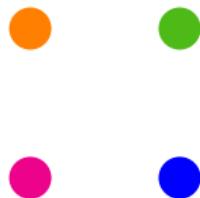
A *t*-design of $(t + 1)$ -sets exists for all *t*.

Do *t*-Steiner systems exist for all *t*? (mid 19th century)

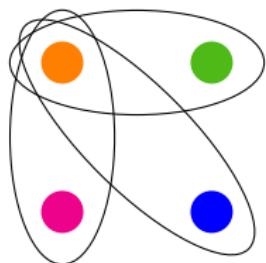
Keevash 2014, Glock-Kühn-Lo-Osthus 2016

A *t*-Steiner system exists if v is large enough and some natural divisibility conditions are satisfied.

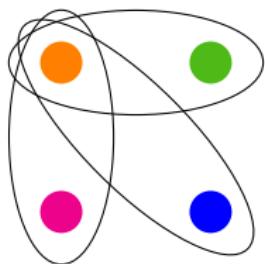
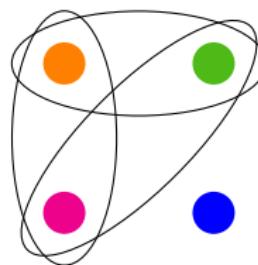
Extremal combinatorics



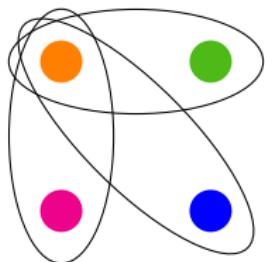
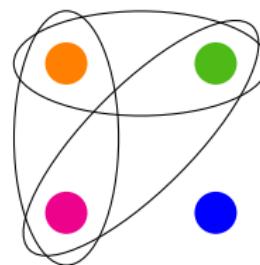
Extremal combinatorics



Extremal combinatorics

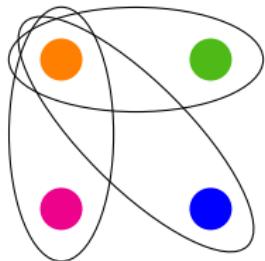
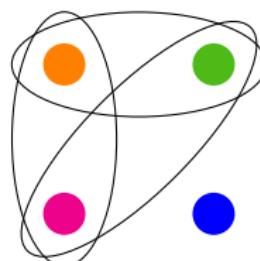


Extremal combinatorics



How large can an intersecting family of n -subsets of a v -set be?

Extremal combinatorics

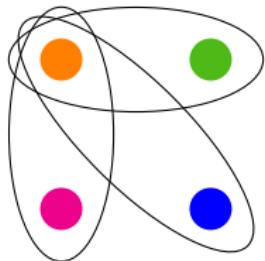
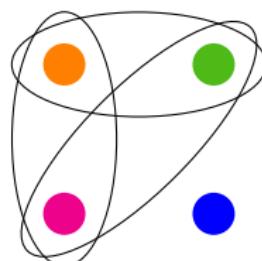


How large can an intersecting family of n -subsets of a v -set be?

Erdős-Ko-Rado 1961

For $v \geq 2n$, the size of an intersecting family of n -subsets of a v -set is at most $\binom{v-1}{n-1}$.

Extremal combinatorics



How large can an intersecting family of n -subsets of a v -set be?

Erdős-Ko-Rado 1961

For $v \geq 2n$, the size of an intersecting family of n -subsets of a v -set is at most $\binom{v-1}{n-1}$.

Wilson 1984

For v sufficiently large compared to t , the size of a t -intersecting family of n -subsets of a v -set is at most $\binom{v-t}{n-t}$.

q-analog problems

q-analog problems

Binary codes

n-tuples over $\{0, 1\}$

q -analog problems

Binary codes

n -tuples over $\{0, 1\}$

Constant-weight codes

n -subsets of a v -set

q -analog problems

Binary codes

n -tuples over $\{0, 1\}$

Constant-weight codes

n -subsets of a v -set

Subspace codes

n -subspaces of \mathbb{F}_q^v

q -analog problems

Binary codes

n -tuples over $\{0, 1\}$

Constant-weight codes

n -subsets of a v -set

Rank-metric codes

$m \times n$ matrices over \mathbb{F}_q

Subspace codes

n -subspaces of \mathbb{F}_q^v

q -analog problems

Binary codes

n -tuples over $\{0, 1\}$

Constant-weight codes

n -subsets of a v -set

Rank-metric codes

$m \times n$ matrices over \mathbb{F}_q

Subspace codes

n -subspaces of \mathbb{F}_q^v

- ▶ symmetric matrices
- ▶ alternating matrices
- ▶ Hermitian matrices

q -analog problems

Binary codes

n -tuples over $\{0, 1\}$

Constant-weight codes

n -subsets of a v -set

Rank-metric codes

$m \times n$ matrices over \mathbb{F}_q

Subspace codes

n -subspaces of \mathbb{F}_q^v

- ▶ symmetric matrices
- ▶ alternating matrices
- ▶ Hermitian matrices

?

Polar spaces

Polar spaces

$$\mathbb{F}_2^4$$

Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

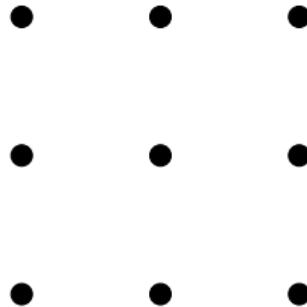
Compute all the subspaces
of \mathbb{F}_2^4 on which f vanishes.

Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Compute all the subspaces
of \mathbb{F}_2^4 on which f vanishes.

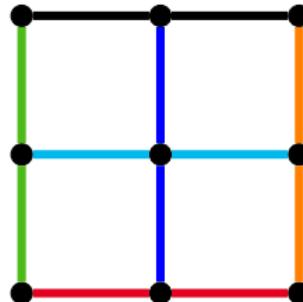


Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Compute all the subspaces
of \mathbb{F}_2^4 on which f vanishes.



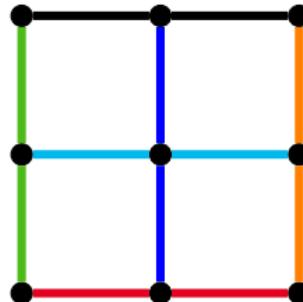
Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.

Take a finite vector space V over \mathbb{F}_q and a nondegenerate form f .

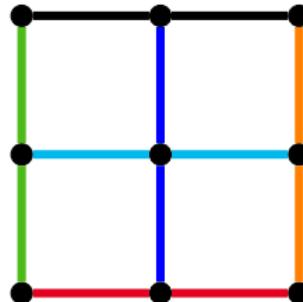


Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.



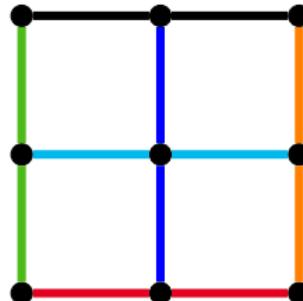
Take a finite vector space V over \mathbb{F}_q and a nondegenerate form f . A **polar space** consists of all the subspaces of V on which f vanishes.

Polar spaces

$$f: \mathbb{F}_2^4 \rightarrow \mathbb{F}_2$$

$$x \mapsto x_1x_3 + x_2x_4$$

Compute all the subspaces of \mathbb{F}_2^4 on which f vanishes.



Take a finite vector space V over \mathbb{F}_q and a nondegenerate form f . A **polar space** consists of all the subspaces of V on which f vanishes.

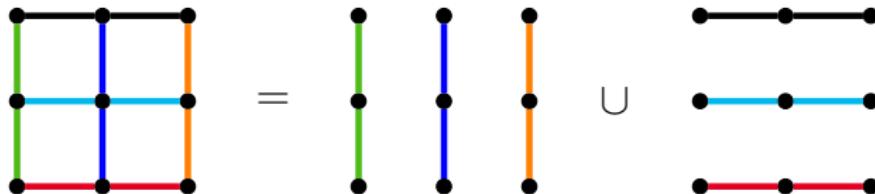
The maximal subspaces have the same dimension, called the **rank** of the polar space.

The six families of polar spaces

Up to isomorphism, there are six polar spaces of rank n .

form	name	type
Hermitian	Hermitian	$^2A_{2n-1}$
Hermitian	Hermitian	$^2A_{2n}$
alternating	symplectic	C_n
quadratic	hyperbolic	D_n
quadratic	parabolic	B_n
quadratic	elliptic	$^2D_{n+1}$

Bipartite halves of D_n



The hyperbolic
polar space D_2

Bipartite halves $\frac{1}{2}D_2$

Subspace codes

A **d -code** Y in \mathbb{F}_q^v is a set of n -subspaces of \mathbb{F}_q^v such that

$$n - \dim(x \cap y) \geq d \quad \text{for all distinct } x, y \in Y.$$

Subspace codes

A **d -code** Y in \mathbb{F}_q^v is a set of n -subspaces of \mathbb{F}_q^v such that

$$n - \dim(x \cap y) \geq d \quad \text{for all distinct } x, y \in Y.$$

Singleton bound (Wang-Xing-Safavi-Naini 2003)

Every d -code Y in \mathbb{F}_q^v satisfies

$$|Y| \leq \frac{\binom{v}{n-d+1}_q}{\binom{n}{n-d+1}_q}.$$

Subspace codes

A **d -code** Y in \mathbb{F}_q^v is a set of n -subspaces of \mathbb{F}_q^v such that

$$n - \dim(x \cap y) \geq d \quad \text{for all distinct } x, y \in Y.$$

Singleton bound (Wang-Xing-Safavi-Naini 2003)

Every d -code Y in \mathbb{F}_q^v satisfies

$$|Y| \leq \frac{\binom{v}{n-d+1}_q}{\binom{n}{n-d+1}_q}.$$

This bound is sharp up to a constant factor.

Subspace codes

A **d -code** Y in \mathbb{F}_q^v is a set of n -subspaces of \mathbb{F}_q^v such that

$$n - \dim(x \cap y) \geq d \quad \text{for all distinct } x, y \in Y.$$

Singleton bound (Wang-Xing-Safavi-Naini 2003)

Every d -code Y in \mathbb{F}_q^v satisfies

$$|Y| \leq \frac{\binom{v}{n-d+1}_q}{\binom{n}{n-d+1}_q}.$$

This bound is sharp up to a constant factor.

This solves the coding problem asymptotically for these codes.

Codes in polar spaces

A **d -code** Y in a polar space \mathcal{P} of rank n is a set of n -spaces of \mathcal{P} such that $n - \dim(x \cap y) \geq d$ for all distinct $x, y \in Y$.

Codes in polar spaces

A **d -code** Y in a polar space \mathcal{P} of rank n is a set of n -spaces of \mathcal{P} such that $n - \dim(x \cap y) \geq d$ for all distinct $x, y \in Y$.

Joint with [Kai-Uwe Schmidt](#):

Codes in polar spaces

A d -code Y in a polar space \mathcal{P} of rank n is a set of n -spaces of \mathcal{P} such that $n - \dim(x \cap y) \geq d$ for all distinct $x, y \in Y$.

Joint with Kai-Uwe Schmidt:
Can we get bounds and constructions for codes in polar spaces?

Codes in polar spaces

A d -code Y in a polar space \mathcal{P} of rank n is a set of n -spaces of \mathcal{P} such that $n - \dim(x \cap y) \geq d$ for all distinct $x, y \in Y$.

Joint with Kai-Uwe Schmidt:
Can we get bounds and constructions for codes in polar spaces? Yes.

Codes in polar spaces

A **d -code** Y in a polar space \mathcal{P} of rank n is a set of n -spaces of \mathcal{P} such that $n - \dim(x \cap y) \geq d$ for all distinct $x, y \in Y$.

Joint with Kai-Uwe Schmidt:
Can we get bounds and constructions for codes in polar spaces? Yes.

	\mathbb{F}_q^v	${}^2A_{2n-1}$	$\frac{1}{2}D_m$
b	q	$-q$	q^2
c	q^{v-2n}	-1	$1/q$ or q

Bounds

Let X be the set of n -spaces in \mathbb{F}_q^ν , ${}^2A_{2n-1}$, or 1_2D_m .

Bounds

Let X be the set of n -spaces in \mathbb{F}_q^v , ${}^2A_{2n-1}$, or $\frac{1}{2}D_m$.

Theorem (Schmidt-W. 2023)

Every d -code Y in X with $1 \leq d \leq n$ (odd d for ${}^2A_{2n-1}$) satisfies

$$|Y| \leq |X| \prod_{\ell=0}^{d-2} \frac{qb^\ell - 1}{qcb^{n+\ell} - 1}.$$

Bounds

Let X be the set of n -spaces in \mathbb{F}_q^v , ${}^2A_{2n-1}$, or $\frac{1}{2}D_m$.

Theorem (Schmidt-W. 2023)

Every d -code Y in X with $1 \leq d \leq n$ (odd d for ${}^2A_{2n-1}$) satisfies

$$|Y| \leq |X| \prod_{\ell=0}^{d-2} \frac{qb^\ell - 1}{qcb^{n+\ell} - 1}.$$

A similar bound holds for even d in ${}^2A_{2n-1}$.

Bounds

Let X be the set of n -spaces in \mathbb{F}_q^v , ${}^2A_{2n-1}$, or 1_2D_m .

Theorem (Schmidt-W. 2023)

Every d -code Y in X with $1 \leq d \leq n$ (odd d for ${}^2A_{2n-1}$) satisfies

$$|Y| \leq |X| \prod_{\ell=0}^{d-2} \frac{qb^\ell - 1}{qcb^{n+\ell} - 1}.$$

A similar bound holds for even d in ${}^2A_{2n-1}$.

This is the **Singleton bound** in case of \mathbb{F}_q^v .

Bounds

Let X be the set of n -spaces in \mathbb{F}_q^v , ${}^2A_{2n-1}$, or $\frac{1}{2}D_m$.

Theorem (Schmidt-W. 2023)

Every d -code Y in X with $1 \leq d \leq n$ (odd d for ${}^2A_{2n-1}$) satisfies

$$|Y| \leq |X| \prod_{\ell=0}^{d-2} \frac{qb^\ell - 1}{qcb^{n+\ell} - 1}.$$

A similar bound holds for even d in ${}^2A_{2n-1}$.

This is the **Singleton bound** in case of \mathbb{F}_q^v .

Corollary (Schmidt-W. 2023)

The bounds in ${}^2A_{2n-1}$ and $\frac{1}{2}D_m$ imply bounds for codes in all other polar spaces.

Are the bounds sharp?

Theorem (Schmidt-W. 2023)

The bounds are sharp up to a constant factor in the

- Hermitian polar space ${}^2A_{2n-1}$ for odd d ,
- symplectic polar space C_n for odd d ,
- parabolic polar space B_n for odd d and even q ,
- hyperbolic polar space D_n except possibly for even n and odd q .

Are the bounds sharp?

Theorem (Schmidt-W. 2023)

The bounds are sharp up to a constant factor in the

- Hermitian polar space ${}^2A_{2n-1}$ for odd d ,
- symplectic polar space C_n for odd d ,
- parabolic polar space B_n for odd d and even q ,
- hyperbolic polar space D_n except possibly for even n and odd q .

This solves the coding problem in these cases asymptotically.

Are the bounds sharp?

Theorem (Schmidt-W. 2023)

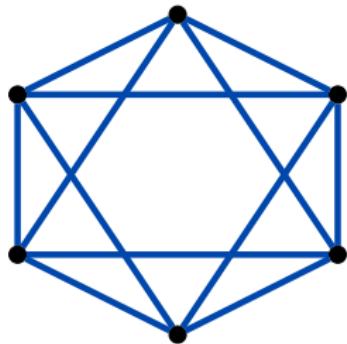
The bounds are sharp up to a constant factor in the

- Hermitian polar space ${}^2A_{2n-1}$ for odd d ,
- symplectic polar space C_n for odd d ,
- parabolic polar space B_n for odd d and even q ,
- hyperbolic polar space D_n except possibly for even n and odd q .

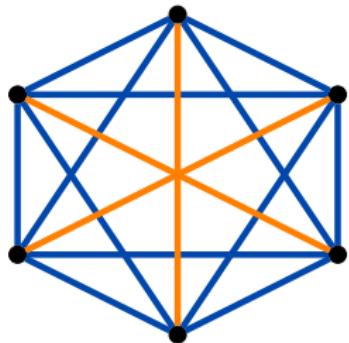
This solves the coding problem in these cases asymptotically.

Remaining bounds are met up to a small power of q^n .

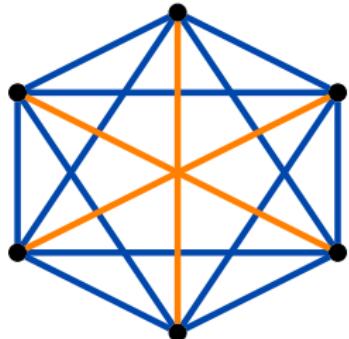
A distance-regular graph



A distance-regular graph



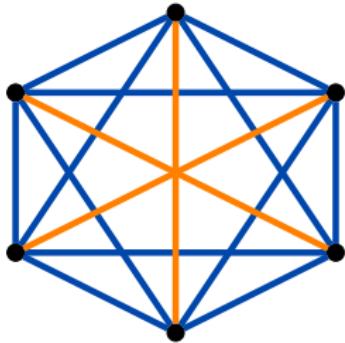
A distance-regular graph



$$A_1 = \begin{pmatrix} J - I & J - I \\ J - I & J - I \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

A distance-regular graph

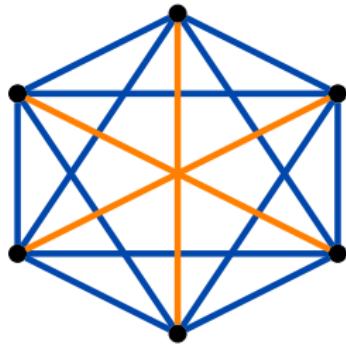


$$A_1 = \begin{pmatrix} J - I & J - I \\ J - I & J - I \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

$(A_1 A_1)_{x,y} = \# z \text{ with } (A_1)_{x,z} = 1 \text{ and } (A_1)_{z,y} = 1$

A distance-regular graph



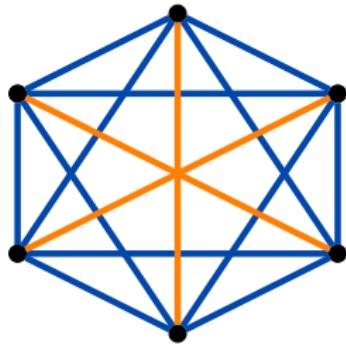
$$A_1 = \begin{pmatrix} J - I & J - I \\ J - I & J - I \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

$(A_1 A_1)_{x,y} = \# z \text{ with } (A_1)_{x,z} = 1 \text{ and } (A_1)_{z,y} = 1$

$$= \begin{cases} 4 & \text{if } x = y \\ 2 & \text{if } (A_1)_{x,y} = 1 \\ 4 & \text{if } (A_2)_{x,y} = 1 \end{cases}$$

A distance-regular graph



$$A_1 = \begin{pmatrix} J - I & J - I \\ J - I & J - I \end{pmatrix}$$

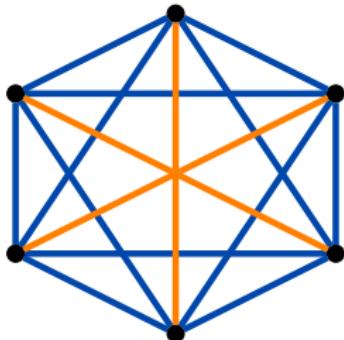
$$A_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

$(A_1 A_1)_{x,y} = \# z \text{ with } (A_1)_{x,z} = 1 \text{ and } (A_1)_{z,y} = 1$

$$= \begin{cases} 4 & \text{if } x = y \\ 2 & \text{if } (A_1)_{x,y} = 1 \\ 4 & \text{if } (A_2)_{x,y} = 1 \end{cases}$$

$$A_1 A_1 = 4 \cdot I + 2 \cdot A_1 + 4 \cdot A_2$$

A distance-regular graph



$$A_1 = \begin{pmatrix} J - I & J - I \\ J - I & J - I \end{pmatrix}$$

$$A_2 = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

The matrices I, A_1, A_2 generate a commutative algebra:

$$A_1 A_2 = A_1$$

$$A_1^2 = 4I + 2A_1 + 4A_2$$

$$A_2^2 = I.$$

Distance-regular graphs

Take a graph G of diameter n with a vertex set X and adjacency matrix A_1 .

Distance-regular graphs

Take a graph G of diameter n with a vertex set X and adjacency matrix A_1 .

Let A_i be the adjacency matrix of the distance- i graph.

Distance-regular graphs

Take a graph G of diameter n with a vertex set X and adjacency matrix A_1 .

Let A_i be the adjacency matrix of the distance- i graph.

The graph G is **distance-regular** if the vector space generated by $A_0 = I, A_1, \dots, A_n$ over \mathbb{R} is a matrix algebra.

Distance-regular graphs

Take a graph G of diameter n with a vertex set X and adjacency matrix A_1 .

Let A_i be the adjacency matrix of the distance- i graph.

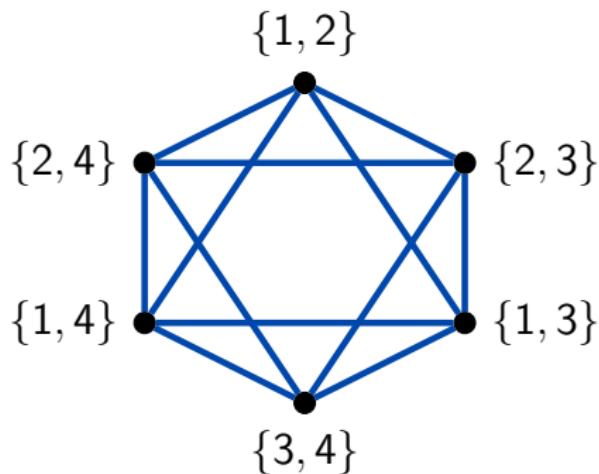
The graph G is **distance-regular** if the vector space generated by $A_0 = I, A_1, \dots, A_n$ over \mathbb{R} is a matrix algebra.

This algebra is called the **Bose-Mesner algebra**.

Classical examples

Johnson graph $J(n, v)$

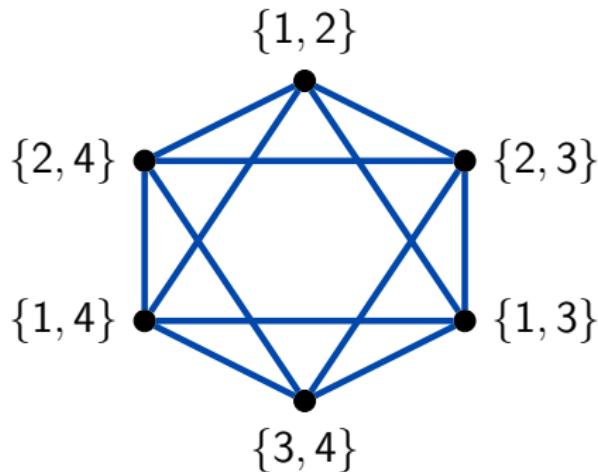
for $(n, v) = (2, 4)$



Classical examples

Johnson graph $J(n, v)$

for $(n, v) = (2, 4)$



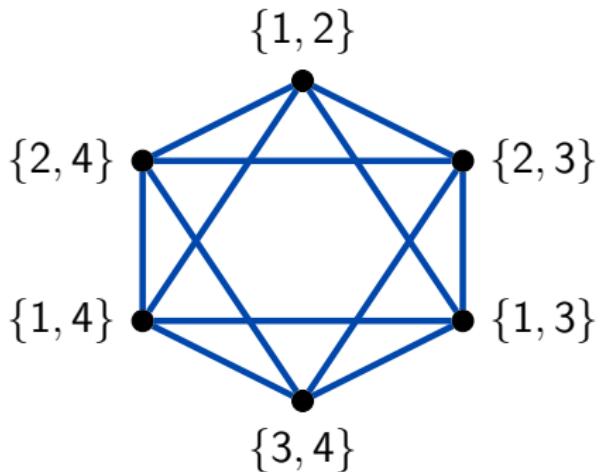
Path distance in the graph:

$$\rho(x, y) = n - |x \cap y|$$

Classical examples

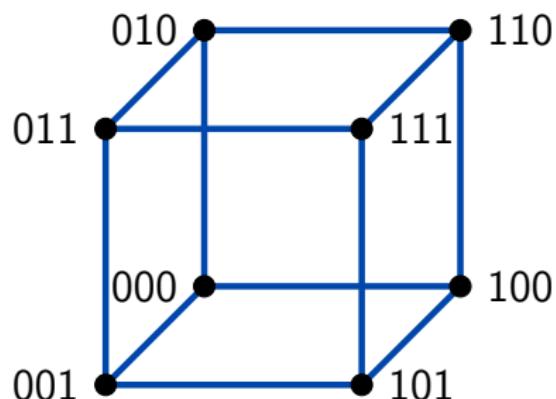
Johnson graph $J(n, v)$

for $(n, v) = (2, 4)$



Hamming graph $H(n, q)$

for $(n, q) = (3, 2)$



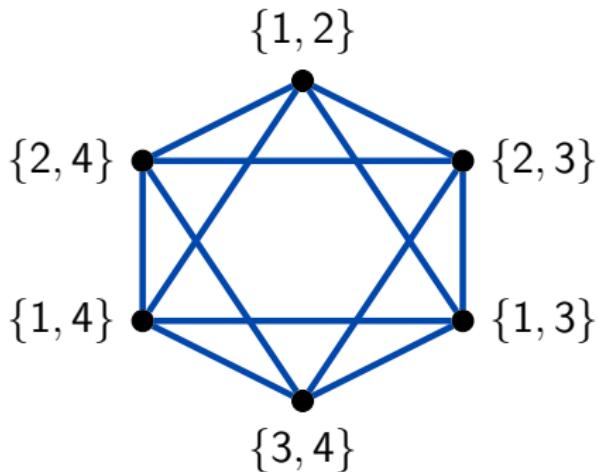
Path distance in the graph:

$$\rho(x, y) = n - |x \cap y|$$

Classical examples

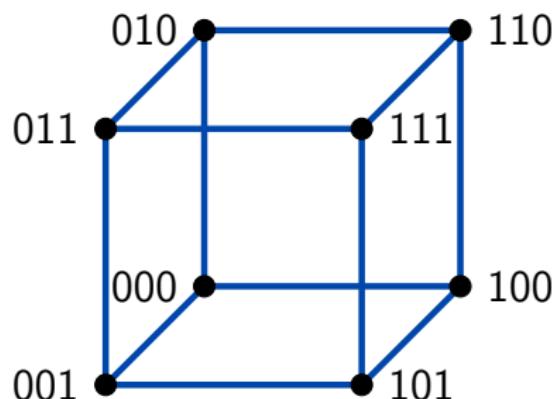
Johnson graph $J(n, v)$

for $(n, v) = (2, 4)$



Hamming graph $H(n, q)$

for $(n, q) = (3, 2)$



Path distance in the graph:

$$\rho(x, y) = n - |x \cap y|$$

$$\rho(x, y) = \#\{i \mid x_i \neq y_i\}$$

The Bose-Mesner algebra

... is commutative.

The Bose-Mesner algebra

... is commutative. Therefore all its matrices can be simultaneously diagonalized.

The Bose-Mesner algebra

... is commutative. Therefore all its matrices can be simultaneously diagonalized. There exists a basis of idempotent matrices E_0, E_1, \dots, E_n .

The Bose-Mesner algebra

... is commutative. Therefore all its matrices can be simultaneously diagonalized. There exists a basis of idempotent matrices E_0, E_1, \dots, E_n .

Change of basis:

$$A_i = \sum_{k=0}^n P_i(k) E_k \qquad \qquad E_k = \frac{1}{|X|} \sum_{i=0}^n Q_k(i) A_i$$

The Bose-Mesner algebra

... is commutative. Therefore all its matrices can be simultaneously diagonalized. There exists a basis of idempotent matrices E_0, E_1, \dots, E_n .

Change of basis:

$$A_i = \sum_{k=0}^n P_i(k) E_k \qquad E_k = \frac{1}{|X|} \sum_{i=0}^n Q_k(i) A_i$$

The number $P_i(k)$ is an eigenvalue of A_i and the column space of E_k is the corresponding eigenspace V_k .

The Bose-Mesner algebra

... is commutative. Therefore all its matrices can be simultaneously diagonalized. There exists a basis of idempotent matrices E_0, E_1, \dots, E_n .

Change of basis:

$$A_i = \sum_{k=0}^n P_i(k) E_k \qquad E_k = \frac{1}{|X|} \sum_{i=0}^n Q_k(i) A_i$$

The number $P_i(k)$ is an eigenvalue of A_i and the column space of E_k is the corresponding eigenspace V_k .

So, $Q_k(i)$ corresponds to V_k .

Polynomial structures

Every distance-regular graph is *P-polynomial*, that is

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

Polynomial structures

Every distance-regular graph is *P-polynomial*, that is

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

A distance-regular graph is *Q-polynomial* if

$$Q_k(i) = Q_k(z_i)$$

for some $Q_k \in \mathbb{R}[z]$ of degree k and some $z_i \in \mathbb{R}$.

Polynomial structures

Every distance-regular graph is **P -polynomial**, that is

$$P_i(k) = P_i(x_k)$$

for some $P_i \in \mathbb{R}[z]$ of degree i and some $x_k \in \mathbb{R}$.

A distance-regular graph is **Q -polynomial** if

$$Q_k(i) = Q_k(z_i)$$

for some $Q_k \in \mathbb{R}[z]$ of degree k and some $z_i \in \mathbb{R}$. Since Q_k corresponds to V_k , this imposes an **ordering** on V_0, V_1, \dots, V_n .

Examples

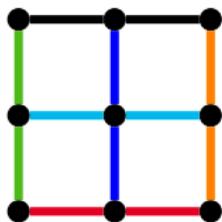
Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials

Examples

Johnson graph: (dual) Hahn polynomials

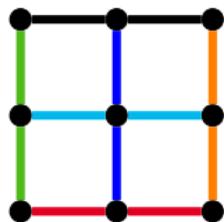
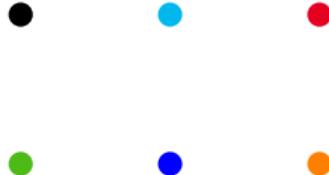
Hamming graph: Krawtchouk polynomials



Examples

Johnson graph: (dual) Hahn polynomials

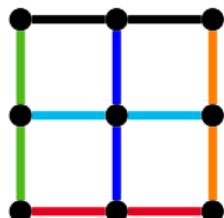
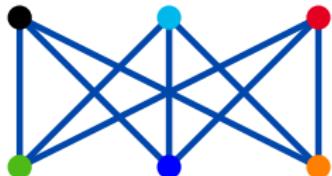
Hamming graph: Krawtchouk polynomials



Examples

Johnson graph: (dual) Hahn polynomials

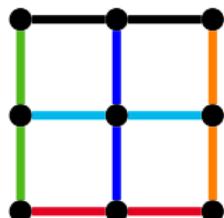
Hamming graph: Krawtchouk polynomials



Examples

Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials



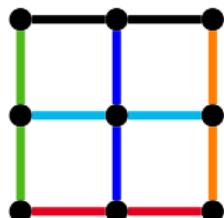
Polar space graph

X is the set of n -spaces in a polar space of rank n and $\rho(x, y) = n - \dim(x \cap y)$.

Examples

Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials



Polar space graph

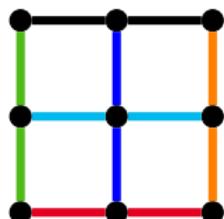
X is the set of n -spaces in a polar space of rank n and $\rho(x, y) = n - \dim(x \cap y)$.

This gives a Q -polynomial distance-regular graph.

Examples

Johnson graph: (dual) Hahn polynomials

Hamming graph: Krawtchouk polynomials



Polar space graph

X is the set of n -spaces in a polar space of rank n and $\rho(x, y) = n - \dim(x \cap y)$.

This gives a Q -polynomial distance-regular graph.



Here, q -Krawtchouk polynomials occur.

Codes in distance-regular graphs

Let ρ be the path distance in a distance-regular graph on a vertex set X .

Codes in distance-regular graphs

Let ρ be the path distance in a distance-regular graph on a vertex set X .

A subset Y of X is called a *d-code* if

$$\rho(x, y) \geq d \quad \text{for all distinct } x, y \in Y.$$

Codes in distance-regular graphs

Let ρ be the path distance in a distance-regular graph on a vertex set X .

A subset Y of X is called a *d-code* if

$$\rho(x, y) \geq d \quad \text{for all distinct } x, y \in Y.$$

How can we derive upper bounds on such codes?

The magic of linear programming

Theorem (Delsarte, 1973)

Let $(X, (A_i))$ be a Q -polynomial distance-regular graph.

The magic of linear programming

Theorem (Delsarte, 1973)

Let $(X, (A_i))$ be a Q -polynomial distance-regular graph.

Suppose there is a polynomial F in $\mathbb{R}[z]$ with

$$F = F_0 Q_0 + F_1 Q_1 + \cdots + F_n Q_n$$

such that $F_k \geq 0$, $F_0 = 1$ and $F(z_i) \leq 0$ for all $i = d, \dots, n$.

The magic of linear programming

Theorem (Delsarte, 1973)

Let $(X, (A_i))$ be a Q -polynomial distance-regular graph.

Suppose there is a polynomial F in $\mathbb{R}[z]$ with

$$F = F_0 Q_0 + F_1 Q_1 + \cdots + F_n Q_n$$

such that $F_k \geq 0$, $F_0 = 1$ and $F(z_i) \leq 0$ for all $i = d, \dots, n$.

Then every d -code Y satisfies

$$|Y| \leq F(z_0).$$

The magic of linear programming

Theorem (Delsarte, 1973)

Let $(X, (A_i))$ be a Q -polynomial distance-regular graph.

Suppose there is a polynomial F in $\mathbb{R}[z]$ with

$$F = F_0 Q_0 + F_1 Q_1 + \cdots + F_n Q_n$$

such that $F_k \geq 0$, $F_0 = 1$ and $F(z_i) \leq 0$ for all $i = d, \dots, n$.

Then every d -code Y satisfies

$$|Y| \leq F(z_0).$$

The smallest bound that can be obtained in this way is called the **linear programming (LP) optimum**.

The magic of linear programming

Theorem (Delsarte, 1973)

Let $(X, (A_i))$ be a Q -polynomial distance-regular graph.
Suppose there is a polynomial F in $\mathbb{R}[z]$ with

$$F = F_0 Q_0 + F_1 Q_1 + \cdots + F_n Q_n$$

such that $F_k \geq 0$, $F_0 = 1$ and $F(z_i) \leq 0$ for all $i = d, \dots, n$.

Then every d -code Y satisfies

$$|Y| \leq F(z_0).$$

The smallest bound that can be obtained in this way is called the linear programming (LP) optimum.

Which polynomial F ?

Let's try

$$F(z) = c \prod_{i=d}^n (z - z_i) \quad \text{with } c \in \mathbb{R}.$$

Which polynomial F ?

Let's try

$$F(z) = c \prod_{i=d}^n (z - z_i) \quad \text{with } c \in \mathbb{R}.$$

This gives a bound for d -codes Y in polar spaces of rank n :

$$|Y| \leq \prod_{i=0}^{n-d} (1 + q^{n-i+e}). \quad (*)$$

Which polynomial F ?

Let's try

$$F(z) = c \prod_{i=d}^n (z - z_i) \quad \text{with } c \in \mathbb{R}.$$

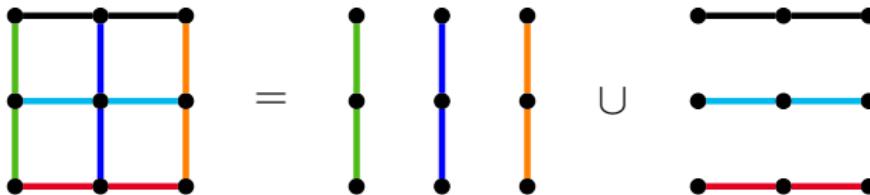
This gives a bound for d -codes Y in polar spaces of rank n :

$$|Y| \leq \prod_{i=0}^{n-d} (1 + q^{n-i+e}). \quad (*)$$

Numerical comparison to the LP optimum shows:

In most cases, the bound $(*)$ is not optimal!

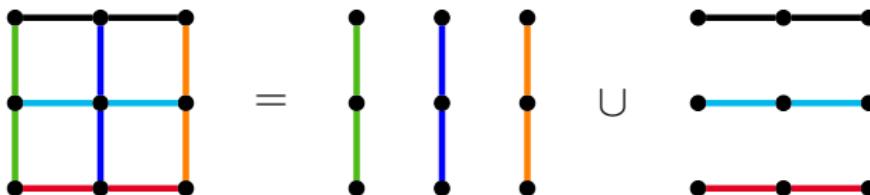
Two special polar spaces



The polar space D_2

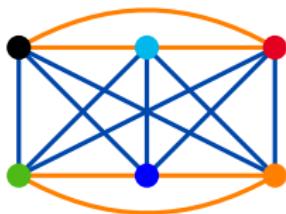
Bipartite halves $\frac{1}{2}D_2$

Two special polar spaces

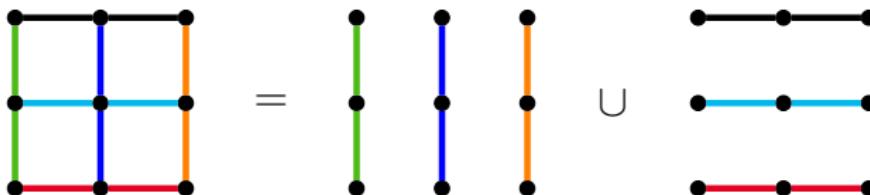


The polar space D_2

Bipartite halves $\frac{1}{2}D_2$



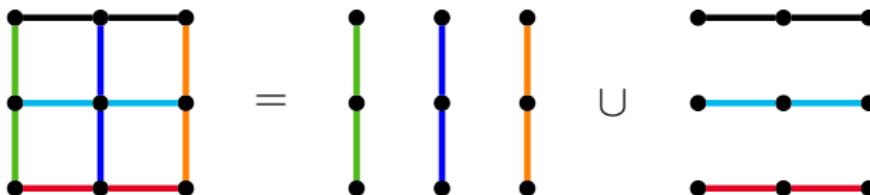
Two special polar spaces



The polar space D_2

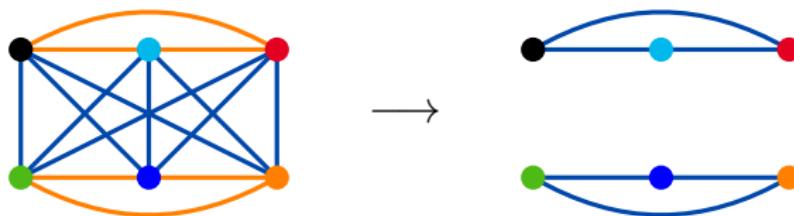
Bipartite halves $\frac{1}{2}D_2$

Two special polar spaces



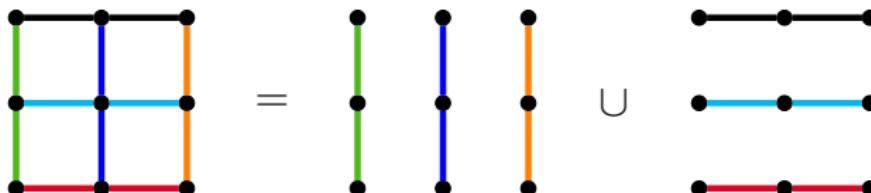
The polar space D_2

Bipartite halves $\frac{1}{2}D_2$



Each $\frac{1}{2}D_m$ gives a Q -polynomial distance-regular graph.

Two special polar spaces



The polar space D_2

Bipartite halves $\frac{1}{2}D_2$

Each $\frac{1}{2}D_m$ gives a Q -polynomial distance-regular graph.

The numbers $Q_k(i)$ come from **q -Hahn polynomials**.

Two special polar spaces

The graph arising from the Hermitian polar space ${}^2A_{2n-1}$ has two orderings of the eigenspaces:

Two special polar spaces

The graph arising from the Hermitian polar space ${}^2A_{2n-1}$ has two orderings of the eigenspaces:

- ▶ $V_0 \ V_1 \ \dots \ V_n$ q -Krawtchouk polynomials

Two special polar spaces

The graph arising from the Hermitian polar space ${}^2A_{2n-1}$ has two orderings of the eigenspaces:

- ▶ $V_0 \ V_1 \ \dots \ V_n$ q -Krawtchouk polynomials
- ▶ $V_0 \ V_n \ V_1 \ V_{n-1} \ V_2 \ V_{n-2} \ \dots$

Two special polar spaces

The graph arising from the Hermitian polar space ${}^2A_{2n-1}$ has two orderings of the eigenspaces:

- ▶ $V_0 \ V_1 \ \dots \ V_n$ q -Krawtchouk polynomials
- ▶ $V_0 \ V_n \ V_1 \ V_{n-1} \ V_2 \ V_{n-2} \ \dots$ q -Hahn polynomials

Q -numbers of \mathbb{F}_q^ν , ${}^2A_{2n-1}$, and ${}^{\frac{1}{2}}D_m$

\mathbb{F}_q^ν	${}^2A_{2n-1}$	${}^{\frac{1}{2}}D_m$
b	q	$-q$
c	$q^{\nu-2n}$	-1
		$1/q$ oder q

Q-numbers of \mathbb{F}_q^ν , ${}^2A_{2n-1}$, and ${}^{\frac{1}{2}}D_m$

\mathbb{F}_q^ν	${}^2A_{2n-1}$	${}^{\frac{1}{2}}D_m$
b	q	$-q$
c	$q^{\nu-2n}$	-1
		$1/q$ oder q

Their Q-numbers come from **q -Hahn polynomials**:

$$Q_k(i) = \mu_k \sum_{j=0}^k (-1)^j b^{\binom{j}{2}} - j(i+k-n-1) \frac{\begin{bmatrix} k \\ j \end{bmatrix}_b \begin{bmatrix} i \\ j \end{bmatrix}_b}{\begin{bmatrix} n \\ j \end{bmatrix}_b} \prod_{s=0}^{j-1} \frac{1 - (cq b^{2n-k-s})^{-1}}{1 - (cb^{n-s})^{-1}}$$

Q-numbers of \mathbb{F}_q^v , ${}^2A_{2n-1}$, and ${}^{\frac{1}{2}}D_m$

\mathbb{F}_q^v	${}^2A_{2n-1}$	${}^{\frac{1}{2}}D_m$
b	q	$-q$
c	q^{v-2n}	-1
		$1/q$ oder q

Their Q-numbers come from **q -Hahn polynomials**:

$$Q_k(i) = \mu_k \sum_{j=0}^k (-1)^j b^{\binom{j}{2}} - j(i+k-n-1) \frac{\begin{bmatrix} k \\ j \end{bmatrix}_b \begin{bmatrix} i \\ j \end{bmatrix}_b}{\begin{bmatrix} n \\ j \end{bmatrix}_b} \prod_{s=0}^{j-1} \frac{1 - (cq b^{2n-k-s})^{-1}}{1 - (cb^{n-s})^{-1}}$$

Delsarte's LP with $\prod_{i=d}^n (z - z_i)$ and the q -Hahn polynomials instead of the q -Krawtchouk polynomials gives our bounds.

Linear programming optimum

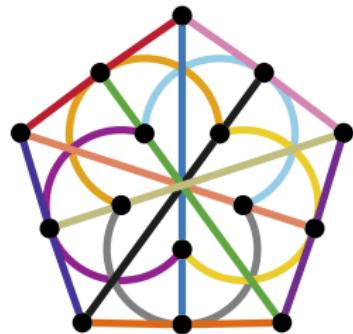
Theorem (Schmidt-W. 2023)

Our bound for d -codes in a polar space is precisely the optimum of Delsarte's linear program for the

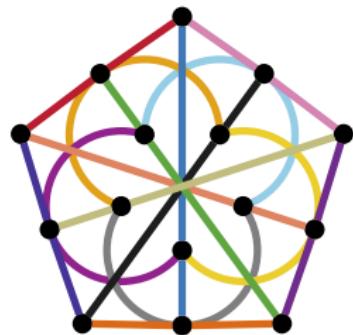
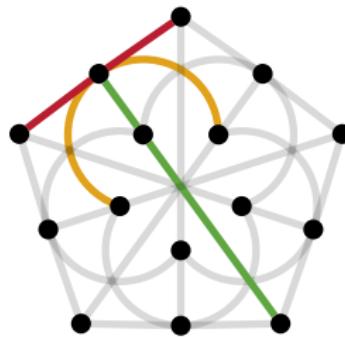
- Hermitian polar space ${}^2A_{2n-1}$,
- parabolic polar space B_n for odd d ,
- symplectic polar space C_n for odd d ,
- hyperbolic polar space D_n for even d .

Intersecting sets

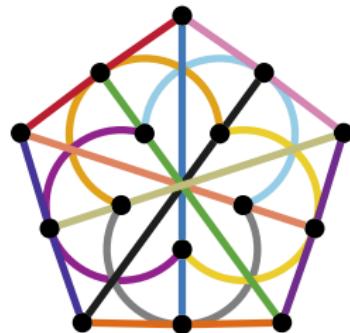
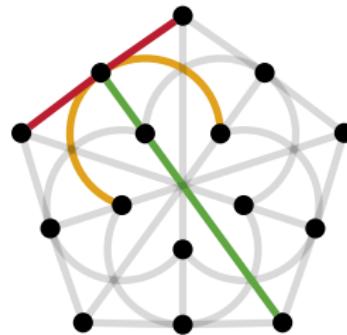
Intersecting sets



Intersecting sets

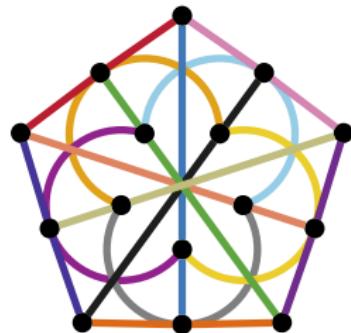
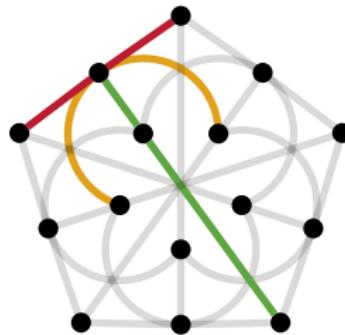


Intersecting sets



A subset Y of n -spaces in a polar space of rank n is called **t -intersecting** if any two members of Y have an intersection of dimension at least t .

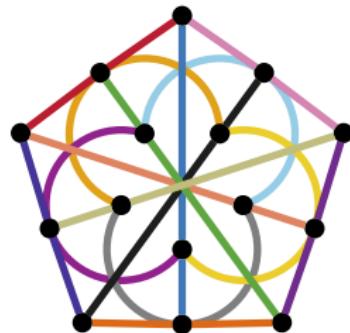
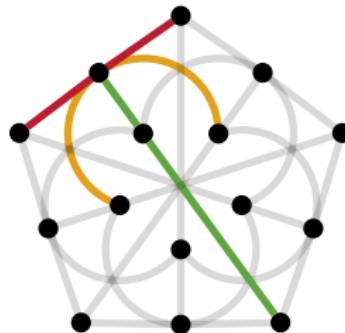
Intersecting sets



A subset Y of n -spaces in a polar space of rank n is called **t -intersecting** if any two members of Y have an intersection of dimension at least t .

Example. The set of all n -spaces through a fixed 1-space is 1-intersecting.

Intersecting sets



A subset Y of n -spaces in a polar space of rank n is called **t -intersecting** if any two members of Y have an intersection of dimension at least t .

Example. The set of all n -spaces through a fixed 1-space is 1-intersecting.

How large can a t -intersecting set be?

History

1-intersecting

History

1-intersecting

► Stanton (1980)

Upper bounds via Hoffman bound.

History

1-intersecting

- Stanton (1980)

Upper bounds via Hoffman bound.

- Pepe-Storme-Vanhove (2011)

Classification of largest intersecting sets, except in ${}^2A_{2n-1}$ for odd $n \geq 5$.

History

1-intersecting

- Stanton (1980)

Upper bounds via Hoffman bound.

- Pepe-Storme-Vanhove (2011)

Classification of largest intersecting sets, except in ${}^2A_{2n-1}$ for odd $n \geq 5$.

- Ihringer-Metsch (2012), Metsch (2016)

Improved bounds for ${}^2A_{2n-1}$ with odd $n \geq 5$.

History

1-intersecting

- Stanton (1980)

Upper bounds via Hoffman bound.

- Pepe-Storme-Vanhove (2011)

Classification of largest intersecting sets, except in ${}^2A_{2n-1}$ for odd $n \geq 5$.

- Ihringer-Metsch (2012), Metsch (2016)

Improved bounds for ${}^2A_{2n-1}$ with odd $n \geq 5$.

t -intersecting with $t > 1$

History

1-intersecting

- Stanton (1980)

Upper bounds via Hoffman bound.

- Pepe-Storme-Vanhove (2011)

Classification of largest intersecting sets, except in ${}^2A_{2n-1}$ for odd $n \geq 5$.

- Ihringer-Metsch (2012), Metsch (2016)

Improved bounds for ${}^2A_{2n-1}$ with odd $n \geq 5$.

t -intersecting with $t > 1$

- Ihringer-Metsch (2018)

Classification of largest t -intersecting sets for $n \lesssim 3t$. Also upper bounds via Hoffman bound for all q, n, t .

Erdős-Ko-Rado-type bounds

Corollary (Schmidt-W. 2025+)

A t -intersecting set Y with $1 < t < n$ satisfies

$$|Y| \lesssim \begin{cases} q^{n(n-t)} & \text{in } {}^2A_{2n-1} \text{ for even } n-t, \\ q^{n(n-t-1)+1} & \text{in } {}^2A_{2n-1} \text{ for odd } n-t, \\ q^{n(n-t)/2} & \text{in } B_n \text{ or } C_n \text{ for odd } n \text{ and } t, \\ q^{(n+1)(n-t)/2} & \text{in } B_n \text{ or } C_n \text{ for even } n \text{ and } t, \\ q^{n(n-t-1)/2} & \text{in } D_n \text{ for odd } n \text{ and even } t, \\ q^{(n-1)(n-t-1)/2} & \text{in } D_n \text{ for even } n \text{ and odd } t. \end{cases}$$

Erdős-Ko-Rado-type bounds

Corollary (Schmidt-W. 2025+)

A t -intersecting set Y with $1 < t < n$ satisfies

$$|Y| \lesssim \begin{cases} q^{n(n-t)} & \text{in } {}^2A_{2n-1} \text{ for even } n-t, \\ q^{n(n-t-1)+1} & \text{in } {}^2A_{2n-1} \text{ for odd } n-t, \\ q^{n(n-t)/2} & \text{in } B_n \text{ or } C_n \text{ for odd } n \text{ and } t, \\ q^{(n+1)(n-t)/2} & \text{in } B_n \text{ or } C_n \text{ for even } n \text{ and } t, \\ q^{n(n-t-1)/2} & \text{in } D_n \text{ for odd } n \text{ and even } t, \\ q^{(n-1)(n-t-1)/2} & \text{in } D_n \text{ for even } n \text{ and odd } t. \end{cases}$$

They improve the bounds from Ihringer-Metsch (2018), but are still far away from the largest known examples.

Proof

A t -intersecting set Y in a polar space of rank n satisfies

$$\rho(x, y) = n - \dim(x \cap y) \leq n - t$$

for all $x, y \in Y$.

Proof

A t -intersecting set Y in a polar space of rank n satisfies

$$\rho(x, y) = n - \dim(x \cap y) \leq n - t$$

for all $x, y \in Y$.

Lemma (Tarnanen 1999)

Let $(X, (A_i))$ be a distance-regular graph of diameter n with path distance ρ .

Proof

A t -intersecting set Y in a polar space of rank n satisfies

$$\rho(x, y) = n - \dim(x \cap y) \leq n - t$$

for all $x, y \in Y$.

Lemma (Tarnanen 1999)

Let $(X, (A_i))$ be a distance-regular graph of diameter n with path distance ρ . If Y is a subset of X such that

$\rho(x, y) \leq n - t$ for all $x, y \in Y$, then

$$|Y| \leq \frac{|X|}{\text{LP}(n - t + 1)}.$$

Proof

A t -intersecting set Y in a polar space of rank n satisfies

$$\rho(x, y) = n - \dim(x \cap y) \leq n - t$$

for all $x, y \in Y$.

Lemma (Tarnanen 1999)

Let $(X, (A_i))$ be a distance-regular graph of diameter n with path distance ρ . If Y is a subset of X such that

$\rho(x, y) \leq n - t$ for all $x, y \in Y$, then

$$|Y| \leq \frac{|X|}{\text{LP}(n - t + 1)}.$$

$\text{LP}(n - t + 1)$ is the LP optimum for $(n - t + 1)$ -codes.

Designs over \mathbb{F}_q

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y .

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Do t -designs over \mathbb{F}_q exist for all t ?

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Do t -designs over \mathbb{F}_q exist for all t ?

Fazeli-Lovett-Vardy 2014: A t -(v, k, λ) design over \mathbb{F}_q exists, provided that v is large enough and $k > 12(t + 1)$.

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Do t -designs over \mathbb{F}_q exist for all t ?

Fazeli-Lovett-Vardy 2014: A t -(v, k, λ) design over \mathbb{F}_q exists, provided that v is large enough and $k > 12(t + 1)$.

Do t -Steiner systems over \mathbb{F}_q exist for all t ?

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Do t -designs over \mathbb{F}_q exist for all t ?

Fazeli-Lovett-Vardy 2014: A t -(v, k, λ) design over \mathbb{F}_q exists, provided that v is large enough and $k > 12(t + 1)$.

Do t -Steiner systems over \mathbb{F}_q exist for all t ?

Keevash-Sah-Sawhney 2022: A t -Steiner system over \mathbb{F}_q exists, provided that v is large enough and some natural divisibility conditions are satisfied.

Designs over \mathbb{F}_q

A t -(v, k, λ) design over \mathbb{F}_q is a collection Y of k -subspaces of \mathbb{F}_q^v such that each t -subspace of \mathbb{F}_q^v lies in exactly λ members of Y . For $\lambda = 1$, it's called t -Steiner system over \mathbb{F}_q .

Do t -designs over \mathbb{F}_q exist for all t ?

Fazeli-Lovett-Vardy 2014: A t -(v, k, λ) design over \mathbb{F}_q exists, provided that v is large enough and $k > 12(t + 1)$.

Do t -Steiner systems over \mathbb{F}_q exist for all t ?

Keevash-Sah-Sawhney 2022: A t -Steiner system over \mathbb{F}_q exists, provided that v is large enough and some natural divisibility conditions are satisfied.

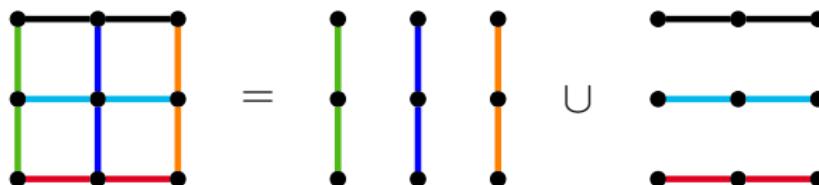
Both results use probabilistic methods.

Steiner systems in polar spaces

A *t*-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly one member of Y .

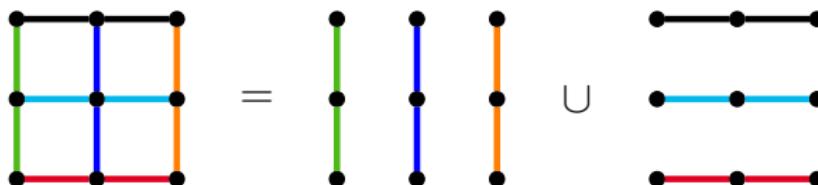
Steiner systems in polar spaces

A *t*-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly one member of Y .



Steiner systems in polar spaces

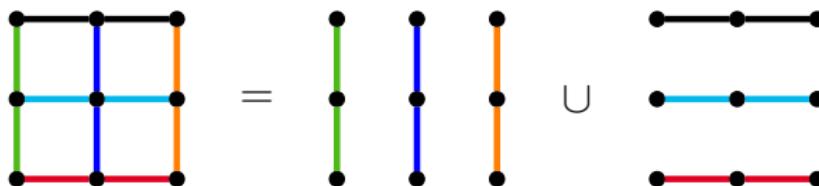
A *t*-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly one member of Y .



The bipartite halves of D_n are $(n - 1)$ -Steiner systems in D_n .

Steiner systems in polar spaces

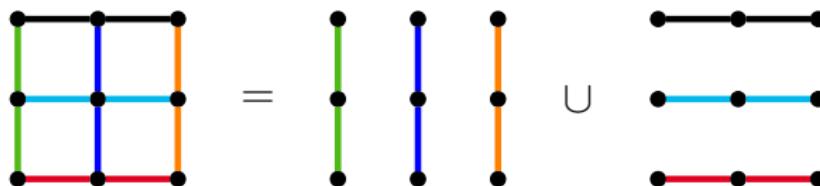
A *t*-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly one member of Y .



The bipartite halves of D_n are $(n - 1)$ -Steiner systems in D_n .
1-Steiner systems are *spreads* in polar spaces.

Steiner systems in polar spaces

A *t*-Steiner system in a polar space \mathcal{P} of rank n is a collection Y of n -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly one member of Y .



The bipartite halves of D_n are $(n - 1)$ -Steiner systems in D_n .
1-Steiner systems are *spreads* in polar spaces.

Except for $\frac{1}{2}D_n$ and spreads in some polar spaces, no other nontrivial Steiner systems are known.

Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space \mathcal{P} of rank n contains a t -Steiner system with $1 < t < n$. Then, one of the following holds

Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space \mathcal{P} of rank n contains a t -Steiner system with $1 < t < n$. Then, one of the following holds

- (1) $t = n - 1$ and $\mathcal{P} = D_n$,

Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space \mathcal{P} of rank n contains a t -Steiner system with $1 < t < n$. Then, one of the following holds

- (1) $t = n - 1$ and $\mathcal{P} = D_n$,
- (2) $t = n - 1$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for $q \geq 3$,
- (3) $t = 2$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for odd n .

Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space \mathcal{P} of rank n contains a t -Steiner system with $1 < t < n$. Then, one of the following holds

- (1) $t = n - 1$ and $\mathcal{P} = D_n$,
- (2) $t = n - 1$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for $q \geq 3$,
- (3) $t = 2$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for odd n .

Proof: A t -Steiner system is an $(n - t + 1)$ -code whose size is larger than our bound in almost all cases.

Classification of Steiner systems

Theorem (Schmidt-W. 2023)

Suppose that a polar space \mathcal{P} of rank n contains a t -Steiner system with $1 < t < n$. Then, one of the following holds

- (1) $t = n - 1$ and $\mathcal{P} = D_n$,
- (2) $t = n - 1$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for $q \geq 3$,
- (3) $t = 2$ and $\mathcal{P} = {}^2A_{2n}$ or ${}^2D_{n+1}$ for odd n .

Proof: A t -Steiner system is an $(n - t + 1)$ -code whose size is larger than our bound in almost all cases.

Conjecture

$\frac{1}{2}D_n$ are the only nontrivial t -Steiner systems with $t > 1$.

Designs in polar spaces

A t -(n, k, λ) design in a polar space \mathcal{P} of rank n is a collection Y of k -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly λ members of Y .

Designs in polar spaces

A t -(n, k, λ) design in a polar space \mathcal{P} of rank n is a collection Y of k -spaces in \mathcal{P} such that each t -space of \mathcal{P} lies in exactly λ members of Y .

Do t -designs in polar spaces exist for all t ?

Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)

There are 2-designs in the parabolic polar space B_3 for $q = 3, 5, 7, 11$. There exists a 2-design in the elliptic polar space 2D_4 for $q = 2$.

Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)

There are 2-designs in the parabolic polar space B_3 for $q = 3, 5, 7, 11$. There exists a 2-design in the elliptic polar space 2D_4 for $q = 2$.

Kiermaier-Schmidt-Wassermann (2025)

They found many $2-(n, k, \lambda)$ designs in nearly all polar spaces (not the Hermitians) of small rank n with $2 < k \leq n$ and $q = 2, 3$.

Known examples

De Bruyn-Vanhove (2012), Bamberg-Lansdown-Lee (2018)

There are 2-designs in the parabolic polar space B_3 for $q = 3, 5, 7, 11$. There exists a 2-design in the elliptic polar space 2D_4 for $q = 2$.

Kiermaier-Schmidt-Wassermann (2025)

They found many $2-(n, k, \lambda)$ designs in nearly all polar spaces (not the Hermitians) of small rank n with $2 < k \leq n$ and $q = 2, 3$.

Existence for all $t \geq 3$?

Existence of designs

Theorem (W. 2025)

Let \mathcal{P} be a polar space of rank n . For all positive integers t and k with $k > 10.5 t$ and for n large enough with $n > k^2$, there exists a t -(n, k, λ) design in \mathcal{P} whose size is at most q^{21nt} .

Existence of designs

Theorem (W. 2025)

Let \mathcal{P} be a polar space of rank n . For all positive integers t and k with $k > 10.5 t$ and for n large enough with $n > k^2$, there exists a t -(n, k, λ) design in \mathcal{P} whose size is at most q^{21nt} .

The proof is nonconstructive, based on a probabilistic method (by Kuperberg-Lovett-Peled, 2017).

Let's recap

Polar
spaces

Let's recap

Coding Theory

Design Theory

Polar
spaces

Extremal
Combinatorics

Let's recap

Coding Theory

Bounds on codes

Polar
spaces

Design Theory

Extremal
Combinatorics

Let's recap

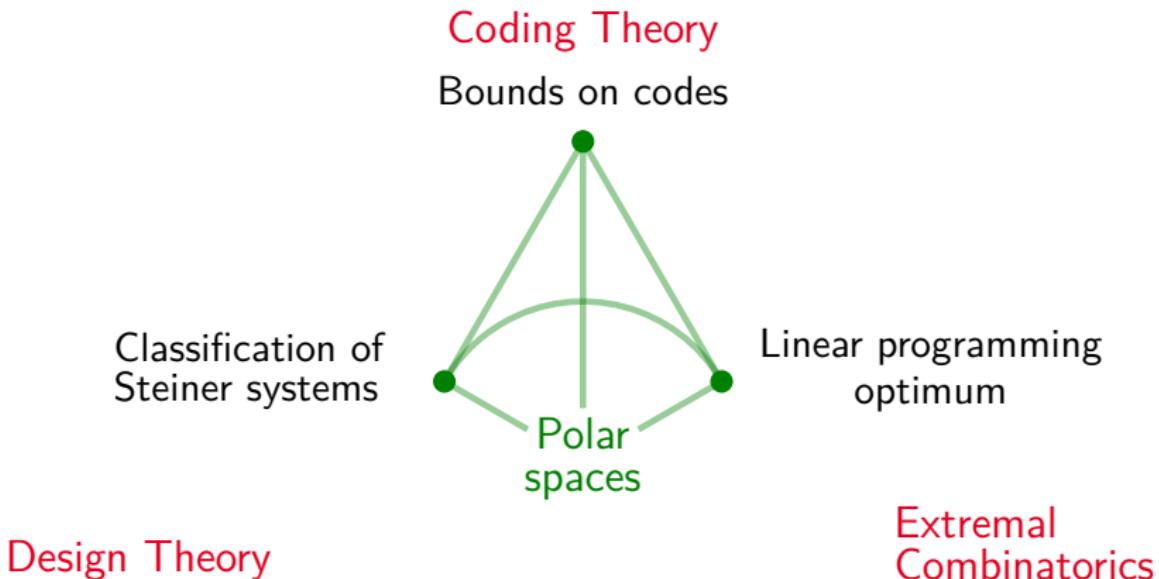
Coding Theory

Bounds on codes

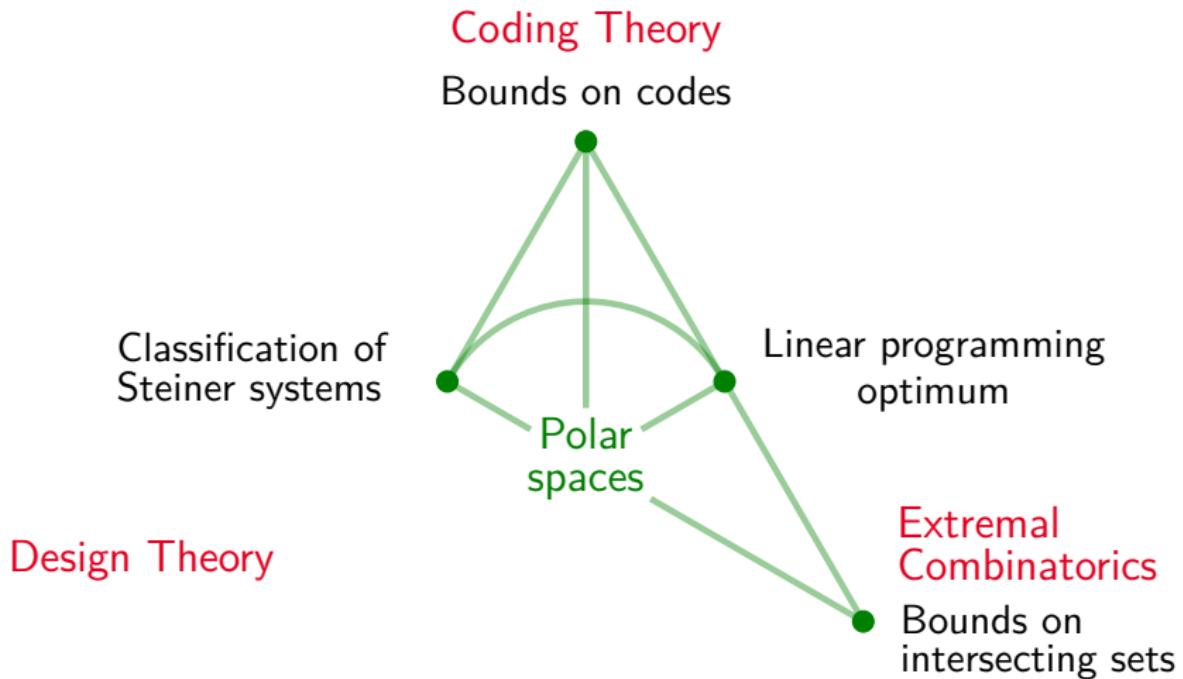
Design Theory

Extremal
Combinatorics

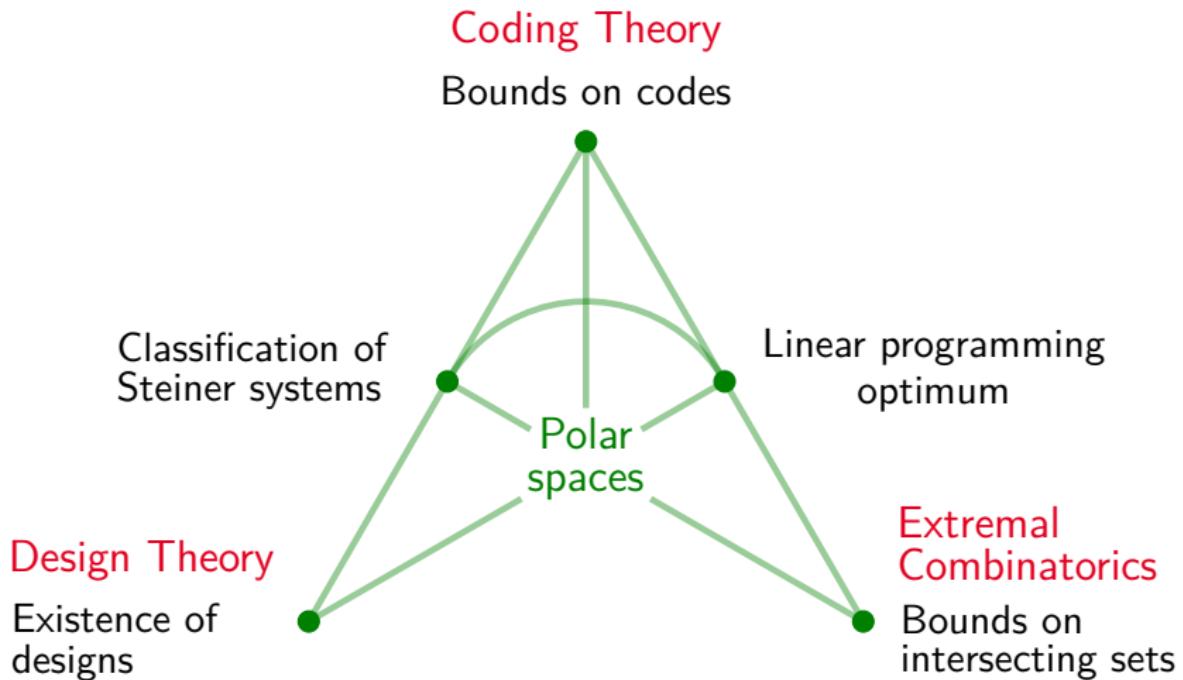
Let's recap



Let's recap



Let's recap



Let's recap

