

# New constructions for orientable sequences

5th Pythagorean Conference, Kalamata, 2–6 June 2025

Chris Mitchell and Peter Wild

5th June 2025

# 1980: Finite Geometries & Designs, UK



## 1. Introduction: What are orientable sequences?

- ▶ A  $k$ -ary de Bruijn sequence of order  $n$  is an infinite periodic sequences of elements from  $\{0, 1, \dots, k - 1\}$  in which every possible  $k$ -ary  $n$ -tuple occurs exactly once in a period.
- ▶ The period must be  $k^n$ , and there are many known methods of construction.
- ▶ Earliest known reference to constructing (and enumerating) such sequences is due to Sainte-Marie (1894), but better known work is by de Bruijn (1946) and Good (1947).
- ▶ Examples for  $k = 2$  are:  $[0011]$  ( $n = 2$ ), and  $[00010111]$  ( $n = 3$ ).
- ▶ There are many applications, for example in stream ciphers, position location, and genome sequencing.
- ▶ De Bruijn sequences are examples of  $n$ -window sequences, periodic sequences in which any  $n$ -tuple occurs *at most once* in a period.



## The de Bruijn digraph

- ▶ The de Bruijn digraph is a key tool for analysing and constructing both de Bruijn and orientable sequences.
- ▶ This graph, otherwise known as the de Bruijn-Good graph,  $B_k(n)$  is a directed graph with vertex set  $\{0, 1, \dots, k-1\}^n$ .
- ▶ An edge connects  $(a_0, a_1, \dots, a_{n-1})$  to  $(b_0, b_1, \dots, b_{n-1})$  iff  $a_{i+1} = b_i$  for every  $i$  ( $0 \leq i \leq n-2$ ).
- ▶ It is simple to see that  $B_k(n)$  is Eulerian, i.e. it is connected and every vertex has in-degree equal to its out-degree.
- ▶ If we identify an edge from  $(a_0, a_1, \dots, a_{n-1})$  to  $(b_0, b_1, \dots, b_{n-1})$  with the  $(n+1)$ -tuple  $(a_0, a_1, \dots, a_{n-1}, b_{n-1})$ , then a de Bruijn sequence of order  $n+1$  corresponds to an Eulerian circuit in  $B_k(n)$  — which must exist given  $B_k(n)$  is Eulerian.
- ▶ There are, of course, efficient algorithms for finding such circuits.

# The Lempel Homomorphism

- ▶ The Lempel  $D$ -function, originally defined only for  $k = 2$ , maps  $B_2(n)$  to  $B_2(n - 1)$ .
- ▶  $D$  maps any binary  $n$ -tuple  $(a_0, a_1, \dots, a_{n-1})$  to  $(a_1 - a_0, a_2 - a_1, \dots, a_{n-1} - a_{n-2})$ .
- ▶  $D$  is a graph homomorphism from  $B_2(n)$  to  $B_2(n - 1)$ .
- ▶ Can extend definition to  $k$ -ary case, where  $D$  maps the  $k$ -ary  $n$ -tuple  $(a_0, a_1, \dots, a_{n-1})$  to  $(a_1 - a_0, a_2 - a_1, \dots, a_{n-1} - a_{n-2})$ , where computations take place modulo  $k$ .
- ▶ The inverse of  $D$  has been widely used, e.g. to recursively construct de Bruijn sequences, observing that  $D^{-1}$  maps a circuit in  $B_k(n - 1)$  to a set of  $k$  circuits in  $B_k(n)$ .

## Upper bounds on the period of orientable sequences

- ▶ Since any  $n$ -tuple can only occur once in a period in either direction, and symmetric  $n$ -tuples cannot occur, a trivial bound on the period of an  $\mathcal{OS}_k(n)$  is

$$\frac{k^n - k^{\lfloor (n+1)/2 \rfloor}}{2}.$$

- ▶ However, apart from when  $n = 2$  and  $k$  is odd, this bound is not sharp.
- ▶ The binary case is different from  $k > 2$  — in particular, constant  $(n - 1)$ -tuples and  $(n - 2)$ -tuples cannot occur in a binary sequence, whereas they can for  $k > 2$ , so an  $\mathcal{OS}_2(n)$  cannot exist for  $n < 5$ .
- ▶ Dai, Martin, Robshaw & Wild (1993) gave a bound for the binary case which is significantly sharper than the trivial bound.
- ▶ A bound for the  $k > 2$  case which is a little sharper than the trivial bound was recently established (Alhakim, M, Szmidt & Wild, 2024).

## 2. New upper bounds on the period

- ▶ In recent work we have established new upper bounds on the period of a  $k$ -ary orientable sequence (for  $k > 2$ ), sharper than the 2024 bound.
- ▶ These bounds all derive from simple observations regarding the subgraph of the de Bruijn graph defined by the edges of an orientable sequence.
- ▶ If  $S$  is a  $k$ -ary orientable sequence of order  $n$  — an  $\mathcal{OS}_k(n)$  — then we define  $B_S$  to be the subgraph of  $B_k(n-1)$  with edges corresponding to the  $n$ -tuples appearing in either  $S$  or  $S^R$  (where  $S^R$  is the reverse of  $S$ ).
- ▶ The  $n$ -tuples appearing in either  $S$  or  $S^R$  are, of course, all distinct since  $S$  is orientable.
- ▶ Since  $S$  and  $S^R$  define edge-disjoint (but not vertex-disjoint) Eulerian circuits in  $B_S$ , it follows that  $B_S$  must be Eulerian.
- ▶ This simple observation leads to the improved bounds, given we can identify cases where certain edges cannot occur in  $B_S$ .

## Degree-parity constraints

- ▶ An  $n$ -tuple  $(a_0, a_1, \dots, a_{n-1})$  is said to be *symmetric* if and only if  $(a_0, a_1, \dots, a_{n-1})$  is a palindrome.
- ▶ Both  $S$  and  $S^R$  correspond to an Eulerian circuit in  $B_S$ , and these circuits are edge disjoint and cover all the edges of  $B_S$ .
- ▶ If  $\mathbf{a}$  is symmetric then both circuits pass through this vertex equally many times.
- ▶ It follows that  $\mathbf{a}$  has even in-degree and even out-degree in  $B_S$ .
- ▶ If  $k$  is odd then every vertex in  $B_k(n)$  has odd in-degree (and out-degree).
- ▶ Hence if  $k$  is odd and  $s$  is an  $\mathcal{OS}_k(n)$  then, for every vertex corresponding to a symmetric  $(n-1)$ -tuple, at least one incoming edge and at least one outgoing in  $B_k(n-1)$  cannot occur in  $B_S$ .
- ▶ This limits the edges that can be contained in  $B_S$ , and hence upper-bounds its period.

## Semi-symmetry constraints

- ▶ An  $n$ -tuple  $(a_0, a_1, \dots, a_{n-1})$  is said to be *left-semi-symmetric* if and only if  $(a_0, a_1, \dots, a_{n-2})$  is a palindrome.
- ▶ E.g. for  $n = 5$  and  $k = 3$ ,  $(02201)$  is left-semi-symmetric, since  $0220$  is a palindrome.
- ▶ In the de Bruijn digraph  $B_k(n)$ , one of the edges incoming to such a vertex will be a palindrome, and hence cannot occur in an orientable sequence.
- ▶ So, if  $S$  is orientable, the in-degree of a vertex corresponding to a left-semi-symmetric tuple in  $B_S$  will be less than the maximum, and hence so will the out-degree.
- ▶ This limits the edges that can be contained in  $B_S$ , and hence upper-bounds its period.
- ▶ An analogous argument applies to right-semi-symmetric tuples.

## Interactions

- ▶ The eagle-eyed amongst you will have immediately spotted that we cannot simply add together the numbers of excluded edges from these arguments as we may be double counting.
- ▶ As a result, we need to carefully (and rather painfully) examine a number of special cases.
- ▶ In the next slide, the bound resulting from these observations are tabulated for small  $k$  and  $n$ , with the 'old' bound given in brackets for comparison.

# Bounds — new and (old) — on the period of an $\mathcal{OS}_k(n)$

| $n$ | $k = 3$        | $k = 4$            | $k = 5$            | $k = 6$              | $k = 7$                | $k = 8$                |
|-----|----------------|--------------------|--------------------|----------------------|------------------------|------------------------|
| 2   | 3<br>(3)       | 4<br>(4)           | 10<br>(10)         | 12<br>(12)           | 21<br>(21)             | 24<br>(24)             |
| 3   | 9<br>(9)       | 20<br>(22)         | 50<br>(50)         | 84<br>(87)           | 147<br>(147)           | 216<br>(220)           |
| 4   | 30<br>(33)     | 112<br>(118)       | 280<br>(290)       | 612<br>(627)         | 1134<br>(1155)         | 1984<br>(2012)         |
| 5   | 99<br>(105)    | 452<br>(478)       | 1450<br>(1490)     | 3684<br>(3777)       | 8085<br>(8211)         | 15896<br>(16124)       |
| 6   | 315<br>(336)   | 1958<br>(2014)     | 7550<br>(7680)     | 23019<br>(23217)     | 58065<br>(58464)       | 130332<br>(130812)     |
| 7   | 972<br>(1032)  | 7844<br>(8062)     | 38100<br>(38640)   | 138144<br>(139317)   | 408072<br>(410256)     | 1042712<br>(1046524)   |
| 8   | 3096<br>(3189) | 32390<br>(32638)   | 193800<br>(194630) | 837879<br>(839157)   | 2876496<br>(2879835)   | 8382492<br>(8386556)   |
| 9   | 9423<br>(9645) | 129572<br>(130558) | 971350<br>(974390) | 5027304<br>(5034957) | 20149437<br>(20166027) | 67059992<br>(67092476) |

### 3. Methods of construction

- ▶ As described by Alhakim et al. (2024), can use the inverse Lempel homomorphism to go from an  $\mathcal{OS}_k(n)$  of period  $m$  to an  $\mathcal{OS}_k(n+1)$  of period  $km$ .
- ▶ However, it is non-trivial to ensure that  $D^{-1}$  yields a single sequence of period  $km$  rather than a set of  $(n+1)$ -tuple-disjoint sequences with periods summing to  $km$ .
- ▶ Moreover, some variants of the (inverse) Lempel homomorphism only yield ‘negative’ orientable sequences, in which the collection of all  $n$ -tuples and reverse negative  $n$ -tuples in a period are all distinct.
- ▶ Various approaches have been devised to fix this in recent work by Gabrić & Sawada (2024) and M & Wild (2024). Gabrić & Sawada showed how to join the multiple cycles produced, and Peter Wild and I constructed ‘starter sequences’ with special properties enabling repeated use of the Lempel homomorphism.
- ▶ Sequences produced by Gabrić & Sawada have asymptotically maximal period.

## A different approach: Antisymmetric subgraphs of the de Bruijn digraph

- ▶ A subgraph  $T$  of the de Bruijn digraph  $B_k(n)$  is said to be *antisymmetric* if the following property holds.
- ▶ Suppose  $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$  and  $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$  are  $k$ -ary  $n$ -tuples, i.e. vertices in  $B_k(n)$ .
- ▶ Then if  $(\mathbf{x}, \mathbf{y})$  is an edge in  $T$ , then  $(\mathbf{y}^R, \mathbf{x}^R)$  is *not* an edge in  $T$ .

## From subgraph to sequence

- ▶ If  $S$  is an  $\mathcal{OS}_k(n)$  of period  $m$ , then  $B_S$  is an antisymmetric Eulerian subgraph of  $B_k(n - 1)$  containing  $m$  edges.
- ▶ Antisymmetry follows from the definition of orientable.
- ▶ **More importantly**, if  $T$  is an antisymmetric Eulerian subgraph of  $B_k(n - 1)$  with  $m$  edges, then there exists an  $\mathcal{OS}_k(n)$   $S$  of period  $m$  with edge set  $T$ .
- ▶ Why? Since  $T$  is Eulerian there exists an Eulerian circuit. This Eulerian circuit corresponds to an  $n$ -window sequence, which is orientable since  $T$  is antisymmetric.

## A simple construction for an antisymmetric subgraph

- ▶ Construct the edge set such that an edge connects  $(a_0, a_1, \dots, a_{n-1})$  to  $(a_1, a_2, \dots, a_n)$  if and only if

$$a_n - a_0 \in \{1, 2, \dots, \lfloor (k-1)/2 \rfloor\}.$$

- ▶ Every vertex has in-degree and out-degree  $\lfloor (k-1)/2 \rfloor$ . If  $k \geq 5$  then  $T$  is connected, i.e.  $T$  is Eulerian.
- ▶  $T$  is antisymmetric since every edge  $(a_0, a_1, \dots, a_n)$  satisfies  $a_n - a_0 \in \{1, 2, \dots, \lfloor (k-1)/2 \rfloor\}$ , and hence  $-a_0 - (-a_n) = a_0 - a_n \in \{\lfloor (k+2)/2 \rfloor, \lfloor (k+4)/2 \rfloor, \dots, k-1\}$
- ▶ Thus  $T$  yields an  $\mathcal{OS}_k(n+1)$  of period  $k^n \lfloor (k-1)/2 \rfloor$  (for  $k \geq 5$ ).
- ▶ If  $n = 2$ , or  $n = 3$  and  $k$  odd, the period meets the upper bound.

## A small example

Consider the case  $k = 5$  and  $n = 3$ . The 50 3-tuples in  $T$  are listed in the table, and a period of an  $\mathcal{OS}_5(3)$  containing these 50 3-tuples is:

[00123 40112 23344 00213 24304 21431 03142 03204 10224 41133].

|     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 001 | 002 | 102 | 103 | 203 | 204 | 304 | 300 | 400 | 401 |
| 011 | 012 | 112 | 113 | 213 | 214 | 314 | 310 | 410 | 411 |
| 021 | 022 | 122 | 123 | 223 | 224 | 324 | 320 | 420 | 421 |
| 031 | 032 | 132 | 133 | 233 | 234 | 334 | 330 | 430 | 431 |
| 041 | 042 | 142 | 143 | 243 | 244 | 344 | 340 | 440 | 441 |

## Antinegasymmetry

- ▶ A subgraph  $T$  of the de Bruijn digraph  $B_k(n-1)$  is said to be *antinegasymmetric* if the following property holds.
- ▶ Suppose  $\mathbf{x} = (x_0, x_1, \dots, x_{n-1})$  and  $\mathbf{y} = (y_0, y_1, \dots, y_{n-1})$  are  $k$ -ary  $n$ -tuples, i.e. vertices in  $B_k(n)$ .
- ▶ Then if  $(\mathbf{x}, \mathbf{y})$  is an edge in  $T$ , then  $(-\mathbf{y}^R, -\mathbf{x}^R)$  is *not* an edge in  $T$ .

## From antinegasymmetry to antisymmetry

- ▶ If  $T$  is an antinegasymmetric subgraph of the de Bruijn digraph  $B_k(n-1)$  with edge set  $E$ , then  $D^{-1}(E)$ , of cardinality  $k|E|$ , is the set of edges for an antisymmetric subgraph of  $B_k(n)$ , which, abusing our notation slightly, we refer to as  $D^{-1}(T)$ .
- ▶ If every vertex of  $T$  has in-degree equal to its out-degree, then the same applies to  $D^{-1}(T)$ .
- ▶ If  $T$  is connected and its edge set contains the all-one tuple, then  $D^{-1}(T)$  is connected, i.e. in this case if  $T$  is Eulerian then so is  $D^{-1}(T)$ .

## Constructing antinegasymmetric subgraphs

- ▶ If  $0 \leq u \leq k - 1$ , set  $f(u) = u$  if  $u \neq 0$  and  $f(u) = k/2$  if  $u = 0$ .
- ▶ Suppose  $\mathbf{u} = (u_0, u_1, \dots, u_{n-1})$  is a  $k$ -ary  $n$ -tuple.
- ▶ The *pseudoweight* of  $\mathbf{u}$  is defined to be the sum

$$w^*(\mathbf{u}) = \sum_{i=0}^{n-1} f(u_i)$$

where the sum is computed in  $\mathbb{Q}$ .

- ▶ If  $E$  is the set of all  $k$ -ary  $n$ -tuples with pseudoweight less than  $nk/2$ , then  $E$  is the set of edges for an antinegasymmetric Eulerian subgraph of the de Bruijn digraph  $B_k(n - 1)$ .
- ▶ Moreover,  $E$  contains the all-one  $n$ -tuple.
- ▶ Hence  $D^{-1}(E)$  is a negasymmetric Eulerian subgraph of  $B^k(n)$ .
- ▶ This approach yields orientable sequences with largest possible period for  $n = 3$  (all  $k$ ) and  $n = 4$  ( $k$  odd).

## An example

Suppose  $k = 3$  and  $n = 3$ . The ten 3-ary 3-tuples having pseudoweight less than 4.5 are listed below — this is  $E$ .

|     |     |     |
|-----|-----|-----|
| 111 |     |     |
| 011 | 101 | 110 |
| 001 | 010 | 100 |
| 112 | 121 | 211 |

$D^{-1}(E)$  consists of the 30 4-tuples given below.

|      |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|------|
| 0120 | 1201 | 2012 |      |      |      |      |      |      |
| 0012 | 1120 | 2201 | 0112 | 1220 | 2001 | 0122 | 1200 | 2011 |
| 0001 | 1112 | 2220 | 0011 | 1122 | 2200 | 0111 | 1222 | 2000 |
| 0121 | 1202 | 2010 | 0101 | 1212 | 2020 | 0201 | 1012 | 2120 |

An  $\mathcal{OS}_5(3)$  of period 30 containing these 4-tuples is:

[01201 21202 01012 22011 20011 12200]

## 4. Open questions

- ▶ Prior to the work described, the only cases where the largest period was known was for  $n = 2$  (and a couple of other cases established by exhaustive search).
- ▶ The new bounds and new construction methods mean we have now resolved the maximum period question for  $n = 3$  (all  $k$ ) and  $n = 4$  (odd  $k$ ).
- ▶ However, apart these small values of  $n$ , there is a gap between the period of the longest known  $\mathcal{OS}_k(n)$  and the best upper bound.
- ▶ This suggests further research is needed on two main problems:
  - ▶ tightening the upper bounds;
  - ▶ constructing sequences with periods closer to the upper bounds;so that (ideally) there is no gap.
- ▶ Eliminating the gap altogether seems difficult.

## Largest known periods for $k = 2$

| Order ( $n$ ) | Maximum known period | Dai et al. bound |
|---------------|----------------------|------------------|
| 5             | <b>6</b>             | 6                |
| 6             | <b>16</b>            | 17               |
| 7             | <b>36</b>            | 40               |
| 8             | 92                   | 96               |
| 9             | 174                  | 206              |
| 10            | 416                  | 443              |

- ▶ Figures in bold represent maximal lengths as verified by search.
- ▶ For further details see the excellent website maintained by Joe Sawada: <http://debruijnsequence.org/db/orientable>

## Largest known periods for $k > 2$

Table: Largest known periods for an  $\mathcal{OS}_k(n)$  (and bounds)

| $n$ | $k = 3$           | $k = 4$           | $k = 5$             | $k = 6$            | $k = 7$               | $k = 8$              |
|-----|-------------------|-------------------|---------------------|--------------------|-----------------------|----------------------|
| 2   | <b>3</b><br>(3)   | <b>4</b><br>(4)   | <b>10</b><br>(10)   | <b>12</b><br>(12)  | <b>21</b><br>(21)     | <b>24</b><br>(24)    |
| 3   | <b>9</b><br>(9)   | <b>20</b><br>(20) | <b>50</b><br>(50)   | <b>84</b><br>(84)  | <b>147</b><br>(147)   | <b>216</b><br>(216)  |
| 4   | <b>30</b><br>(30) | 88<br>(112)       | <b>280</b><br>(280) | 534<br>(612)       | <b>1134</b><br>(1134) | 1800<br>(1984)       |
| 5   | 93<br>(99)        | 372<br>(452)      | 1390<br>(1450)      | 3360<br>(3684)     | 7763<br>(8085)        | 15120<br>(15896)     |
| 6   | 288<br>(315)      | 1608<br>(1958)    | 7160<br>(7550)      | 21150<br>(23019)   | 56056<br>(58065)      | 124320<br>(130332)   |
| 7   | 882<br>(972)      | 7308<br>(7844)    | 36890<br>(38100)    | 135450<br>(138144) | 403389<br>(408072)    | 1034264<br>(1042712) |
| 8   | 2691<br>(3096)    | 30300<br>(32390)  | 187980<br>(193800)  | 821940<br>(837879) | 2844408<br>(2876496)  | 8315496<br>(8382492) |

- ▶ Upper bound values are given in brackets.
- ▶ Figures in bold represent maximal lengths.
- ▶ As of 25/5/25 we believe we can increase the 288 for  $n = 6$ ,  $k = 3$  to 303.

## 5. Literature

- ▶ (Mitchell & Wild, 2022): IEEE Trans on Inf Thy **68** (2022) 4782–4789.
- ▶ (Gabrić & Sawada, 2024 ): arXiv 2401.14341 and 2407.07029.
- ▶ (Mitchell & Wild, 2024): arXiv 2409.00672 and 2411.17273.

## Other resources

- ▶ Joe Sawada's page:  
<http://debruijnsequence.org/db/orientable>
- ▶ The Combinatorial Object Server: <http://combos.org/>