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Definition

Let (G, -) be a finite multiplicative group with identity e.
For S,T C @G, define ST = {gh:g € A,h € B}.
We say that (S, T) is a near-factorization of G if

IS| % |T|=|G] =1 and G\ {e} = ST.

In the case where we have an additive group (G, +) with identity 0,
the second condition becomes G — 0= S +T.

Further, (S,T) is a (s, t)-near-factorization of G if |S| = s and
|T| = t, which requires st = |G| — 1.

There is always a trivial (1, |G| — 1)-near-factorization of G given by
S = {e}, T=G-e.

A near-factorization with |S| > 1 and |T'| > 1 is nontrivial.



Example 1: Zqg

A (3, 5)-near-factorization of (Z16,+) is given by
S=1{1,2,3} and T ={0,3,6,9,12}.
We have

1+7T ={1,4,7,10,13}
24T ={2,5,8,11,14}
34T ={3,6,9,12,15}

The union of these three sets is Zj6 \ {0}.



Example 2: Zq. s

An (s, t)-near-factorization of (Z14st,+) is given by
S={1,2,...,s} and T ={0,s,2s,...,(t—1)s}.
We have

1+T={1,1+51+2s,...,1+(t—1)s}
24T =42,2+52+2s,...,2+ (t — 1)s}
3+T={3,3+5,3+2s,...,3+(t—1)s}

(s—=1)+T={(s—=1),(s=1)+s,(s—1)+2s,....(s—1)+ (t —1)s}
s+T={s,2s,3s,...,st}

The union of these s sets is Z144 \ {0}.



Example 3 Dg

The dihedral group D,, of order 2n, n > 2 has the presentation
D, = <a,b:a2 =" :abab:e>,
where e is the identity element.
S =1{e,b,a} and T = {b*b° ab,ab* ab’}
form a (3, 5)-near-factorization of the dihedral group Dg. We have

el = {b%,b°, ab, ab*, ab"}
bT = {b3,b°, a, ab?, ab®}
aT = {ab®, ab®,b,b*,b"}.

The union of these three sets is Dg \ {e}.



Example 4. D,

We illustrate a general construction with n = 13.
@ Dj3 can be depicted by the following diagram:
ti=0 1 2 3 4 5 6 7 8 9 10 11 12
bi

ab’

@ Remove the identity and enter the sequence 1,2, 3,4,5 five
times, as shown.

i=0 1 2 3 4 5 6 7 8 9 10 11 12
bt 1123|451 (2]|3]4|5[1]2
abil5143[211(5]413|[2]|1]|5|4]3




Example 4. continued

@ Partition the cells into tiles of the same shape that each
contain exactly one cell of each type.

=0 1 2 3 4 5 6 7 8 9 10 11 12

bt 1(2]3[4]5(1|2]|3[4]|5([1]2

abf|5|43[2|1|5]|4]|3|2|1]|5(|4]3
@ Let S be the group elements in the leftmost tile:

S = {b,b?, ab? ab,a}.

Each tile has a “notch.” Let T be the group elements
corresponding to these notches:

T = {e,ab®,b°,ab' b1°}.
@ Then ST = D;3 \ {e} and hence it is a
(5, 5)-near-factorization.

@ The same method of construction will produce a

near-factorization of D,, into factors S and T', whenever
IS| x |T| =2n—1.




(0,1)-factorization of J — I

Example (S, T) a (2,2)-near-factorization of Zs,

Let G = C5 with generator g. Take S = {g,¢%} and T = {e, g°}.
Then
ST ={g,9% 9% g*} = Cs —e.

[ 1 ifalyes [ 1 fzlyeT
Set Ms(z,y] = { 0 otherwise; Mrlz,y] = { 0 otherwise;
MS MT J5 - IS
01 1 0 O 1 01 0 0 01 1 1 1
0O 0 1 1 O 01 0 1 0 1 0 1 1 1
0O 0 0 1 1 0O 0 1 0 1 = 1 1 0 1 1
1 0 0 0 1 1 0 0 1 0 1 1 1 0 1
1 1 0 0 O 01 0 0 1 1 1 1 1 0

If (S,T) is a (k,£) near-factorization of G, then McMpr = J — I



Partitionable graphs

@ A graph H on n = uv + 1 vertices is (u, v)-partitionable if for every
vertex T

1. H — x has a partition into u cliques of size v, and
2. H — z has a partition into v independent sets of size u.

@ The construction uses Cayley graphs. Suppose G is a multiplicative
group with identity e,

o S C G\ {e} is symmetric if g=! € S whenever g € S.
e The Cayley graph with connection set S, denoted CAY(G, S),
has vertex set G, and {z,y} is an edge iff 71y € S.
Note:
- Because S is symmetric, z 1y € Siffy~lx € S.
- Because e ¢ S, x7 1z ¢ S, i.e. there are no loops.
- Hence because S is symmetric, CAY(G, S) is a graph
(rather than a digraph).



Partitionable graphs Pécher (2003)

@ Suppose (S,T) is a near-factorization of G.
o Llet A=S5"1S\{e} ={z7ly:z,ye S,z £y}
@ Then CAY(G, A) has the following properties:

1. CAY(G, A) is vertex transitive:

For each g € G, x — zg is an automorphism.
2. CAY(G, A) is normalized:

for every edge xy, there is a max. clique containing {x,y}.
3. CAY(G, A) is partitionable:

for every vertex g € G, the induced subgraph that is obtained

by deleting g, i.e., CAY(G, A)[G \ {g}], has the partition

{gbS : b € T} of |T| cliques of size |S]

{g(Ta)™" : a € S} of |S| independent sets of size |T|



Example

@ Consider the near-factorization of Zq given by S = {0, 1,9} and
T ={2,5,8}. We have

~S5+5=1{0,1,2,8,9},

so A=1{1,2,8,9}.

© CAY(Z19, A) is a graph whose vertices are Z1o. So pairs of vertices
that are distance 1 or 2 from each other are joined by edges.

@ It is easy to see that CAY(Z1g, A)[Z10 \ {0}] can be partitioned into
three cliques of size three, namely

248 =1{1,2,3}, 5+ S ={4,5,6} and 8 + S = {7,8,9}.

@ It is also possible to partition CAY(Z19, A)[Z10 \ {0}] into three
independent sets of size three, namely,

—(T+0)=1{2,5,8}, —(T+1)={1,4,7}, —(T +9) = {3,6,9}.



Example
oLetS {0,1,9} and T' = {2,5,8}. Then S+ T = Zp \ {0}
e S= S+S )\ {0} ={1,2,8,9}.

© {3

Cay( Zlo, CAY(Zo, ) [Z10 \ {0}]

9o

9 8 1 1
8 2 8 2
7 3 7 3
6 5 4 6 5 4

three cliques of size 3  three independent sets of size 3



Equivalence

Suppose (S,T') is a near-factorization of G. If « € AuT(G) and g € G,
then

(@(8)9) (97 e(T)) = (S)gg™ ' a(T) = (S)ax(T) =
= a(G\{e}) = a(G) \ {a(e)}
=G\ {e}

Thus (a(S)g, g 'a(T)) is an equivalent near-factorization of G.

a(ST)

A near-factorization (S, T) of an additive group G is symmetric if S and
T are both symmetric.

Theorem 1 (de Caen et al, 1993).
If (S,T) is a near-factorization of additive abelian group G, then there

exists g € G such that (S + g, —g + T) is a symmetric near-factorization
of G.

Every near-factorization of an abelian group is equivalent to a symmetric
near-factorization.



Example

The (3, 5)-near-factorization of Z4 given by
S=4{0,1,15} and T ={2,5,8,11,14}
is equivalent to the near-factorization
S'=75+2={2,9,11} and T'=-2+7T=1{0,1,6,11,12}

Theorem 1 guarantees that there is an element g € Z¢ such that
(S"+g,—g+T') is symmetric. The value g = 14 works, yielding

S'+14=1{0,7,9} and —14+T ={2,3,8,13,14}.



Mates

If S is a subset of the order n finite group G and T is such
that (S,T) is a (r, s)-near-factorization of G, then we say T is
a mate to S.

o If T"is a mate to S, then ST = G \ {e}.

1 ifz"lyes;
0 if not.
Consequently det(J — I) = (=1)""1(n — 1) # 0.

Thus det(Mg) # 0

Therefore

Then MgMp = J — I, where MS[xay] = {

Mp = (Mg)'(J—1) = %J — (Mg)™?

Theorem 2 (Kreher-Martin-Stinson 2025).
If S C G has a mate T, then T is unique.



Computation

@ Consider Mt
Mrlz,yl=1o s yecT e (yr ) teec T o Myp[(yzt),e] =1

The matrix My is completely determined by its "first” column.

@ To determine if S C G has a mate T" we solve

MgX =1[0,1,1,....,1]" ( The first column of J — I)

@ If X exists and is a (0,1)-valued vector, then S has the mate T,

where
T={"':Xp =1}

(X is the first column of Mrp.)

This is very efficient. However the number of possible subsets S to
examine can be large.



reducing the search space

@ The search space is the set of s element subsets S C G \ {e} for
which we compute a possible mate.

@ If G is abelian we can assume the possible near-factorization are
symmetric and only consider S, where S = —S.

@ If we know AUT(G) we need only consider S that are
lexicographically minimal with respect to equivalence.



Computational results

@ Near-factorizations of cyclic groups exist for all possible parameters.
If (n — 1) = st, then

Zn, \{0} ={1,2,...,8} +{0,5,2s,...,(t —1)s}

See [3] for recent further results on this topic.

@ For noncyclic abelian groups, it was previously known (mainly due
to theoretical results in de Caen et al [1]) that there are no
non-trivial examples in noncyclic abelian groups of order < 100.

@ We have now proven nonexistence in all noncyclic abelian groups G
of order < 200; there were roughly 100 parameter sets (G, r,s) to
consider.

e Most possibilities were ruled out by theoretical criteria, but
several parameter sets required exhaustive searches.
e "Difficult groups” requiring computer search:
Zag X (Z3)?, Znz X (Z2)®, L1z X L, Ly x (Z2)?,
Ly X (Z3)?, Zsg x (Z2)?, Zng X (Z3)?, ZLas x (Z2)?,
Z7 X (Z5)2, le X Zg X ZQ, Z49 X (22)2, and Z49 X (ZQ)Q.



Nonabelian groups

The only known non-abelian groups that are known to have a
near-factorization are:

o de Caen et al. The (s, t)-near-factorizations of the dihedral
group D,, mentioned earlier,

D, = {a,b:a*=1,b" =1,aba =b"")

for all st = (n —1).

@ Pécher’s (7, 7)-near-factorization of D5 x Cs.
DsxCxs = <a,b,c ca?2 =0 =abab= ¢ = e,ac = ca,bc = cb>.
@ Pécher's (7,7)-near-factorization of C2 x5 Oy
C’52>4202 = (a,b,cla® = = =e,cac=a"', cbc= b1, bc = cb)

Pécher checked all non-abelain groups of order at most 50.
See Kreher, Paterson and Stinson [4] and Pécher [7].



A-mates

@ Let G be a finite group with identity e

e We say that (S,T) is a A-fold near-factorization of G if
|S| % |T'| = A(|G| \ {e}) and each element of G \ {e} occurs A
times in the product ST.

ST = MG\ {e})

@ In the case where we have an additive group (G, +) with
identity 0, then each element of G \ {0} occurs A times in the
sum S +T.

S+T = XG\ {0}).

@ Necessarily A < s and A < t.

e If (S,T) is a A-fold near-factorization, then we say that 7' is a
A-mate of S.



What? They need not be symmetric?

There is an 2-fold (3, 4)-near-factorization (S,T) of Zs.

S=1{0,1,3} and T ={1,2,3,5}

w~ o+
=N |
[ U G N}
> B Wl w

There is not a symmetric 2-fold near-factorization (S,T) of Z.

Proof.

Let (S,T) be a symmetric 2-fold (3,4)-near factorization of Zs.

° |S|=3=S5={0,z,—z}.

e (S,T'), where S’ = Sz~ ={0,1,—6} and T" = 2T
is also a 2-fold near-factorization of Zr.

@ Because 0¢ S’ + T = 0,1,6 ¢ T' = T' = {2,3,4,5}

@ But S’ +T’" contains0+3=1+2=6+4=3,
and 3 should occur twice.

= Oy Ot Ot



A-fold(s, t) near factorizations with A > 2, n < 35

Symmetric Non-symmetric
n | group s| t| A n | group s| t|A
13 | Zs3 6 6|3 11 | Zyy 5 6| 3
15 | Zi5 4 712 13 | Zy3 4 91 3
16 | (Z4)? 6|10 4 15 | Zss 7] 84
16 | (Zo)* 6|10 4 16 | Zg X Zy 5]/ 913
17 | Zq17 8] 84 16 | Zg X Zy 6|10 ] 4
21 | Zo 4110 | 2 16 | Z4 x (Z2)? 6|10 | 4
25 | (Zs)? 41127 2 19 | Zy9 91105
25 | (Z5)? 12[12]6 21 | Zy 516 | 4
27 | Zg X Zs 41131 2 21 | Zoy 8|10 | 4
27 | (Z3)3 8113 4 23 | Za3 11126
29 | Zog 14 |14 | 7 27 | (Z3)? 1314 [ 7
33 Z33 4 2 28 Zl4 X ZQ 9 12 4
35 | Zss 4 2 31 | Zz 620 4
31 | Zs 6255
35 | Zss 817 | 4
35 | Zss 1718 ]9




If S C G, then S~t={x71:2 € S}
(If G is abelian and written additively, S=' = —S = {—z :x € S}.)

A (v, k, \)-difference set in the group G is a k-element subset S of G
such that the identity e occurs k times in the product SS~! and each
non-identity element occurs A times.

Theorem 3.  Suppose there is a (v, k, \)-difference set S in a group G
of order v. If T =G\ S~t. Then (S,T) is a (k — \)-fold (k,v — k)-near
factorization.

— |1 3 4 5 9
1 7

Example 3 g g 180 9 2

A (11,5, 2)-difference set in Zq; is 413 1 0 10 5

S =1{1,3,4,5,9} 5|14 2 1 0 7
9|18 6 5 4 0

S~ =-5=1{10,8,7,6,2} = +]0 1 3 4 5 9

T={0,1,3,4,5,9} T[1 2 4 5 6 10
313 4 6 7 8 1
404 5 7 8 9 2

S+ T =3(Zn \{0}) 5/5 6 8 9 10 3
99 10 1 2 3 7




The group ring Z[G].
Let G be a finite group. The group ring Z[G] is
Z|G] :{chg:cgez,gEG}
geG
Then the multi-subset S' of G, is denoted in the group ring

as S = des n;g, where ng is the number of times g occurs in S

Example: G = C7 = {1,a,a?,--- ,a’}, the cyclic group of order 7
generated by a. Then

{1,0,0,0%} in G =1+ 2a+o® € Z[G]

addition:
14+ a+a’)+ (a+ab) = (1+2a+a° +ab)

mutiplication:
1+ a+a®)(a+a®) =1(a+a®) + ala+a®) + o’ (a + o)
= (a+a°%) + (a® +¢) + (a® +a?)
=l+a+ao®+a*+2a°



The group ring Z[G]. Continued

If SCG, let S=3" g9, then (5,T) is a \-fold near-factorization of
G, if and only if in the group ring

ST = MG —¢)

Example in Z[Cr]:

(e+a+a®)a+a?+a®+a’) = ela+a?+ad+ad)
+a(a+a? + a3+ a?)
+a3(a+a? +a +ad)

= (a+a®+a®+ad)
+(a? + a® + o + af)
+(a* +a° +a’ +a)
=  2(G;—-1)

The group ring Z|G] is a convenient algebraic way to handle multi-sets.



Proof of Theorem 3
If $ C G, then SCH =% g7t

A k-element subset D C G is a (v, k, A)-difference set if and only if
DDV = ke + \(G —¢)

Theorem 3. Suppose there is a (v, k, A)-difference set D in a group G of
orderv. f S=Dand T=G\ S '={geG:9g71 ¢85},
then (S,T) is a (k — A)-fold (k,v — k)-near factorization.

Proof.

First: SG = kG
Next: SSCY = ke+ MG —e)
Hence: ST = S(G-5tY)

= kG — (ke + MG —¢))
= (k-XN(G-¢ O



Remark
Suppose the k-element subset S C G is a (v, k, A)-difference set then

SSEY = ke 4+ A(G —e)

@ The "inverse” is also a difference set.
SEDS = ke + A(G —e)
So S(=1) is also a difference set.

@ The complement is also a difference set
Let T =G\ S, where S is a a (v, k, \)-difference set, let
t=|T|=v—k.
TTD = (G - SEYYG - V)Y = (G- sDY (G - 8)

= GG -GS -8-V@+ 508
= (v)G — kG — kG + (ke + A\(G — ¢))
={t—k)G+ke+ NG —e¢)
=(t+A—Fk)(G—e)+te



The converse is true

Theorem 3 converse.

Suppose (S,T) is A-fold (s, t)-near factorization of G, where |G| = s + ¢.
Then S is an (s +t,s,s — \)-difference set in G and T = G\ S~ ! is an
(s +t,t,t — \)-difference set in G.

Proof.
In the Z[G], T = G — SV,

S8V = §(G—T)=5G - ST = sG — A\(G —e)
=(sG—e)+se—AG—e)=(s—N)(G—e)+se
Therefore S is a (s + t, s, s — A)-difference set.

and T is a (s +t,t,t — A)-difference set,
because T is the complement of S~1. OJ



Partial difference set

A (v, k, A, u)-partial difference set (or PDS) in a group G of order
vis a subset D C G\ {e} such that |D| = k and the following
group ring equation is satisfied:
DDV = (k= p)e + (A — p)D + uG,
=ke+ XD+ pu(G—-D —e)

The set D ={1,3,4,9,10,12} is a (13,6,2,3)-PDS in Z3.

-1 3 4 9 10 12
170 11 10 5 4 2
312 012 7 6 4
413 1 08 7 9
91 8 6 5 0 12 10
079 7 6 1 0 11
12411 9 8 3 2 0




PDS construction

Theorem 4. Suppose Disa (s+t+1,s,5s—A—1,5—\)-PDS
in a group G, where |G| =s+t+1ande¢ D. Let S =D and
T=G\SEY\ {e}. Then (S,T) is a \-fold

(s, t)-near-factorization of G.

Proof.
Computing in Z[G] we see that
ST =S(G - SV —¢)
= 8G - 88D —Se

:sG(se+(5)\1)S+(5)\)(GSc)>S

=sG—se—(s—A=1)S—(s=AN)(G-S—-¢e)—S
= AG — e
=G —e) O



Example and converse

From the (13,6,2,3)-PDS given in the Example a 3-fold
(6,6)-near-factorization of Zj3 is obtained. The near-factorization has

S ={1,3,4,9,10,12} and T = {2,5,6,7,8, 11}.

Theorem 4 converse.

If (S,T) is an A-fold (s, t)-near-factorization of G and |G| =s+ ¢+ 1.
Then Sisan (s+t+1,5,s —A—1,5s—A)-PDS in G and T is an
(s+t+1,t,t—A—1,t—\)-PDS



Theorem 5.  Suppose p and ¢ are any positive odd integers greater
than 1. Then there exists a 2-fold (4, (n — 1)/2)-near-factorization (S, T")
of Zp, X Zy.

The construction: Take

S§={(1,1),(1,-1),(-1,1), (-1, -1}
Set C7 = {4i +j,4i + 5+ 1}.

Case 1: p=1+4a, g =1+ 4b.
= (Geror) < (U)o (D)= (Gerowm)
Case 2: p=1+4a, g = —1 + 4b.
T = <(p:09u{4a}) x (jL_):C?U{O}D U <(GL_J:03> X (j!lql))

Case 3: p=—1+4a, g=—1+4b.

T <(‘p§c§u{0}> X (j@;c})) u <(GL:J:03> X (DZC?U{O})>

) 7=0



Example Lys = Z5 X Zg
S={(1,1),(1,8),(4,1),(4,8)}.
Co ={0,1} CY = {4,5}.
2 ={2,3) C2 = (6,7}

Casel: p=1+4a,q=1+4b, wherea=1,b=2
((UC%{@}) (QC?))U((QC?)x(QC’?U{ZLb}))
<Co u{4} > ( CO ucyu {8}))

)
<{0 1,4} x {2,3,6, 7}) <{2 3} x {0,1,4,5, 8})
e

0,7),(1,2),(1,3),(1,6), (1,7 (4,3
2,4), )(8)(30)(3)( 3

0 o
==
——

(1,2
(2,5



Example Continued

Thus
S={(1,1),(1,8),(4,1), (4, 8)}.
T — {(0, 2),(0,3),(0,6),(0,7),(1,2),(1,3),(1,6),(1,7),(4,2),(4,3),(4,6)}
T 1(4,7),(2,0),(2,1),(2,4),(2,5),(2,8),(3,0),(3,1), (3,4),(3,5), (3,8)

is (supposedly) a 2-fold (4, 22)-Near-factorization of Zj x Zg.
(1,1) generates Zs X Zg and 1 generates Zy5 and so ¢ : (z,x) +— x is an
isomorphism. For example (1,8) = (26,26) So 7(1,8) = 26.
Thus

¥(S) = {1,26,19,44}.

w1y = {6:8,11,13,15,16,17,18, 20,21, 22,

= 123, 24, 25,27, 28, 29, 30, 32, 34, 37, 39

is (supposedly) a 2-fold (4, 22)-Near-factorization of Zgs.

Lets check!



Example continued

S" =(S) = {1,26,19,44}.

. ~6,8,11,13,15,16,17, 18,20, 21, 22,
T'=(T) = {23,24,257277 28,29,30,32,34,37,39}

is (supposedly) a 2-fold (4,22)-Near-factorization of Zys.

Lets check!

13 15 16 17 18 2

6 811 0 2

7 912 14 16 17 18 19 21 2
19 |25 27 30 32 34 35 36 37 39 4

2 34 37 39 41 42 43 44 1

5 710 12 14 15 16 17 19 2



n | group s t | A | Sym.? |Authority

7| Zr 3 4 | 2 no Theorem 3, D ={ 0, 1, 3}

9 | (Zs3)? 4 4 | 2 yes | Theorem 5

11 | Z11 5 6 | 3 no Theorem 3, D=1{0, 1, 2, 4, 7}

13 | Zi3 4 9| 3 no Theorem 3, D ={ 0, 1, 3, 9}

13 | Zi3 6 6 | 3 yes Theorem 4, D = {1, 3, 4, 12, 10, 9}

15 | Zis 4 7 2 yes Theorem 5

15 | Z1s 7 8 | 4 no Theorem 3, D={0, 1, 2, 4, 5, 8, 10}

16 | (Z4)? 6|10 | 4 yes |Theorem 3, D = {(0,1), (1,0), (1,1), (0,3),
(3.0), (3.3)}

16 | Zax(Z2)? | 6 | 10 | 4 | yes |Theorem 3, D = {(0,0,0), (0,0,1), (0,1,0),
(2,1,1), (1,0,0), (3,0,0)}

16 | ZgxZs 5 9 | 3 no = {(0,0), (0,1), (1,0), (3,0), (4,0)},
T ={(7.1), (6,0), (51), (41), (3,0), (3,1)
(2,0), (1,0), (1,1)}

16 | ZgXZo 6 | 10 | 4 no Theorem 3, D = {(0,0), (0,1), (1,0), (2,0),
(5,0), (6.1)}

17 | Za7 8 8 | 4 yes Theorem 4, D = {1, 2, 4, 8, 16, 15, 13, 9}

19 | Zig 9 | 10 5 no Theorem 3, D ={0, 1, 2, 3,5, 7, 12, 13,
16}

21 | Zo1 4 | 10 2 yes Theorem 5

21 | Zo1 5116 | 4 no Theorem 3, D ={0, 1, 4, 14, 16}

21 | Za1 810 4] no [S=1{0 1, 6 7,10, 13, 16}, T = { 17
13,12,9, 7, 5 4,3,2, 1}

23 | Zos 11 12 6 no Theorem 3, D = {0, 1, 2, 3,5, 7, 8, 11,

12, 15, 17}




n | group s t | A | Sym.? |Authority

25 | (Z5)? 4112 | 2 yes | Theorem 5

25 | (Z5)? 12 | 12 | 6 yes | Theorem 4, D = {(0,1), (0,2), (1,0), (1,1),
(2,0), (2,2), (0,4), (0,3), (4,0), (4.4), (3.0),
(3.3)}

27 | (Z3)3 8| 13 | 4 yes [S = {(0,0,1), (0,1,0), (1,0,0), (1, 1),
(0,0,2), (0,2,0), (2,0,0), (2,2 2)} =
{(0,0,0), (0,2,1), (0,1,2), (2,0,1), (2,2,1),
(2,1,0), (2.1,2), (2,1,1), (1, 02) (1,2,0),
(1,2,2), (1,2,1), (1,1,2)}

27 | (Z3)3 131417 no [Theorem 3, D = {(0,0,0), (0,0,1), (0,0,2),
(0,1,0), (0,1,1), (0,2,0), (1,0,0), (1,0,1),
(1,1,0), (2,0,1), (2,1,2), (2,2,0), (2,2,2)}

27 | ZgxZs 4 (13 | 2 yes | Theorem 5

28 | Zi1aXZo 9|12 4 no S = {(0,0), (0,1), (1,0), (2,0), (3,1), (4,1),
(7,1), (12,0), (13,0)}, 7' = {(13,1), (12,1),
(11,0, (9,0), (9.1), (8,1), (6,1), (5.0),
(41), 3.0), (3.1), (L1)}

29 | Zog 14 14 7 yes Theorem 4, D = {1, 4,5, 6, 7, 9, 13, 28,
25, 24, 23, 22, 20, 16}

31 | Za1 6 20| 4| no |S={01,2 48, 16}, T = { 28, 26, 25,
24,22, 21, 19, 17, 16, 14, 13, 12, 11, 8, 7,
6,4, 3,2, 1}

31 | Za1 6 | 25| 5 no Theorem 3, D ={ 0, 1, 3, 8, 12, 18}

31 | Zs1 15 | 16 | 8 no |[Theorem 3, D={0,1,2,3,5,6, 8,9, 13,
16, 21, 22, 23, 25, 27}

33 | Zss 4 | 16 | 2 yes Theorem 5

33 | Zss 12 16 6 no S=1{01,3, 4,6, 10, 12, 15, 21, 22, 25,
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