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Definition

Let (G, ·) be a finite multiplicative group with identity e.

For S, T ⊆ G, define ST = {gh : g ∈ A, h ∈ B}.

We say that (S, T ) is a near-factorization of G if

|S| × |T | = |G| − 1 and G \ {e} = ST.

In the case where we have an additive group (G,+) with identity 0,
the second condition becomes G− 0 = S + T .

Further, (S, T ) is a (s, t)-near-factorization of G if |S| = s and
|T | = t, which requires st = |G| − 1.

There is always a trivial (1, |G| − 1)-near-factorization of G given by

S = {e}, T = G− e.

A near-factorization with |S| > 1 and |T | > 1 is nontrivial.



Example 1: Z16

A (3, 5)-near-factorization of (Z16,+) is given by

S = {1, 2, 3} and T = {0, 3, 6, 9, 12}.

We have

1 + T = {1, 4, 7, 10, 13}
2 + T = {2, 5, 8, 11, 14}
3 + T = {3, 6, 9, 12, 15}

The union of these three sets is Z16 \ {0}.



Example 2: Z1+rs

An (s, t)-near-factorization of (Z1+st,+) is given by

S = {1, 2, . . . , s} and T = {0, s, 2s, . . . , (t− 1)s}.

We have

1 + T = {1, 1 + s, 1 + 2s, . . . , 1 + (t− 1)s}
2 + T = {2, 2 + s, 2 + 2s, . . . , 2 + (t− 1)s}
3 + T = {3, 3 + s, 3 + 2s, . . . , 3 + (t− 1)s}

...

(s− 1) + T = {(s− 1), (s− 1) + s, (s− 1) + 2s, . . . , (s− 1) + (t− 1)s}
s+ T = {s, 2s, 3s, . . . , st}

The union of these s sets is Z1+st \ {0}.



Example 3 D8

The dihedral group Dn of order 2n, n > 2 has the presentation

Dn =
〈
a, b : a2 = bn = abab = e

〉
,

where e is the identity element.

S = {e, b, a} and T = {b2, b5, ab, ab4, ab7}

form a (3, 5)-near-factorization of the dihedral group D8. We have

eT = {b2, b5, ab, ab4, ab7}
bT = {b3, b6, a, ab3, ab6}
aT = {ab2, ab5, b, b4, b7}.

The union of these three sets is D8 \ {e}.



Example 4. Dn

We illustrate a general construction with n = 13.

D13 can be depicted by the following diagram:

i =

bi

abi

0 1 2 3 4 5 6 7 8 9 10 11 12

Remove the identity and enter the sequence 1, 2, 3, 4, 5 five
times, as shown.

i =

bi

abi

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 1 2 3 4 5 1 2

3451234512345



Example 4. continued
Partition the cells into tiles of the same shape that each
contain exactly one cell of each type.

i =

bi

abi

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 1 2 3 4 5 1 2

3451234512345

Let S be the group elements in the leftmost tile:

S = {b, b2, ab2, ab, a}.

Each tile has a “notch.” Let T be the group elements
corresponding to these notches:

T = {e, ab5, b5, ab10, b10}.

Then ST = D13 \ {e} and hence it is a
(5, 5)-near-factorization.

The same method of construction will produce a
near-factorization of Dn into factors S and T , whenever
|S| × |T | = 2n− 1.



(0,1)-factorization of J − I

Example (S, T ) a (2,2)-near-factorization of Z5,

Let G = C5 with generator g. Take S = {g, g2} and T = {e, g2}.
Then

ST = {g, g2, g3, g4} = C5 − e.

Set MS [x, y] =

{
1 if x−1y ∈ S
0 otherwise;

MT [x, y] =

{
1 if x−1y ∈ T
0 otherwise;

MS MT J5 − I5
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0




1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0
0 1 0 0 1

 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0


If (S, T ) is a (k, ℓ) near-factorization of G, then MSMT = J − I



Partitionable graphs

A graph H on n = uv + 1 vertices is (u, v)-partitionable if for every
vertex x

1. H − x has a partition into u cliques of size v, and
2. H − x has a partition into v independent sets of size u.

The construction uses Cayley graphs. Suppose G is a multiplicative
group with identity e,

S ⊆ G \ {e} is symmetric if g−1 ∈ S whenever g ∈ S.
The Cayley graph with connection set S, denoted Cay(G,S),
has vertex set G, and {x, y} is an edge iff x−1y ∈ S.

Note:
· Because S is symmetric, x−1y ∈ S iff y−1x ∈ S.
· Because e /∈ S, x−1x /∈ S, i.e. there are no loops.
· Hence because S is symmetric, Cay(G,S) is a graph

(rather than a digraph).



Partitionable graphs Pêcher (2003)

Suppose (S, T ) is a near-factorization of G.

Let A = S−1S \ {e} = {x−1y : x, y ∈ S, x ̸= y}

Then Cay(G,A) has the following properties:

1. Cay(G,A) is vertex transitive:

For each g ∈ G, x 7→ xg is an automorphism.
2. Cay(G,A) is normalized:

for every edge xy, there is a max. clique containing {x, y}.
3. Cay(G,A) is partitionable:

for every vertex g ∈ G, the induced subgraph that is obtained
by deleting g, i.e., Cay(G,A)[G \ {g}], has the partition

{gbS : b ∈ T} of |T | cliques of size |S|

{g(Ta)−1 : a ∈ S} of |S| independent sets of size |T |



Example

Consider the near-factorization of Z10 given by S = {0, 1, 9} and
T = {2, 5, 8}. We have

−S + S = {0, 1, 2, 8, 9},

so A = {1, 2, 8, 9}.

Cay(Z10, A) is a graph whose vertices are Z10. So pairs of vertices
that are distance 1 or 2 from each other are joined by edges.

It is easy to see that Cay(Z10, A)[Z10 \ {0}] can be partitioned into
three cliques of size three, namely

2 + S = {1, 2, 3}, 5 + S = {4, 5, 6} and 8 + S = {7, 8, 9}.

It is also possible to partition Cay(Z10, A)[Z10 \ {0}] into three
independent sets of size three, namely,

−(T + 0) = {2, 5, 8}, −(T + 1) = {1, 4, 7}, −(T + 9) = {3, 6, 9}.



Example
Let S = {0, 1, 9} and T = {2, 5, 8}. Then S + T = Z10 \ {0}
S = (−S + S) \ {0} = {1, 2, 8, 9}.
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Equivalence
Suppose (S, T ) is a near-factorization of G. If α ∈ Aut(G) and g ∈ G,
then (

α(S)g
)(
g−1α(T )

)
= α(S)gg−1α(T ) = α(S)α(T ) = α(ST )

= α(G \ {e}) = α(G) \ {α(e)}
= G \ {e}

Thus (α(S)g, g−1α(T )) is an equivalent near-factorization of G.

A near-factorization (S, T ) of an additive group G is symmetric if S and
T are both symmetric.

Theorem 1 (de Caen et al, 1993).
If (S, T ) is a near-factorization of additive abelian group G, then there
exists g ∈ G such that (S + g,−g + T ) is a symmetric near-factorization
of G.

Every near-factorization of an abelian group is equivalent to a symmetric
near-factorization.



Example

The (3, 5)-near-factorization of Z16 given by

S = {0, 1, 15} and T = {2, 5, 8, 11, 14}

is equivalent to the near-factorization

S′ = 7S + 2 = {2, 9, 11} and T ′ = −2 + 7T = {0, 1, 6, 11, 12}

Theorem 1 guarantees that there is an element g ∈ Z16 such that
(S′ + g,−g + T ′) is symmetric. The value g = 14 works, yielding

S′ + 14 = {0, 7, 9} and −14 + T ′ = {2, 3, 8, 13, 14}.



Mates

If S is a subset of the order n finite group G and T is such
that (S, T ) is a (r, s)-near-factorization of G, then we say T is
a mate to S.

If T is a mate to S, then ST = G \ {e}.

Then MSMT = J − I, where MS [x, y] =

{
1 if x−1y ∈ S;

0 if not.

Consequently det(J − I) = (−1)n−1(n− 1) ̸= 0.

Thus det(MS) ̸= 0

Therefore

MT = (MS)
−1(J − I) = 1

rJ − (MS)
−1

Theorem 2 (Kreher-Martin-Stinson 2025).
If S ⊆ G has a mate T , then T is unique.



Computation

Consider MT

MT [x, y] = 1 ⇔ x−1y ∈ T ⇔ (yx−1)−1e ∈ T ⇔MT [(yx
−1), e] = 1

The matrix MT is completely determined by its ”first” column.

To determine if S ⊆ G has a mate T we solve

MSX = [0, 1, 1, ..., 1]T ( The first column of J − I)

If X exists and is a (0,1)-valued vector, then S has the mate T ,
where

T = {b−1 : X[b] = 1}

(X is the first column of MT .)

This is very efficient. However the number of possible subsets S to
examine can be large.



reducing the search space

The search space is the set of s element subsets S ⊆ G \ {e} for
which we compute a possible mate.

If G is abelian we can assume the possible near-factorization are
symmetric and only consider S, where S = −S.

If we know Aut(G) we need only consider S that are
lexicographically minimal with respect to equivalence.



Computational results

Near-factorizations of cyclic groups exist for all possible parameters.
If (n− 1) = st, then

Zn \ {0} = {1, 2, . . . , s}+ {0, s, 2s, . . . , (t− 1)s}

See [3] for recent further results on this topic.

For noncyclic abelian groups, it was previously known (mainly due
to theoretical results in de Caen et al [1]) that there are no
non-trivial examples in noncyclic abelian groups of order ≤ 100.

We have now proven nonexistence in all noncyclic abelian groups G
of order ≤ 200; there were roughly 100 parameter sets (G, r, s) to
consider.

Most possibilities were ruled out by theoretical criteria, but
several parameter sets required exhaustive searches.
“Difficult groups” requiring computer search:
Z29 × (Z2)

2, Z17 × (Z2)
3, Z17 × Z4Z2, Z37 × (Z2)

2,
Z17 × (Z3)

2, Z39 × (Z2)
2, Z19 × (Z3)

2, Z43 × (Z2)
2,

Z7 × (Z5)
2, Z11 × Z8 × Z2, Z49 × (Z2)

2, and Z49 × (Z2)
2.



Nonabelian groups

The only known non-abelian groups that are known to have a
near-factorization are:

de Caen et al. The (s, t)-near-factorizations of the dihedral
group Dn mentioned earlier,

Dn = ⟨a, b : a2 = 1, bn = 1, aba = b−1⟩

for all st = (n− 1).

Pêcher’s (7, 7)-near-factorization of D5 × C5.

D5×C5 =
〈
a, b, c : a2 = b5 = abab = c5 = e, ac = ca, bc = cb

〉
.

Pêcher’s (7, 7)-near-factorization of C2
5 ⋊2 C2

C2
5⋊2C2 = ⟨a, b, c|a5 = b5 = c2 = e, cac = a−1, cbc = b−1, bc = cb⟩

Pêcher checked all non-abelain groups of order at most 50.
See Kreher, Paterson and Stinson [4] and Pêcher [7].



λ-mates

Let G be a finite group with identity e

We say that (S, T ) is a λ-fold near-factorization of G if
|S| × |T | = λ(|G| \ {e}) and each element of G \ {e} occurs λ
times in the product ST .

ST = λ(G \ {e})

In the case where we have an additive group (G,+) with
identity 0, then each element of G \ {0} occurs λ times in the
sum S + T .

S + T = λ(G \ {0}).

Necessarily λ ≤ s and λ ≤ t.

If (S, T ) is a λ-fold near-factorization, then we say that T is a
λ-mate of S.



What? They need not be symmetric?

There is an 2-fold (3, 4)-near-factorization (S, T ) of Z7.

S = {0, 1, 3} and T = {1, 2, 3, 5}

+ 1 2 3 5
0 1 2 3 5
1 2 3 4 6
3 4 5 6 1

There is not a symmetric 2-fold near-factorization (S, T ) of Z7.

Proof.
Let (S, T ) be a symmetric 2-fold (3, 4)-near factorization of Z7.

|S| = 3 ⇒ S = {0, x,−x}.

(S′, T ′), where S′ = Sx−1 = {0, 1,−6} and T ′ = xT
is also a 2-fold near-factorization of Z7.

Because 0 /∈ S′ + T ′ ⇒ 0, 1, 6 /∈ T ′ ⇒ T ′ = {2, 3, 4, 5}

But S′ + T ′ contains 0 + 3 = 1 + 2 = 6 + 4 = 3,
and 3 should occur twice.



λ-fold(s, t) near factorizations with λ > 2, n ≤ 35
Symmetric
n group s t λ
9 (Z3)

2 4 4 2
13 Z13 6 6 3
15 Z15 4 7 2
16 (Z4)

2 6 10 4
16 (Z2)

4 6 10 4
17 Z17 8 8 4
21 Z21 4 10 2
25 (Z5)

2 4 12 2
25 (Z5)

2 12 12 6
27 Z9 × Z3 4 13 2
27 (Z3)

3 8 13 4
29 Z29 14 14 7
33 Z33 4 16 2
35 Z35 4 17 2

Non-symmetric
n group s t λ
7 Z7 3 4 2

11 Z11 5 6 3
13 Z13 4 9 3
15 Z15 7 8 4
16 Z8 × Z2 5 9 3
16 Z8 × Z2 6 10 4
16 Z4 × (Z2)

2 6 10 4
19 Z19 9 10 5
21 Z21 5 16 4
21 Z21 8 10 4
23 Z23 11 12 6
27 (Z3)

3 13 14 7
28 Z14 × Z2 9 12 4
31 Z31 6 20 4
31 Z31 6 25 5
35 Z35 8 17 4
35 Z35 17 18 9



If S ⊆ G, then S−1 = {x−1 : x ∈ S}.
(If G is abelian and written additively, S−1 = −S = {−x : x ∈ S}.)

A (v, k, λ)-difference set in the group G is a k-element subset S of G
such that the identity e occurs k times in the product SS−1 and each
non-identity element occurs λ times.

Theorem 3. Suppose there is a (v, k, λ)-difference set S in a group G
of order v. If T = G \ S−1. Then (S, T ) is a (k − λ)-fold (k, v − k)-near
factorization.

Example
A (11, 5, 2)-difference set in Z11 is
S = {1, 3, 4, 5, 9}

S−1 = −S = {10, 8, 7, 6, 2} ⇒
T = {0, 1, 3, 4, 5, 9}

S + T = 3(Z11 \ {0})

− 1 3 4 5 9
1 0 9 8 7 3
3 2 0 10 9 6
4 3 1 0 10 5
5 4 2 1 0 7
9 8 6 5 4 0

+ 0 1 3 4 5 9
1 1 2 4 5 6 10
3 3 4 6 7 8 1
4 4 5 7 8 9 2
5 5 6 8 9 10 3
9 9 10 1 2 3 7



The group ring Z[G].
Let G be a finite group. The group ring Z[G] is

Z[G] =
{∑

g∈G

cgg : cg ∈ Z, g ∈ G
}

Then the multi-subset S of G, is denoted in the group ring
as S =

∑
g∈S njg, where ng is the number of times g occurs in S

Example: G = C7 = {1, α, α2, · · · , α6}, the cyclic group of order 7
generated by α. Then

{1, α, α, α3} in G ≡ 1 + 2α+ α3 ∈ Z[G]

addition:

(1 + α+ α5) + (α+ α6) = (1 + 2α+ α5 + α6)

mutiplication:

(1 + α+ α5)(α+ α6) = 1(α+ α6) + α(α+ α6) + α5(α+ α6)

= (α+ α6) + (α2 + e) + (α6 + α4)

= 1 + α+ α2 + α4 + 2α6



The group ring Z[G]. Continued

If S ⊂ G, let S =
∑

g∈S g, then (S, T ) is a λ-fold near-factorization of
G, if and only if in the group ring

ST = λ(G− e)

Example in Z[C7]:

(e+ α+ α3)(α+ α2 + α3 + α5) = e(α+ α2 + α3 + α5)
+α(α+ α2 + α3 + α5)
+α3(α+ α2 + α3 + α5)

= (α+ α2 + α3 + α5)
+(α2 + α3 + α4 + α6)
+(α4 + α5 + α6 + α)

= 2(G7 − 1)

The group ring Z[G] is a convenient algebraic way to handle multi-sets.



Proof of Theorem 3

If S ⊂ G, then S(−1) =
∑

g∈S g
−1.

A k-element subset D ⊆ G is a (v, k, λ)-difference set if and only if

DD(−1) = ke+ λ(G− e)

Theorem 3. Suppose there is a (v, k, λ)-difference set D in a group G of
order v. If S = D and T = G \ S−1 = {g ∈ G : g−1 ̸∈ S},
then (S, T ) is a (k − λ)-fold (k, v − k)-near factorization.

Proof.

First: SG = kG

Next: SS(−1) = ke+ λ(G− e)

Hence: ST = S(G− S(−1))
= kG−

(
ke+ λ(G− e)

)
= (k − λ)(G− e)



Remark
Suppose the k-element subset S ⊆ G is a (v, k, λ)-difference set then

SS(−1) = ke+ λ(G− e)

The ”inverse” is also a difference set.

S(−1)S = ke+ λ(G− e)

So S(−1) is also a difference set.

The complement is also a difference set
Let T = G \ S, where S is a a (v, k, λ)-difference set, let
t = |T | = v − k.

TT (−1) = (G− S(−1))(G− S(−1))(−1) = (G− S(−1))(G− S)

= GG−GS − S(−1)G+ S(−1)S

= (v)G− kG− kG+
(
ke+ λ(G− e)

)
= (t− k)G+ ke+ λ(G− e)

= (t+ λ− k)(G− e) + te



The converse is true

Theorem 3 converse.
Suppose (S, T ) is λ-fold (s, t)-near factorization of G, where |G| = s+ t.
Then S is an (s+ t, s, s− λ)-difference set in G and T = G \ S−1 is an
(s+ t, t, t− λ)-difference set in G.

Proof.
In the Z[G], T = G− S(−1).

SS(−1) = S(G− T ) = sG− ST = sG− λ(G− e)

= (sG− e) + se− λ(G− e) = (s− λ)(G− e) + se

Therefore S is a (s+ t, s, s− λ)-difference set.
and T is a (s+ t, t, t− λ)-difference set,
because T is the complement of S−1.



Partial difference set

A (v, k, λ, µ)-partial difference set (or PDS) in a group G of order
v is a subset D ⊆ G \ {e} such that |D| = k and the following
group ring equation is satisfied:

DD(−1) = (k − µ)e+ (λ− µ)D + µG,

= ke+ λD + µ(G−D − e)

The set D = {1, 3, 4, 9, 10, 12} is a (13, 6, 2, 3)-PDS in Z13.

− 1 3 4 9 10 12

1 0 11 10 5 4 2
3 2 0 12 7 6 4
4 3 1 0 8 7 5
9 8 6 5 0 12 10
10 9 7 6 1 0 11
12 11 9 8 3 2 0



PDS construction

Theorem 4. Suppose D is a (s+ t+ 1, s, s− λ− 1, s− λ)-PDS
in a group G, where |G| = s+ t+ 1 and e /∈ D. Let S = D and
T = G \ S(−1) \ {e}. Then (S, T ) is a λ-fold
(s, t)-near-factorization of G.

Proof.
Computing in Z[G] we see that

ST = S
(
G− S(−1) − e

)
= SG− SS(−1) − Se

= sG−
(
se+ (s− λ− 1)S + (s− λ)(G− S − e)

)
− S

= sG− se− (s− λ− 1)S − (s− λ)(G− S − e)− S

= λG− λe

= λ(G− e)



Example and converse

From the (13,6,2,3)-PDS given in the Example a 3-fold
(6,6)-near-factorization of Z13 is obtained. The near-factorization has

S = {1, 3, 4, 9, 10, 12} and T = {2, 5, 6, 7, 8, 11}.

Theorem 4 converse.
If (S, T ) is an λ-fold (s, t)-near-factorization of G and |G| = s+ t+ 1.
Then S is an (s+ t+ 1, s, s− λ− 1, s− λ)-PDS in G and T is an
(s+ t+ 1, t, t− λ− 1, t− λ)-PDS



Theorem 5. Suppose p and q are any positive odd integers greater
than 1. Then there exists a 2-fold (4, (n− 1)/2)-near-factorization (S, T )
of Zp × Zq.

The construction: Take

S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Set Cj
i = {4i+ j, 4i+ j + 1}.

Case 1: p = 1 + 4a, q = 1 + 4b.

T =

(( a−1⋃
i=0

C0
i ∪ {4a}

)
×
( b−1⋃

j=0

C2
j

))
∪
(( a−1⋃

i=0

C2
i

)
×
( b−1⋃

j=0

C0
j ∪ {4b}

))

Case 2: p = 1 + 4a, q = −1 + 4b.

T =

(( a−1⋃
i=0

C0
i ∪ {4a}

)
×
( b−2⋃

j=0

C3
j ∪ {0}

))
∪
(( a−1⋃

i=0

C2
i

)
×
( b−1⋃

j=0

C1
j

))

Case 3: p = −1 + 4a, q = −1 + 4b.

T =

(( a−2⋃
i=0

C3
i ∪ {0}

)
×
( b−1⋃

j=0

C1
j

))
∪
(( a−1⋃

i=0

C1
i

)
×
( b−2⋃

j=0

C3
j ∪ {0}

))



Example Z45 = Z5 × Z9

S = {(1, 1), (1, 8), (4, 1), (4, 8)}.

C0
0 = {0, 1} C0

1 = {4, 5}.
C2
0 = {2, 3} C2

1 = {6, 7}.

Case 1: p = 1 + 4a, q = 1 + 4b, where a = 1, b = 2

T =

(( a−1⋃
i=0

C0
i ∪ {4a}

)
×
( b−1⋃

j=0

C2
j

))
∪

(( a−1⋃
i=0

C2
i

)
×
( b−1⋃

j=0

C0
j ∪ {4b}

))

=

((
C0

0 ∪ {4}
)
×
(
C2

0 ∪ C2
1

))
∪

((
C2

0

)
×
(
C0

0 ∪ C0
1 ∪ {8}

))

=

(
{0, 1, 4} × {2, 3, 6, 7}

)
∪
(
{2, 3} × {0, 1, 4, 5, 8}

)
=
{
(0, 2), (0, 3), (0, 6), (0, 7), (1, 2), (1, 3), (1, 6), (1, 7), (4, 2), (4, 3), (4, 6)
(4, 7), (2, 0), (2, 1), (2, 4), (2, 5), (2, 8), (3, 0), (3, 1), (3, 4), (3, 5), (3, 8)

}



Example Continued

Thus

S = {(1, 1), (1, 8), (4, 1), (4, 8)}.

T =
{
(0, 2), (0, 3), (0, 6), (0, 7), (1, 2), (1, 3), (1, 6), (1, 7), (4, 2), (4, 3), (4, 6)
(4, 7), (2, 0), (2, 1), (2, 4), (2, 5), (2, 8), (3, 0), (3, 1), (3, 4), (3, 5), (3, 8)

}

is (supposedly) a 2-fold (4, 22)-Near-factorization of Z5 × Z9.
(1, 1) generates Z5 × Z9 and 1 generates Z45 and so ψ : (x, x) 7→ x is an
isomorphism. For example (1, 8) = (26, 26) So π(1, 8) = 26.
Thus

ψ(S) = {1, 26, 19, 44}.

ψ(T ) =

{
6, 8, 11, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 27, 28, 29, 30, 32, 34, 37, 39

}
is (supposedly) a 2-fold (4, 22)-Near-factorization of Z45.

Lets check!



Example continued

S′ = ψ(S) = {1, 26, 19, 44}.

T ′ = ψ(T ) =

{
6, 8, 11, 13, 15, 16, 17, 18, 20, 21, 22,
23, 24, 25, 27, 28, 29, 30, 32, 34, 37, 39

}
is (supposedly) a 2-fold (4, 22)-Near-factorization of Z45.

Lets check!

6 8 11 13 15 16 17 18 20 21 22 23 24 25 27 28 29 30 32 34 37 39
1 7 9 12 14 16 17 18 19 21 22 23 24 25 26 28 29 30 31 33 35 38 40

19 25 27 30 32 34 35 36 37 39 40 41 42 43 44 1 2 3 4 6 8 11 13
26 32 34 37 39 41 42 43 44 1 2 3 4 5 6 8 9 10 11 13 15 18 20
44 5 7 10 12 14 15 16 17 19 20 21 22 23 24 26 27 28 29 31 33 36 38

and it is.



n group s t λ Sym.? Authority
7 Z7 3 4 2 no Theorem 3, D = { 0, 1, 3}
9 (Z3)2 4 4 2 yes Theorem 5

11 Z11 5 6 3 no Theorem 3, D = { 0, 1, 2, 4, 7}
13 Z13 4 9 3 no Theorem 3, D = { 0, 1, 3, 9}
13 Z13 6 6 3 yes Theorem 4, D = {1, 3, 4, 12, 10, 9}
15 Z15 4 7 2 yes Theorem 5
15 Z15 7 8 4 no Theorem 3, D = { 0, 1, 2, 4, 5, 8, 10}
16 (Z4)2 6 10 4 yes Theorem 3, D = {(0,1), (1,0), (1,1), (0,3),

(3,0), (3,3)}
16 Z4×(Z2)2 6 10 4 yes Theorem 3, D = {(0,0,0), (0,0,1), (0,1,0),

(2,1,1), (1,0,0), (3,0,0)}
16 Z8×Z2 5 9 3 no S = {(0,0), (0,1), (1,0), (3,0), (4,0)},

T = {(7,1), (6,0), (5,1), (4,1), (3,0), (3,1),
(2,0), (1,0), (1,1)}

16 Z8×Z2 6 10 4 no Theorem 3, D = {(0,0), (0,1), (1,0), (2,0),
(5,0), (6,1)}

17 Z17 8 8 4 yes Theorem 4, D = {1, 2, 4, 8, 16, 15, 13, 9}
19 Z19 9 10 5 no Theorem 3, D = { 0, 1, 2, 3, 5, 7, 12, 13,

16}
21 Z21 4 10 2 yes Theorem 5
21 Z21 5 16 4 no Theorem 3, D = { 0, 1, 4, 14, 16}
21 Z21 8 10 4 no S = { 0, 1, 3, 6, 7, 10, 13, 15}, T = { 17,

13, 12, 9, 7, 5, 4, 3, 2, 1}
23 Z23 11 12 6 no Theorem 3, D = { 0, 1, 2, 3, 5, 7, 8, 11,

12, 15, 17}



n group s t λ Sym.? Authority
25 (Z5)2 4 12 2 yes Theorem 5
25 (Z5)2 12 12 6 yes Theorem 4, D = {(0,1), (0,2), (1,0), (1,1),

(2,0), (2,2), (0,4), (0,3), (4,0), (4,4), (3,0),
(3,3)}

27 (Z3)3 8 13 4 yes S = {(0,0,1), (0,1,0), (1,0,0), (1,1,1),
(0,0,2), (0,2,0), (2,0,0), (2,2,2)}, T =
{(0,0,0), (0,2,1), (0,1,2), (2,0,1), (2,2,1),
(2,1,0), (2,1,2), (2,1,1), (1,0,2), (1,2,0),
(1,2,2), (1,2,1), (1,1,2)}

27 (Z3)3 13 14 7 no Theorem 3, D = {(0,0,0), (0,0,1), (0,0,2),
(0,1,0), (0,1,1), (0,2,0), (1,0,0), (1,0,1),
(1,1,0), (2,0,1), (2,1,2), (2,2,0), (2,2,2)}

27 Z9×Z3 4 13 2 yes Theorem 5
28 Z14×Z2 9 12 4 no S = {(0,0), (0,1), (1,0), (2,0), (3,1), (4,1),

(7,1), (12,0), (13,0)}, T = {(13,1), (12,1),
(11,0), (9,0), (9,1), (8,1), (6,1), (5,0),
(4,1), (3,0), (3,1), (1,1)}

29 Z29 14 14 7 yes Theorem 4, D = {1, 4, 5, 6, 7, 9, 13, 28,
25, 24, 23, 22, 20, 16}

31 Z31 6 20 4 no S = { 0, 1, 2, 4, 8, 16}, T = { 28, 26, 25,
24, 22, 21, 19, 17, 16, 14, 13, 12, 11, 8, 7,
6, 4, 3, 2, 1}

31 Z31 6 25 5 no Theorem 3, D = { 0, 1, 3, 8, 12, 18}
31 Z31 15 16 8 no Theorem 3, D = { 0, 1, 2, 3, 5, 6, 8, 9, 13,

16, 21, 22, 23, 25, 27}
33 Z33 4 16 2 yes Theorem 5
33 Z33 12 16 6 no S = { 0, 1, 3, 4, 6, 10, 12, 15, 21, 22, 25,

28}, T = { 26, 24, 22, 20, 19, 17, 16, 15,
14, 10, 9, 7, 6, 3, 2, 1}

35 Z35 4 17 2 yes Theorem 5
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