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Roadmap

» Motivation and Background



E&U  Post-Quantum Cryptography

1 Motivation and Background

In a few years time large-scale quantum computers might be reality. But then (Shor, '95):

e RSA
e DSA
e ECC

¢ Diffie-Hellman key exchange

e and many others ... | not secure |!

— NIST’s Post-Quantum Cryptography Standardization Call (2017 - ongoing).
Main areas of research:

e Lattice-based cryptography.

Hash-based cryptography.

Code-based cryptography.

Multivariate cryptography.

Isogeny-based cryptography.
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E&U  Traditional Code-Based Cryptography

1 Motivation and Background

Use hard problems from coding theory, such as the Syndrome Decoding Problem (SDP) in
the Hamming metric.

For encryption, one can obtain a trapdoor by disguising the private code.
Example (McEliece/Niederreiter): use equivalent code.

G — SGP

The hardness of recovering the secret (S, P) depends on chosen code family.

This works well for encryption...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a little differently.
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E&U  Zero-Knowledge Protocols

2 Bulding Signature Schemes

An interactive protocol to prove knowledge of a secret...

...without revealing anything about it.

Prover (sk) Verifier (pk)
Commit to some data _m
ch
——— Select random challenge
Produce response SR SN
(...) Accept/Reject

e Completeness: honest prover always gets accepted.

e Soundness: dishonest prover (impersonator) has a bounded probability of
succeeding.

e Zero-Knowledge: no information about the secret is leaked.
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E&U Example: Discrete Logarithms

2 Bulding Signature Schemes

Let g in a group G.

Witness is sk = s; instance given by pk = g°.

Prover (sk) Verifier (pk)
ecmt =g~ o
ch $
— ch =c <
rsp=r—cs —

gre - kah = cmt l> Accept/Reject

Verifying properties is obvious. Soundness depends on setting:
e.g.c € {0,1} meanserror 1/2.

Repetition is needed to bring soundness error down to desired target (e.g. 2~128).

Can set o = (ch, rsp) and verify that Hash(g"? - pk®*, msg) = ch (Schnorr).
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E&U  From Zero-Knowledge Protocols to Signatures

2 Bulding Signature Schemes

ZKIDs can be turned into signature schemes using Fiat-Shamir transformation.

This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;...)

Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.

Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993; ...)

High soundness error requires several repetitions to achieve security.

Due to protocol structure and nature of objects, this results in rather large signatures (e.g.
> 20 kB for 128 sec. bits).

Idea: change the nature of the objects involved.
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E&U  Cryptographic Group Actions

3 Group Actions and (Code-Based) Cryptography

Group Action

Let X be a set and (G, -) be a group. A group action is a mapping

*: GXxX — X
(g,x) — gxx

such that, for allx € Xand g1,g92 € G, g2 * (g1 *x) = (g2 - g1) * X-

The word cryptographic means that it has some properties of interest in cryptography,
e.g.:

e Efficient evaluation, sampling and membership testing algorithms.

e A hard vectorization problem.

Group Action Vectorization Problem

Given the pair x1,x € X, find, if any, g € G such that g x x; = x».
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E&U  Famous Examples

3 Group Actions and (Code-Based) Cryptography

Let X be a group of prime order p and G = Z;.
Then the vectorization problem is exactly DLP in X.

A huge amount of cryptography has been built using this simple, but very special group
action!

Choosing the set X with this extra structure comes with several advantages and
disadvantages.

e Useful properties (e.g. commutativity) and design options.

e Not post-quantum!

Recently, isogeny-based group actions have captivated the cryptographic scene, showing
a unique performance profile.

What about group actions from coding theory?
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E&U  Isometries in the Hamming Metric
3 Group Actions and (Code-Based) Cryptography

Maps which preserve the distances (weights).

e Permutations: 7['( ((11, as, ..., a,,)) = (aﬂ.(l), Ar(2)y - - - 7aﬂ(n)).

* Monomials: permutations + scaling factors: u = (v; ), withv € (Fg)"

,u( ((11, as, ... ,an)) = (Vl : aﬂ-(l),VQ : aﬂ(z), S aﬂ(n))
Monomial matrix: permutation x diagonal.

e Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.

We talk about permutation, linear and semilinear equivalence, respectively.
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E&U  Code-Based Group Actions

3 Group Actions and (Code-Based) Cryptography

Code equivalence can be seen the action of a group G of isometries on linear codes.

Code-based Group Action

x: GxX — X
(¥, €) = ¥(7)

where (%) = {¢(c) | c € €} .
This view needs us to choose a standard representation for codes, e.g. systematic form.

In practice, we consider simply RREF(GQ).

Then, code equivalence can be efficiently described using representatives, i.e. generator
(or parity-check) matrices. Clearly:

¢ % ¢ < Ines, st. 6 = RREF(r(G)),
¢ K ¢ <= JueM, st G =RREF(u(G)).

where S, is the symmetric group and M,, = M, (q) the monomial group.
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E&U  Code Equivalence Problems

3 Group Actions and (Code-Based) Cryptography

The problem of deciding if two codes are equivalent is well-known in coding theory.

For our purpose, we are interested in the computational version: this is the vectorization
problem for our action.

Permutation Equivalence Problem (PEP)
Given ¢, ¢" C Ty, find a permutation 7 such that 7(%") = ¢".
In practice, given generators G, G’ € IF’L;X”, find € S, such that

G' = RREF(7(G)).

Linear Equivalence Problem (LEP)
Given ¢, 4" C Iy, find a monomial 11 such that (%) = €.
In practice, given generators G, G’ € IFZX”, find © € M;, such that

G' = RREF(u(G)).
For practical applications, we are not interested in the semilinear version of the problem.
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E&U  Applications in Cryptography

3 Group Actions and (Code-Based) Cryptography

Could Code Equivalence be used as a stand-alone problem?

The situation for isometries recalls that of other group actions, such as for DLP (although
without commutativity).

This means several existing constructions could be adapted to be based on Code
Equivalence.

Possible to construct a ZK protocol based exclusively on the hardness of the code
equivalence problem.

(Biasse, Micheli, P., Santini, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.
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E&U  The LESS ZKID

3 Group Actions and (Code-Based) Cryptography

Select hash function Hash.

Key Generation

e Choose random g-ary code %, given by generator matrix G.
e sk: monomial map .
e pk: matrix G’ = RREF(u(G)).

Prover Verifier
Choose random monomial map 7 € M,,.
Compute G = RREF(7(G)).

Set cmt = Hash(G) _m,
LA Select random b € {0, 1}.
Ifb=0setrsp =1 ML Verify Hash(RREF(rsp(G))) = cmt.

Ifb=1setrsp=7op"! Verify Hash(RREF(rsp(G'))) = cmt.
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E&U  LESS Signatures

3 Group Actions and (Code-Based) Cryptography

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 — t = \ parallel repetitions.

The protocol can be greatly improved with the following modifications:

(Barenghi, Biasse, P., Santini, 2021)

e Use multiple public keys and non-binary challenges.
+ Lower soundness error: 1/2 — 1/2°.
— Rapid increase in public key size.

Use a challenge string with fixed weight w.
+ Exploits imbalance in cost of response: seed vs monomial.

— Larger number of iterations.

Such modifications do not affect security, only requiring small tweaks in proofs or
switching to equivalent security premises.
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E&U  Security Considerations

3 Group Actions and (Code-Based) Cryptography

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)

PEP is also deeply connected with Graph Isomorphism (Gl) (reductions in both ways!),
solvable in quasi-polynomial time.

At the same time, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)

PEP is a special case of LEP; as a consequence, most solvers for PEP can be adapted to
solve LEP as well, with different overhead depending on attack.

Efficient solvers for weak instances (e.g. small or trivial hull).

(Sendrier, 2000; Saeed-Taha, 2017; Bardet et al., 2020)

For general, hard instances, best solvers use combinatorial approach based on ISD.

(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., Santini, 2023)

15/24



E&U  Design Considerations

3 Group Actions and (Code-Based) Cryptography

Choose code parameters using latter type of attacks, following conservative criterion.
Namely, pick n, k, q so that, for any d and any v, we have:

d
V' Ng(v) - Cl(sg(n,k,q,v) > 2M,
For example for NIST Category 1 (=~ 128 sec. bits) we have (n, k,q) = (252,126, 127).

Protocol parameters (t, w, s) infer performance profile:

e pk = (s—1)[k(n—k)[logy(q)]/8] + seed bytes
° sig=w- n([logz(n)] + [logy(q — 1)1)/8 + {seeds, digest, salt} bytes

Runtime is dominated by RREF computation, for both Keygen and Sign/Verify.

The protocol shows a high degree of flexibility, to cater for different priorities.
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E&AU  Equivalence Relations for Codes

4 Representation and Canonical Forms

We aim to provide an efficient representation for isometries.
Consider a subset F C G of isometries and the equivalence relation induced by it.

This yields the equivalence classes €¢ (%) = {p(%¢) | ¢ € F}.

If checking membership is efficient, then verifying that ¥ L ¢’ can be done via any
X € Gsuchthat €* = x(%€) € €(¢").

We can then look for a special choice for y, one which allows a compact representation.

Indeed, if F is a subgroup, we can partition G into cosets, and we have

p_ |Gl
G:F =

This means the size of a witness is now

log,[G : F] = logy |G| — log;, |F|.

The goal is then to identify the largest F that fits the description.
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E&U  Defining New Canonical Forms

4 Representation and Canonical Forms

Case 1: F ~ S; x S,,_x. We use an ordering for multisets: sort rows, then columns.

This leads to:

e Ml _nl@=1" _ (n n
Mn B = e = R <k>(q_1) |

Case 2: F ~ My x S,_x. We scale rows, then use Case 1 as subroutine to sort.

Here we have:

o Ma| nl(q —1)" _(n n—
Mn - F1 = T k!(n—k)!(q—l>k<k)(q_” k

Case 3: F ~ My x M, _x. We scale columns, then proceed as in Case 2.

Witness now is only:

e Ml ni(q - 1)" ("
M FL = T = =Rl - DRa— 1 (">
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E&U  Application to LESS

4 Representation and Canonical Forms

We provide bounds and verify that failure probability is negligible in all cases.
We modify the commitment step, where we commit to Hash(CFg(A)).
A (carefully selected) coset representative can be used as rsp when ch # 0.

For LESS parameters, we have (}) < n - H(R), where code rate R = k/n = 1/2
— we can efficiently encode cosets with n bits.

As n = 2, this means signature size is now close to optimal!

The overhead for computing such canonical forms is very small compared to cost of RREF.
CF-LESS is shown to be still complete, 2-special sound and honest-verifier zero-knowledge.

We provide reductions between LEP and CF-LEP.
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E&U CF-LESS: Performance Overview
4 Representation and Canonical Forms
NIST Code Params Attack Prot. Params pk sig CF
Cat. n k q Factor s t w (B) (B)
2 247 30| 13939 24613111 Cas'e
1 252 126 127 | 123.84 s
5941 -
4 244 20| 41785 | [0 Case 3
2 759 33| 35074 157625088 Cas'e .
3 1400 200 127! 197.67
12768
4 244 20| 105174 | oot | s
2 1352 40 | 65792 ?8822 Cas_e
5 | 548 274 127 | 271.56 8
25237 -
4 244 20197312 | o Case 3

Table: Impact of CF on LESS parameters. All sizes in bytes (B).

20/24



Roadmap

» Conclusions



EAU  Conclusions

5 Conclusions
The introduction of the LESS scheme opened the way to an interesting application of
isomorphism problems in cryptography.

The group action structure is fundamentally different from previous approach in
code-based crypto.

Particularly suitable to develop protocols with advanced functionalities, e.g.:
e Ring signatures.
(Barenghi, Biasse, Ngo, P., Santini, 2022)

e Threshold signatures.
(Battagliola, Borin, Meneghetti, P., 2024)

e Blind signatures.
(Kuchta, LeGrow, P., preprint)

Latest works drastically reduce signature size; smallest among code-based ZK schemes.

Still much work to do on performance (e.g. Gaussian elimination, pk size), functionalities
(e.g. commutativity and other properties), applications etc.
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Thank you for listening!
Any questions?
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