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Post-Quantum Cryptography1 Mo�va�on and Background
In a few years �me large-scale quantum computers might be reality. But then (Shor, ’95):
• RSA
• DSA
• ECC
• Diffie-Hellman key exchange
• and many others ... not secure !

→ NIST’s Post-Quantum Cryptography Standardiza�on Call (2017 - ongoing).
Main areas of research:
• La�ce-based cryptography.
• Hash-based cryptography.
• Code-based cryptography.
• Mul�variate cryptography.
• Isogeny-based cryptography.
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Tradi�onal Code-Based Cryptography1 Mo�va�on and Background
Use hard problems from coding theory, such as the Syndrome Decoding Problem (SDP) inthe Hamming metric.
For encryp�on, one can obtain a trapdoor by disguising the private code.
Example (McEliece/Niederreiter): use equivalent code.

G→ SGP

The hardness of recovering the secret (S, P) depends on chosen code family.
This works well for encryp�on...
(Classic McEliece, BIKE, HQC)

...far less so for signature schemes.
(CFS, KKS, Stern,...)

History suggest that we have to do things a li�le differently.
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Zero-Knowledge Protocols2 Bulding Signature Schemes
An interac�ve protocol to prove knowledge of a secret...
...without revealing anything about it.
Prover (sk) Verifier (pk)

Commit to some data cmt−−−−−−−−→
ch←−−−−−−−− Select random challenge

Produce response rsp−−−−−−−−→
(. . . ) Accept/Reject

• Completeness: honest prover always gets accepted.
• Soundness: dishonest prover (impersonator) has a bounded probability ofsucceeding.
• Zero-Knowledge: no informa�on about the secret is leaked.
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Example: Discrete Logarithms2 Bulding Signature Schemes

Let g in a group G.
Witness is sk = s; instance given by pk = gs.
Prover (sk) Verifier (pk)

cmt = gr cmt−−−−−−−−→
ch←−−−−−−−− ch = c $←−

rsp = r− cs
rsp−−−−−−−−→

grsp · pkch = cmt ?−→ Accept/Reject
Verifying proper�es is obvious. Soundness depends on se�ng:e.g. c ∈ {0, 1}means error 1/2.
Repe��on is needed to bring soundness error down to desired target (e.g. 2−128).
Can set σ = (ch, rsp) and verify that Hash(grsp · pkch,msg) = ch (Schnorr).
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From Zero-Knowledge Protocols to Signatures2 Bulding Signature Schemes

ZKIDs can be turned into signature schemes using Fiat-Shamir transforma�on.
This method is very promising and usually leads to efficient schemes.
(Schnorr, 1989;. . . )
Strong security guarantees. No trapdoor is required!
For CBC, can avoid decoding: rely directly on SDP.
Use random codes and exploit hardness of finding low-weight words.
(Stern, 1993; . . . )
High soundness error requires several repe��ons to achieve security.
Due to protocol structure and nature of objects, this results in rather large signatures (e.g.
> 20 kB for 128 sec. bits).
Idea: change the nature of the objects involved.
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Cryptographic Group Ac�ons3 Group Ac�ons and (Code-Based) Cryptography

Group Ac�on
Let X be a set and (G, ·) be a group. A group ac�on is a mapping

? : G× X → X
(g, x) 7→ g ? x

such that, for all x ∈ X and g1, g2 ∈ G, g2 ? (g1 ? x) = (g2 · g1) ? x.
The word cryptographic means that it has some proper�es of interest in cryptography,e.g.:
• Efficient evalua�on, sampling and membership tes�ng algorithms.
• A hard vectoriza�on problem.

Group Ac�on Vectoriza�on Problem
Given the pair x1, x2 ∈ X, find, if any, g ∈ G such that g ? x1 = x2.
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Famous Examples3 Group Ac�ons and (Code-Based) Cryptography

Let X be a group of prime order p and G = Z∗p.
Then the vectoriza�on problem is exactly DLP in X.
A huge amount of cryptography has been built using this simple, but very special groupac�on!
Choosing the set X with this extra structure comes with several advantages anddisadvantages.
• Useful proper�es (e.g. commuta�vity) and design op�ons.
• Not post-quantum!

Recently, isogeny-based group ac�ons have cap�vated the cryptographic scene, showinga unique performance profile.
What about group ac�ons from coding theory?
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Isometries in the Hamming Metric3 Group Ac�ons and (Code-Based) Cryptography

Maps which preserve the distances (weights).
• Permuta�ons: π( (a1, a2, . . . , an)

)
=
(

aπ(1), aπ(2), . . . , aπ(n)
).

• Monomials: permuta�ons + scaling factors: µ = (v;π), with v ∈ (F∗q)n

µ
(
(a1, a2, . . . , an)

)
=
(

v1 · aπ(1), v2 · aπ(2), . . . , vn · aπ(n)
)

Monomial matrix: permuta�on× diagonal.
• Monomials + field automorphism.

Two codes are equivalent if they are connected by an isometry.
We talk about permuta�on, linear and semilinear equivalence, respec�vely.
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Code-Based Group Ac�ons3 Group Ac�ons and (Code-Based) Cryptography
Code equivalence can be seen the ac�on of a group G of isometries on linear codes.

Code-based Group Ac�on
? : G× X → X

(ψ,C ) 7→ ψ(C )

where ψ(C ) = {ψ(c) | c ∈ C } .

This view needs us to choose a standard representa�on for codes, e.g. systema�c form.
In prac�ce, we consider simply RREF(GQ).
Then, code equivalence can be efficiently described using representa�ves, i.e. generator(or parity-check) matrices. Clearly:

C
PE∼ C ′ ⇐⇒ ∃π ∈ Sn s.t. G′ = RREF(π(G)),

C
LE∼ C ′ ⇐⇒ ∃µ ∈ Mn s.t. G′ = RREF(µ(G)).

where Sn is the symmetric group and Mn = Mn(q) the monomial group.
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Code Equivalence Problems3 Group Ac�ons and (Code-Based) Cryptography
The problem of deciding if two codes are equivalent is well-known in coding theory.
For our purpose, we are interested in the computa�onal version: this is the vectoriza�onproblem for our ac�on.

Permuta�on Equivalence Problem (PEP)
Given C ,C ′ ⊆ Fn

q, find a permuta�on π such that π(C ) = C ′.
In prac�ce, given generators G,G′ ∈ Fk×n

q , find π ∈ Sn such that
G′ = RREF(π(G)).

Linear Equivalence Problem (LEP)
Given C ,C ′ ⊆ Fn

q, find a monomial µ such that µ(C ) = C ′.
In prac�ce, given generators G,G′ ∈ Fk×n

q , find µ ∈ Mn such that
G′ = RREF(µ(G)).

For prac�cal applica�ons, we are not interested in the semilinear version of the problem.
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Applica�ons in Cryptography3 Group Ac�ons and (Code-Based) Cryptography

Could Code Equivalence be used as a stand-alone problem?
The situa�on for isometries recalls that of other group ac�ons, such as for DLP (althoughwithout commuta�vity).
This means several exis�ng construc�ons could be adapted to be based on CodeEquivalence.
Possible to construct a ZK protocol based exclusively on the hardness of the codeequivalence problem.
(Biasse, Micheli, P., San�ni, 2020)

This can be then transformed into a full-fledged signature scheme via Fiat-Shamir.
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The LESS ZKID3 Group Ac�ons and (Code-Based) Cryptography

Select hash func�on Hash.
Key Genera�on

• Choose random q-ary code C , given by generator matrix G.
• sk: monomial map µ.
• pk: matrix G′ = RREF(µ(G)).

Prover Verifier
Choose random monomial map τ ∈ Mn.Compute G̃ = RREF(τ(G)).
Set cmt = Hash(G̃) cmt−−−→

b←−−− Select random b ∈ {0, 1}.

If b = 0 set rsp = τ
rsp−−−→ Verify Hash

(
RREF(rsp(G))

)
= cmt.If b = 1 set rsp = τ ◦ µ−1 Verify Hash

(
RREF(rsp(G′))

)
= cmt.
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LESS Signatures3 Group Ac�ons and (Code-Based) Cryptography

It is easy to prove completeness, 2-special soundness and honest-verifier zero-knowledge.
Before Fiat-Shamir, reduce soundness error 1/2 =⇒ t = λ parallel repe��ons.
The protocol can be greatly improved with the following modifica�ons:
(Barenghi, Biasse, P., San�ni, 2021)
• Use mul�ple public keys and non-binary challenges.
+ Lower soundness error: 1/2→ 1/2`.
− Rapid increase in public key size.
• Use a challenge string with fixed weight w.
+ Exploits imbalance in cost of response: seed vs monomial.
− Larger number of itera�ons.

Such modifica�ons do not affect security, only requiring small tweaks in proofs orswitching to equivalent security premises.
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Security Considera�ons3 Group Ac�ons and (Code-Based) Cryptography

PEP is not NP-complete, unless the polynomial hierarchy collapses.
(Petrank, Roth, 1997)
PEP is also deeply connected with Graph Isomorphism (GI) (reduc�ons in both ways!),solvable in quasi-polynomial �me.
At the same �me, PEP is “not necessarily easy”.
(Petrank, Roth, 1997)
PEP is a special case of LEP; as a consequence, most solvers for PEP can be adapted tosolve LEP as well, with different overhead depending on a�ack.
Efficient solvers for weak instances (e.g. small or trivial hull).
(Sendrier, 2000; Saeed-Taha, 2017; Bardet et al., 2020)
For general, hard instances, best solvers use combinatorial approach based on ISD.
(Leon, 1982; Beullens, 2020; Barenghi, Biasse, P., San�ni, 2023)
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Design Considera�ons3 Group Ac�ons and (Code-Based) Cryptography

Choose code parameters using la�er type of a�acks, following conserva�ve criterion.Namely, pick n, k, q so that, for any d and any v, we have:√
Nd(v) · C

(d)ISD(n, k, q, v) > 2λ.

For example for NIST Category 1 (≈ 128 sec. bits) we have (n, k, q) = (252, 126, 127).
Protocol parameters (t,w, s) infer performance profile:
• pk = (s− 1)[k(n− k)dlog2(q)e/8] + seed bytes
• sig = w · n

(
dlog2(n)e+ dlog2(q− 1)e

)
/8 + {seeds, digest, salt} bytes

Run�me is dominated by RREF computa�on, for both Keygen and Sign/Verify.
The protocol shows a high degree of flexibility, to cater for different priori�es.
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Equivalence Rela�ons for Codes4 Representa�on and Canonical Forms
We aim to provide an efficient representa�on for isometries.
Consider a subset F ⊆ G of isometries and the equivalence rela�on induced by it.
This yields the equivalence classes CF(C ) = {ϕ(C ) | ϕ ∈ F} .
If checking membership is efficient, then verifying that C

LE∼ C ′ can be done via any
χ ∈ G such that C ∗ = χ(C ) ∈ CF(C ′).
We can then look for a special choice for χ, one which allows a compact representa�on.
Indeed, if F is a subgroup, we can par��on G into cosets, and we have

[G : F] = |G|
|F| .

This means the size of a witness is now
log2[G : F] = log2 |G| − log2 |F|.

The goal is then to iden�fy the largest F that fits the descrip�on.
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Defining New Canonical Forms4 Representa�on and Canonical Forms
Case 1: F ' Sk × Sn−k. We use an ordering for mul�sets: sort rows, then columns.
This leads to:

[Mn : F] = |Mn|
|F| =

n!(q− 1)n

k!(n− k)!
=

(
n
k

)
(q− 1)n.

Case 2: F ' Mk × Sn−k. We scale rows, then use Case 1 as subrou�ne to sort.
Here we have:

[Mn : F] = |Mn|
|F| =

n!(q− 1)n

k!(n− k)!(q− 1)k =

(
n
k

)
(q− 1)n−k.

Case 3: F ' Mk ×Mn−k. We scale columns, then proceed as in Case 2.
Witness now is only:

[Mn : F] = |Mn|
|F| =

n!(q− 1)n

k!(n− k)!(q− 1)k(q− 1)n−k =

(
n
k

)
.
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Applica�on to LESS4 Representa�on and Canonical Forms

We provide bounds and verify that failure probability is negligible in all cases.
We modify the commitment step, where we commit to Hash(CFF(A)).
A (carefully selected) coset representa�ve can be used as rsp when ch 6= 0.
For LESS parameters, we have (n

k

)
≤ n · H(R), where code rate R = k/n = 1/2

=⇒ we can efficiently encode cosets with n bits.
As n ≈ 2λ, this means signature size is now close to op�mal!
The overhead for compu�ng such canonical forms is very small compared to cost of RREF.CF-LESS is shown to be s�ll complete, 2-special sound and honest-verifier zero-knowledge.
We provide reduc�ons between LEP and CF-LEP.
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CF-LESS: Performance Overview4 Representa�on and Canonical Forms

NIST Code Params A�ack Prot. Params pk sig CF
Cat. n k q Factor s t w (B) (B)

1 252 126 127 123.84
2 247 30 13939

8624 -
2481 Case 3

4 244 20 41785
5941 -
1846 Case 3

3 400 200 127 197.67
2 759 33 35074

17208 -
5658 Case 3

4 244 20 105174
12768
4368 Case 3

5 548 274 127 271.56
2 1352 40 65792

30586 -
10036 Case 3

4 244 20 197312
25237 -
7769 Case 3

Table: Impact of CF on LESS parameters. All sizes in bytes (B).
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Conclusions5 Conclusions
The introduc�on of the LESS scheme opened the way to an interes�ng applica�on ofisomorphism problems in cryptography.
The group ac�on structure is fundamentally different from previous approach incode-based crypto.
Par�cularly suitable to develop protocols with advanced func�onali�es, e.g.:
• Ring signatures.

(Barenghi, Biasse, Ngo, P., San�ni, 2022)
• Threshold signatures.

(Ba�agliola, Borin, Meneghe�, P., 2024)
• Blind signatures.

(Kuchta, LeGrow, P., preprint)
• ...

Latest works dras�cally reduce signature size; smallest among code-based ZK schemes.
S�ll much work to do on performance (e.g. Gaussian elimina�on, pk size), func�onali�es(e.g. commuta�vity and other proper�es), applica�ons etc.
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Thank you for listening!
Any ques�ons?
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