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A Simple Question

Let f: R™ — R be an affine function, that is

flx)=c+ chxz

Definition

We call f Boolean over D if f(z) € {0,1} for all z € D.

What are the Boolean affine functions for the hypercube D = {0,1}"? I
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Dictator

1001 1000 0001 0000

1101 1100 0101 0100

1011 1010 0011 0010

1111 1110 0111 0110

Polynomial f: f(x) = ;.

We only need z; to determine f(x).
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The Degree 1 Functions on the Hypercube

The constant functions f(z) =0 and f(z) = 1.

The functions f(z) = z; and f(z) =1 — a;.

Proposition

Let f be an affine Boolean function on the hypercube.
Then f(z) =c+ > ciz; isone of 0, 1, z;, or 1 — z;.
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The Degree 1 Functions on the Hypercube

The constant functions f(z) =0 and f(z) = 1.

The functions f(z) = z; and f(z) =1 — a;.

Proposition

Let f be an affine Boolean function on the hypercube.
Then f(z) =c+ > ciz; isone of 0, 1, z;, or 1 — z;.

.

WLOG f(00...0) = 0. Hence, ¢ = 0.
WLOG f(10...0) = 1. Hence, ¢; = 1.
Now all the other ¢;'s must be 0. [

.
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Degree 2, Example 1

1001 1000 0001 0000

1101 1100 0101 0100

1011 1010 0011 0010

1111 1110 0111 0110

Polynomial f: f(z) = z1x2.

We only need z1, 25 to determine f(z).
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Degree 2, Example 2

1001

1101

1100

1000

1011

1111

1110

1010

0001

0101

0100

0000

0011

0111

0110

0010

Polynomial f: f(x) =1— 21+ (xv1 + 22 — D)ag + (21 — 22)24.

We need z1, 22, x3, 24 to determine f(z)!
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Some Generalizations (1)

What about Boolean degree 2 functions f on the hypercube? l

Answer: Then f or 1 — f is one of these:!
e 0,

L,

T + X — Ty,
zixy + (1 —a)wy,

T;x; + T + TjTp — Ty — Tj — T,

fle)=1iffx; <a; <zl <xpora; >a; > x> 24

Degree 2: Camion, Carlet, Charpin & Sendrier (1991).
Degree 3: Kirienko (2004), Zverev (2008).

I stole this list from Yuval Filmus.
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Some Generalizations (I1)

What about Boolean degree d functions f on the hypercube? I

Only m relevant variables: m-junta.

Theorem (Nisan, Szegedy (1991))

2d—1

A Boolean degree d function on the hypercube is a d - -junta.

Chiarelli, Hatami and Saks (2018): Tight bound of O(2%).
Current best by Wellens (2019): < 4.416 - 2¢.

Carlet and Tarannikov (2002): Lower bound of 3 - 291 — 2.

Two applications: cryptography, complexity theory.
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Some Generalizations (I11)

What about almost affine Boolean functions f on the hypercube?

That is,||f — g|l2 < & for some affine function g.

Friedgut, Kalai, and Naor (2002): If f is Boolean and almost affine,
then f is almost a Boolean affine function.

Kindler, Safra (2002): Similar result for degree d.
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Some Other Words

We already know: Boolean degree 1 function.

Other used words which might mean the same (depending on context):

Equitable bipartition.
Regular set.

Perfect 2-coloring.
Cameron-Liebler set.
Completely regular code.
Tight set.
Anti-1-design.?

Dual degree 1.

Graphical design.

Intriguing set.

2Boolean degree d function = design-orthogonal to a d-design (Delsarte theory)



Johnson Graphs
[ lele}

4

“What should we do then?” Luke 3:10, NIV

In the hypercube: Good understanding of low degree functions.
What about other domains?

For instance:
@ A slice of the hypercube: all k-sets of {1,...,n} (Johnson graphs).
@ The g-analog of the slice: all k-spaces of Fy; (Grassmann graphs).

We will look at k-sets and k-spaces.’

3Cf. Kiermaier, Mannaert, Wassermann (2024).
4Alternative quotes: “What is to be done?". Tolstoy, 1866; Lenin, 1902.
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Subsets

1111

0111 1011 1101 1110

e AN

0001 0010 0100 1000

0000
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Subsets

1111

0111 1011 1101 1110

2 N

0001 0010 0100 1000

0000

Boolean degree 1 functions on k-sets of {1,...,n} are trivial.
l.e. they are dictators (0,1,z; or 1 — x;). (For n—k,k > 2.)

Various proofs: Meyerowitz (1992, see Martin (2004)), Filmus (2016),
Filmus and Ih. (2019). Also De Boeck, Strome, Svob (2016), but only for k | n.
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Bounded Degree

Recall FKN for hypercube:
Boolean almost degree 1 — almost dictator.
For k-sets of {1,...,n}:

Theorem (Filmus (2016))

Boolean almost degree 1 — almost sum of dictators (or complement).
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Bounded Degree

Recall FKN for hypercube:
Boolean almost degree 1 — almost dictator.
For k-sets of {1,...,n}:

Theorem (Filmus (2016))

Boolean almost degree 1 — almost sum of dictators (or complement).

Recall for hypercube: Boolean degree d — ~(d)-junta.

Theorem (Filmus, |h. (2019))

If min(k,n — k) > C¢: Boolean degree d — ~(d)-junta.

Keller, Klein (2019): stability. Filmus, Vinciguerra (unpub.): n —k > ng(d), k > 2d.
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Bounded Degree

Recall FKN for hypercube:
Boolean almost degree 1 — almost dictator.
For k-sets of {1,...,n}:

Theorem (Filmus (2016))

Boolean almost degree 1 — almost sum of dictators (or complement).

Recall for hypercube: Boolean degree d — ~(d)-junta.

Theorem (Filmus, |h. (2019))

If min(k,n — k) > C¢: Boolean degree d — ~(d)-junta.

Keller, Klein (2019): stability. Filmus, Vinciguerra (unpub.): n —k > ng(d), k > 2d.

Theorem (Filmus (2023))
If min(k,n — k) > 2d: Boolean degree d — ~'(d)-junta.

Note: We have v(2) = 4, but there is an example in J(8,4) with 5 relevant variables
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The subspace lattice of F

We consider /-spaces of a finite vector space!

s are 1-spaces.

)

Y g curm, H's are (n — 1)-spaces.

Here z g (S) =1if S C H and g (S)

1

P

=Y pcprp,
1ifPCSandx

Degree 1: f
Here zp (S

0 otherwise.

p(S

)

Degree 1, alternative: f

0 otherwise.
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2-spaces

1-spaces

The subspace lattice of 5.

)

Take all k-spaces through a fixed 1

Example (Trivial Example 1

space P: zp.

Or the complement: 1 — xzp. (This is always possible.)
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The subspace lattice of 5.

)

Take all k-spaces in a fixed hyperplane H: zg.

Example (Trivial Example 2

QHLEP.

Degree 1 in zp's? Write H = a ) pcyzp+ 8 p
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3-spaces
1-spaces

/4

2-spaces

The subspace lattice of 5.

)

All through 1-space P or in hyperplane H: zp + zp.

Example (Trivial Example 3

Or the complement: 1 —xp —xp.
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Degree 1 Functions on 2-spaces in

Cameron, Liebler (1982): Investigate action of subgroups of PT'L(4,q)
on 1- and 2-spaces of Fj.

Same number of orbits: Boolean degree 1 function.
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Degree 1 Functions on 2-spaces in

Cameron, Liebler (1982): Investigate action of subgroups of PT'L(4, q)
on 1- and 2-spaces of Fj.

Same number of orbits: Boolean degree 1 function.

Conjecture (Cameron, Liebler (1982, very simplified))

If Boolean degree 1 function f on 2-spaces, then f or 1 — f is ..
e 0,
xp for a 1-space P,

°
e xy for a hyperplane H, or
°

xp + xy for a 1-space P and a hyperplane H, P ¢ H.

Conjecture very natural: true for subsets.

@ True for 2-spaces of F} by Drudge (1998).

o False for 2-spaces of ]F;‘: First counterexample for ¢ = 3 by Drudge

(1998), later many more for (n, k) = (4,2).
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State of the Art

For 2-spaces in IF;1 many counterexamples, e.g.:

Bruen, Cossidente, De Beule, Demeyer, Drudge, Feng, Gavrilyuk, Matkin,
Metsch, Momihara, Pavese, Penttila, Rodgers, Xiang, Zou.

Restrictions on sizes of non-trivial examples for 2-spaces in F%, e.g.:
@ Metsch (2010),
@ Metsch (2014),
@ Gavrilyuk, Metsch (2014).

Restrictions in a more general setting:
@ Metsch (2017),

Rodgers, Storme, Vansweevelt (2018),

Blokhuis, De Boeck, D'haeseleer (2019),

De Beule, Mannaert, Storme (2022),

lhringer (2024),

De Beule, Mannaert, Storme (2024).
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Classification Results

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk
and Matkin (2018), Matkin (2018))

All trivial for k =2 and q € {2,3,4,5}.

Proof: Clever computations and induction on n.

Theorem (Filmus, lh. (2019))
All trivial for k > 2 and q € {2,3,4,5}.

Proof: Induction on k.
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Classification Results

Boolean degree 1 functions f on k-spaces for n > 4:

Theorem (Drudge (1998), Gavrilyuk and Mogilnykh (2014), Gavrilyuk
and Matkin (2018), Matkin (2018))

All trivial for k =2 and q € {2,3,4,5}.

Proof: Clever computations and induction on n.

Theorem (Filmus, lh. (2019))
All trivial for k > 2 and q € {2,3,4,5}.

Proof: Induction on k.

Theorem (lh. (2024, AMS Proceedings))
All trivial for k > 2 and max(n — k, k) > co(k, q).
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The Structure of the Proof

The proof relies on ...

© Structural Results:
e Drudge (1998): f(z) = zp locally — f(z) = xp globally.
o Drudge (1998): f(z) = xp+zy locally — f(x) = xp+xq globally.
e Metsch (2010): f not trivial — far away from trivial.

@ Ramsey for vector spaces: Graham, Leeb, Rothschild (1972).
@ The case k = 2 suffices: Filmus, Ih. (2019).

My key insight was that we can use Ramsey theory.
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Coloring the Fano Plane

Points of Fano plane = 1-spaces of ]Fg.
Lines of Fano plane = 2-spaces of ]Fg.

Can we color the points of the Fano plane black/orange with no
monochromatic line?

Cf. Ex. 14.1.4 in Discrete Mathematics: Elementary and Beyond by L. Lovész, J. Pelikin, and K. Vesztergombi.
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Coloring the Fano Plane

Points of Fano plane = 1-spaces of ]Fg.
Lines of Fano plane = 2-spaces of ]Fg.

Can we color the points of the Fano plane black/orange with no
monochromatic line?

Cf. Ex. 14.1.4 in Discrete Mathematics: Elementary and Beyond by L. Lovész, J. Pelikin, and K. Vesztergombi.

No! This shows Ry(2;2) = 3.

A formal definition of Ry (s;m) follows on the next slide.
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Ramsey Theory for Vector Spaces

Definition

A m-coloring of Fy is a coloring of the 1-spaces of Fy with m colors.
The number R, (s;m) denotes the smallest integer n such that any
m-coloring of [y possesses a monochromatic s-space.

Theorem (Graham, Leeb, Rothschild (1972))

The number R, (s;m) is finite.

Theorem (Graham, Leeb, Rothschild (1972))

Analogous result for affine spaces.
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Applying Ramsey

How to apply Ramsey? Example for ¢ = 2.
Q Fix a 1-space P.
@ Goal: the coefficient of zp.
© Say, only 896 coefficients can occur!
©Q n > Ry(s1;896): monochromatic s;-space 5.
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Applying Ramsey

St

How to apply Ramsey? Example for ¢ = 2.
Q Fix a 1-space P.
@ Goal: the coefficient of zp.
© Say, only 896 coefficients can occur!
©Q n > Ry(s1;896): monochromatic s;-space 5.
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Applying Ramsey

St

How to apply Ramsey? Example for ¢ = 2.
Q Fix a 1-space P.
@ Goal: the coefficient of zp.
© Say, only 896 coefficients can occur!
©Q n > Ry(s1;896): monochromatic s;-space 5.
@ 51 > Ra(s2;896): monochromatic affine sa-sp. Sa in Ha N (S1 + P).
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Applying Ramsey

How to apply Ramsey? Example for ¢ = 2.
Q Fix a 1-space P.
@ Goal: the coefficient of zp.
© Say, only 896 coefficients can occur!
©Q n > Ry(s1;896): monochromatic s;-space 5.
@ 51 > Ra(s2;896): monochromatic affine sa-sp. Sa in Ha N (S1 + P).
Q s2 > R2(2;896): monochromatic affine 2-space in (S; N S2) + P.
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Limited Weights

Ramsey gives us that any P has one of the coefficients

( q q—1 1 1 1 1
q+1 ¢ @#4+q¢ ¢ q+1 @44

. . . g—1 1 1 1 q
If all coefficients are in [-1, — 1) U{—=,0, 77, ;U (ZF5, 1],

q+1
then f or 1 — f is one of 0, xp, xp, xp + xH.

o Drudge (1998),
e Metsch (2010),
@ Some easy calculations. O
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What is ¢o(k, q)7?

Other arguments: ¢y(2,2) = 2.

Best known vector space Ramsey bound (I think):

Theorem (Frederickson, Yepremyan (2024, simplified))

Ro(s;m) < 2 11 ms.

5Also, | did not check the estimate below too carefully.
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What is ¢o(k, q)7?

Other arguments: ¢y(2,2) = 2.

Best known vector space Ramsey bound (I think):

Theorem (Frederickson, Yepremyan (2024, simplified))

Ro(s;m) < 2 11 ms.

Ignoring the difference between affine/projective, this gives®

2 = ¢0(2,2) < Ry(Ra(R2(2;896);896); 896) — 2
<211 (896 - (211 (896 - (2 11 896 - 2)))) — 2> 2.

Does ¢ (2, q) grow in q?

5Also, | did not check the estimate below too carefully.
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Recent Breakthrough in Complexity Theory

The Unique Games Conjecture claims that it is impossible to
approximate many NP-hard problems in polynomial time.

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Proof of the 2-to-2 Games Conjecture.?

?A slightly weakend Unique Games Conjecture.
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@000

Recent Breakthrough in Complexity Theory

The Unique Games Conjecture claims that it is impossible to
approximate many NP-hard problems in polynomial time.

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Proof of the 2-to-2 Games Conjecture.?

A slightly weakend Unique Games Conjecture.

What they had to show:

Theorem (Khot, Minzer, Safra (2023, Annals of Mathematics))

Let a € (0,1). There ex. € > 0 s.t. for sufficiently large k and sufficiently
large n: If f on k-spaces in F% significant mass on low degree
(measured by «), then there ex. A of const. dim. and B of const.
codim. with

Hz e f:ACx C B} > e{x k-space: A C x C B}|.

Think of dim(A4) = 1 and dim(B) = n. Then f = AT is example.
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Two-Intersecting Sets

Problem: Pick a set of 1-spaces P in Fy such that [LNP| € {a, b} for
any k-space L. (two-intersecting set)

There are many examples for (n, k) = (3,2), e.g., hyperovals.

Always: take a 1-space or a hyperplane. (trivial examples)
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Two-Intersecting Sets

Problem: Pick a set of 1-spaces P in Fy such that [LNP| € {a, b} for
any k-space L. (two-intersecting set)

There are many examples for (n, k) = (3,2), e.g., hyperovals.

Always: take a 1-space or a hyperplane. (trivial examples)

Theorem (Tallini Scafati (1976, simplified))

For (n,k) = (4,2), if there is a non-trivial two-intersecting set, then q is
an odd square.

First open case is ¢ = 9.

Theorem (lh. (2024, AMS Proceedings))

For k fixed and n sufficiently large, all two-intersecting sets are trivial.
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Future Work & Further Reading

Problem (Updated)
Investigate the behavior of ¢y(k.q). Does it grow in q?

Problem (Nisan-Szegedy (Vector Spaces))

On how many variables can a Boolean degree d function depend?

Problem

Can we improve the bounds for the Ramsey number Rq(s;m)?

Reference for everything: lh., A Survey of Cameron-Liebler Sets and Low Degree Boolean
Functions in Grassmann Graphs, Summit280, Bolyai Society Mathematical Studies.
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Thank you for your attention!
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