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Definition

Let q be a prime power and n ∈ N. A q-ary block code is any non-empty
subset

C ⊆ Fn
q,

where Fq denotes the finite field with q elements and Fn
q is equipped with the

Hamming metric

dH(x , y) =
∣∣{ i | 1 ≤ i ≤ n, xi ̸= yi

}∣∣.
Moreover, define Hamming weight

wH(x) =
∣∣{ i : xi ̸= 0}

∣∣ where x ∈ Fn
q,

then
dH(x , y) = wH(x − y).
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Definition

• The packing radius t(C) of C is defined by t(C) =
⌊
d−1
2

⌋
where d is the

minimum weight of C.
• The covering radius of C, denoted by R(C), is the smallest integer r such

that the Hamming balls of radius r centered at the codewords of C cover
the complete space Fn

q, namely

Fn
q0 =

⋃
c∈C

B(c; r),

where B(c; r) =
{
x ∈ Fn

q0 : wH(x− c) ≤ r
}
.

• It is well-known that for any code C, t(C) ≤ R(C), and C is called
perfect if t(C) = R(C), and quasi-perfect if t(C) + 1 = R(C).
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Definition

Here is a small example to explain this definition.

Example

Let C = {c0 = 000, c1 = 111} be a binary linear [3, 1, 3] code. Its packing
radius t(C) =

⌊
d−1
2

⌋
= 1. It is obvious that⋃

c∈C
B(c; 0) = C ̸= F3

2.

It follows that R(C) ≥ 1.

4 / 40



Definition

Example

Note that
B(c0; 1) = {000, 100, 010, 001} and B(c1; 1) = {111, 110, 011, 101}.
It follows that

F3
2 =

⋃
c∈C

B(c; 1).

Hence, its covering radius R(C) = 1. This implies that the code C is a perfect
code since t(C) = R(C) = 1.
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Definition

Figure: Diagram of the example above
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Definition

Let q be a prime power and Fq denote the finite field with q elements. A
q-ary linear code C of length n dimension k, and d is the minimum weight of
C written as

[n, k , d ]q,

is a k-dimensional subspace of Fn
q, i.e.

C ⊆ Fn
q.
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Definition

Let C be an [n, k , d ]q linear code. A matrix

H ∈ F(n−k)×n
q

is called a parity–check matrix of C such that

C = { c ∈ Fn
q | HcT = 0}.

Namely, C = Ker H.
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Definition

Let C be a q-ary [n, k, d ]q linear code with parity-check matrix

H =
(
hT1

∣∣ hT2 ∣∣ . . . ∣∣ hTn ) ∈ F(n−k)×n
q ,

where hTi denotes the i-th column. For t ≥ 0, the t-order generalized
covering radius denoted as

Rt(C)

is the smallest non-negative integer r such that for sT1 , . . . , s
T
t ∈ Fn−k

q there

exist indices i1, . . . , ir such that { sT1 , . . . , sTt } ⊆
〈
hTi1 , . . . , h

T
ir

〉
.
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Definition

Let q be a prime power and Fq denote the finite field with q elements. Let
m ≥ 1 an integer. Let α be a primitive element of order n = qm − 1. The
Melas code M(m, q) ⊆ Fn

q is the linear code with parity-check matrix

P =

(
1 α α2 . . . αn−1

1 α−1 α−2 . . . α−(n−1)

)
∈ F 2×n

q .

Except for the degenerate cases M(1, 2) and M(1, 3), dimM(m, q) = n− 2m.
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Melas Codes

Here the representation of the parity check matrix is in short. In fact, each

column

[
αi

α−i

]
in P is considered as ϕ(

[
αi

α−i

]
) ∈ F2m

q , where ϕ is any

Fq-linear bijective map from Fqm to Fm
q .
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The Radius of Melas Codes

So far, the radius of Melas codes under some special conditions has been
found, and the results are listed in the table below.

Table 2. The radius of M(m, q) over Fq that have been discovered

Conditions Radius
m = 1, q = 2 1
m ≥ 2, q = 2 3

m ≥ 1, q > 2, charFq is 2 2
m = 1, q = 3 1
m = 2, q = 3 4
m ≥ 3, q = 3 3

m ≥ 1, q ≥ 5, charFq is odd 2
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Zetterberg Codes

Let q0 be an odd prime power and s ≥ 1. Put

q = q s
0 , n = q + 1.

Let H ⊂ F∗
q2 be the unique subgroup of order n with enumeration

H = {h1, . . . , hn}. The generalized Zetterberg code

Cs(q0) ⊂ Fn
q0

is the q0-ary linear code whose parity-check matrix is

P =
[
h1 h2 . . . hn

]
∈ F2s×n

q0 .

It has parameters [n, n − 2s, d ] with d ≥ 3 and dimCs(q0) = n − 2s.
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The Covering Radius of Zetterberg Codes

Let ℓ ≥ 3 and let the base field Fq0 satisfy q0 ≡ 2ℓ − 1 (mod 2ℓ+1). Denote
by Cs(q0) the generalized Zetterberg code of odd characteristic.
First, we introduce some notation.

• Assume that q = qs0 ≡ 2ℓ − 1 (mod 2ℓ+1).

• Let θ be a primitive 2ℓ-th root of 1 in F∗
q2 .

• Let H be the multiplicative subgroup of F∗
q2 with |H| = q + 1.

• Put m = (q0 − 1)/2. Let Hm be the multiplicative subgroup of F∗
q2 with

|Hm| = m(q + 1).

• Clearly, Hm = F∗
q0 · H.

Definition

For index 0 ≤ i ≤ 2ℓ − 1, let Property NPi be the property defined as follows:
There exists γ ∈ F∗

q2 such that γq = θiγ and the equation

h1 + h2 = γ

is not solvable with h1, h2 ∈ Hm.
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The Covering Radius of Zetterberg Codes

According to the definition of covering radius, we obtain the following
theorem.

Theorem
Let Fq0 be a finite field such that

qs0 ≡ 2ℓ − 1 (mod 2ℓ+1).

Then the covering radius of Cs(q0) is 3 if and only if there exists an index
0 ≤ i ≤ 2ℓ − 1 such that Property NPi holds. Otherwise, the covering radius
is 2.
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The Covering Radius of Zetterberg Codes

We first consider Property NPi if i is even.

Theorem

Assume that 0 ≤ i ≤ 2ℓ − 1 is an even integer. Let α1, . . . , αm be an
enumeration of all nonzero squares in Fq0 . Then Property NPi is equivalent
to the following: The system

y2
1 = x2 − α1,
y2
2 = x2 − α2,

...
y2
m = x2 − αm,

is solvable with x , y1, y2, . . . , ym ∈ F∗
q.
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The Covering Radius of Zetterberg Codes

We next consider Property NPi if i is odd.

Theorem

Assume that 0 ≤ i ≤ 2ℓ − 1 is an odd integer. Let β1, . . . , βm be an
enumeration of all nonzero non-squares in Fq0 . Then Property NPi is
equivalent to the following: The system

y2
1 = x2 − β1,
y2
2 = x2 − β2,

...
y2
m = x2 − βm,

is solvable with x , y1, y2, . . . , ym ∈ F∗
q.
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The Covering Radius of Zetterberg Codes

Using the previous theorems, the following corollaries are obtained.

Corollary

The covering radius of Cs(q0) is 2 if s = 1.

Corollary

The covering radius of Cs(q0) is 3 if s is even.

It remains to consider s is odd with s ≥ 3.
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The Covering Radius of Zetterberg Codes

Using the arithmetic of the fibre product of Kummer curves over finite fields
and Hasse-Weil inequality, we determine that the covering radius of Cs(q0) is
3 for all sufficiently large odd s.

Theorem

Recall that m = (q0 − 1)/2. Let s∗ be the smallest odd integer such that
s∗ ≥ 3 and

qs
∗

0 + 1− 2
(
1 + 2m−1(m − 2)

)
q
s∗/2
0 > 2m. (1)

If s ≥ s∗ is an odd integer, then the covering radius of Cs(q0) is 3.
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The Covering Radius of Zetterberg Codes

We do not know the finite initial interval corresponding to the case that the
covering radius of generalized Zetterberg code is 2.
We define the set

I (q0) :=
{
odd s ≥ 3 : R(Cs(q0)) = 3

}
collects precisely those odd exponents for which the covering radius of
generalized Zetterberg code, R(Cs(q0)) = 3. If s is odd, s ≥ 3 and s /∈ I (q0),
then R(Cs(q0)) = 2.

The last theorem implies that {odd s ≥ 3} \ I (q0) is finite.

We determine I (q0) for certain small q0. They produce some new
quasi-perfect codes.
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Binary Primitive Double-Error-Correcting BCH Code

Definition
Let m ≥ 2 and n = 2m − 1. The binary primitive double-error-correcting BCH
code BCH(2,m) is the [n, k, d ]-code defined by

n = 2m − 1, k ≥ n − 2m − 1, d ≥ 5,

Fix a primitive element w ∈ F∗
2m and form the 2× n matrix over F2m

H(2,m) =

[
1 w w2 · · · wn−1

1 w3 w6 · · · w3(n−1)

]
.

Choosing a basis of F2m over F2 and expanding each entry yields a binary
2m × n parity-check matrix H̄(2,m), and

BCH(2,m) =
{
x ∈ Fn

2 | H̄(2,m) xT = 0
}
.
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Index the columns of the BCH parity-check matrix by elements x ∈ F∗
2m .

Then any target syndrome

[
β1

β2

]
∈ F2

2m such that

H̄xT =

[
β1

β2

]
can be realized as the span of three columns corresponding to x1, x2, x3 ∈ F∗

2m

satisfying

x1 + x2 + x3 = β1,

x31 + x32 + x33 = β2.
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Covering Radius of BCH(2,m)

For all m ≥ 3, the covering radius R1(BCH(2,m)) of BCH(2,m) determined
as

R1(BCH(2,m)) = 3,

i.e., every syndrome in F2
2m lies in the span of at most three columns of the

parity-check matrix.
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Second Generalized Covering Radius of BCH(2,m)

Definition
Let q be a prime power and Fq denote the finite field with q elements. For
an [n, k, d ]-code C ⊆ Fn

q, the second generalized covering radius denoted

R2(C)

is the least integer r such that any two syndromes in Fn−k
q can be generated

by at most r columns of a parity-check matrix of C.
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Second Generalized Covering Radius of BCH(2,m)

Using detailed methods of arithmetic and coding theory, recently L.
Yohananov and M. Schwartz (2024) determined the second generalized
covering radius the binary primitive double-error-correcting BCH code
BCH(2,m) as their main result, which is

R2(BCH(2,m)) =

{
5, m ̸= 4,

6, m = 4.
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Third Generalized Covering Radius of BCH(2,m)

Using some methods derived from the theory of algebraic curves over finite
fields, later F.Ö. and İ.Öztürk (2025) obtained the third generalized covering
radius of BCH(2,m).

Theorem

R3

(
BCH(2,m)

)
=

{
7, m ≥ 8 even,

6 or 7, m ≥ 9 odd.
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Upper Bound on R3(BCH(2,m))

Let m ≥ 8 and choose β1, . . . , β6 ∈ F∗
2m with

β1 ̸= β3, β1 ̸= β5, β3 ̸= β5, β3
1 ̸= β2, β3

3 ̸= β4, β3
5 ̸= β6.

Then there exist θ1, θ2, θ3 ∈ F∗
2m with Tr(θi ) = 0 and an x ∈ F∗

2m satisfying
the system of three Artin–Schreier equations

y2
1 + y1 =

β3
1 + β2

x3
, y2

2 + y2 =
β3
3 + β4

(x + β1 + β3)3
, y2

3 + y3 =
β3
5 + β6

(x + β1 + β5)3
.

A genus-7 curve argument shows a suitable solution exists, forcing the
following theorem.

Theorem

For all m ≥ 8, R3(BCH(2,m)) ≤ 7.
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Lower Bound on R3(BCH(2,m)): Particular Patterns

p1 : (1, 1, 1, 1, 1, 1, 0), p2 : (1, 1, 0, 1, 1, 1, 1), p3 : (1, 1, 1, 0, 1, 1, 1), p4 : (0, 1, 1, 1, 1, 1, 1).

I1

x1

I2

x2

I3

0

z
y2 y3

y1

P1

I1

x1

I2

0

I3

x3

z
y2 y3

y1

P2

I1

x1

I2

x2

I3

x3

0
y2 y3

y1

P3

I1

0

I2

x2

I3

x3

z
y2 y3

y1

P4
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Lower Bound on Third Generalized Covering Radius of
BCH(2,m)

p1 p2 p3 p4
α1 β2 + β3 β2 + β3 β1 β1

α2 β1 + β3 β2 β2 β1 + β3

α3 β3 β1 + β2 β3 β1 + β2

In each column, the three values cannot simultaneously satisfy the necessary
consistency conditions for the corresponding system of equations. Therefore,
no solution exists under the assumption R3(BCH(2,m) ≤ 6, where m is even.
This contradiction yields the desired lower bound.

Theorem
For all even integers m ≥ 4, we have

R3(BCH(2,m)) ≥ 7.
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Lower Bound on Third Generalized Covering Radius of
BCH(2,m)

For odd m, a parallel analysis shows that any five or fewer columns also fails.

Theorem
For all odd integers m ≥ 5, we have

R3(BCH(2,m)) ≥ 6.
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

• R1(BCH(3,m)) = 5 for large m.

• Put q = 2m and assume m is large enough.

• This means that for every vectora1a3
a5

 ∈ F3
q,

there exist x1, x2, x3, x4, x5 ∈ F∗
q such that:

x1 + x2 + x3 + x4 + x5 = a1,

x31 + x32 + x33 + x34 + x35 = a3,

x51 + x52 + x53 + x54 + x55 = a5.
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

It is equivalent to the following: We can assume that a1 = 0 without loss of
generality. Hence, given  0

a3
a5

 ∈ F3
q,

there exist x1, x2, x3, x4, x5 ∈ F∗
q such that

x1 + x2 + x3 + x4 + x5 = 0,

x31 + x32 + x33 + x34 + x35 = a3,

x51 + x52 + x53 + x54 + x55 = a5.
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

We obtain a result in the direction of the second generalized covering radius
of the triple error correcting code BCH(3,m) as follows:

As R1(BCH(3,m)) = 5, it is immediate that:

Given a1a3
a5

 ,

b1b3
b5

 ∈ F3
q,

there exist x1, x2, x3, x4, x5, y1, y2, y3, y4, y5 ∈ F∗
q such that

33 / 40



Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

x1 + x2 + x3 + x4 + x5 = a1,

x31 + x32 + x33 + x34 + x35 = a3,

x51 + x52 + x53 + x54 + x55 = a5.

and
y1 + y2 + y3 + y4 + y5 = b1,

y3
1 + y3

2 + y3
3 + y3

4 + y3
5 = b3,

y5
1 + y5

2 + y5
3 + y5

4 + y5
5 = b5.

Hence, R2(BCH(3,m)) ≤ 10 for sufficiently large m.

We obtain an improved upper bound 9 under some conditions.
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

Theorem
Let q = 2m with m sufficiently large. Assume further that m is even.

Given  0
a3
a5

 ,

 0
b3
b5

 ∈ F3
q,

there exist x1, x2, x3, y1, y2, y3, α, β, γ ∈ F∗
q such that
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

Theorem (continued)

x1 + x2 + x3 + α+ β = 0,

x31 + x32 + x33 + α3 + β3 = a3,

x51 + x52 + x53 + α5 + β5 = a5.

and
y1 + y2 + y3 + γ + β = 0,

y3
1 + y3

2 + y3
3 + γ3 + β3 = b3,

y5
1 + y5

2 + y5
3 + γ5 + β5 = b5

and hence the “weak” second generalized covering radius R2(BCH(3,m)) of
BCH(3,m) is at most 9.

36 / 40



Covering Radius of Triple Error Correcting BCH Codes
BCH(3,m)

Remark
Note that the classical covering radius problem R1 is known to be equivalent
to the “weak” one. We hope to extend this to the case of second generalized
covering radius.

Remark
It seems the case m is odd requires additional techniques. We plan to
consider them as well using further detailed techniques.
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Sketch of the Proof

Put f (T ) = (T + x1)(T + x2)(T + x3) and
g(T ) = (T + y1)(T + y2)(T + y3). Aim to choose x = β such that for
suitable α and γ of the corresponding conditions are satisfied if

T 3 + T + A(a2, a3, α, x)

and

T 3 + T + B(b2, b3, γ, x)

both split.
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Sketch of the Proof (continued)

Here, A(a3, a5, α, x) and B(b3, b5, γ, x) are rational functions depending on
the syndromes  0

a3
a5

 ,

 0
b3
b5

 ,

and the structure of the code BCH(3,m).

The proof uses:

• properties of certain Dickson polynomials, and also

• algebraic curves over finite fields to show the existence of the
corresponding solutions.
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Thank you very much for your attention.
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