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Let g be a prime power and n € N. A g-ary block code is any non-empty
subset

cCF,

where I, denotes the finite field with g elements and g is equipped with the
Hamming metric

du(x,y) = |[{i11<i<n, x#y}|
Moreover, define Hamming weight
wh(x) = |{i:x #0}| where xeF},

then
du(x,y) = wh(x —y).
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® The packing radius t(C) of C is defined by t(C) = | 25| where d is the
minimum weight of C.

® The covering radius of C, denoted by R(C), is the smallest integer r such
that the Hamming balls of radius r centered at the codewords of C cover
the complete space Fg, namely

Fg = U B(c; r),
ceC

where B(c; r) {xEIF twh(x—c) < r}.

® |t is well-known that for any code C, t(C) < R(C), and C is called
perfect if t(C) = R(C), and quasi-perfect if t(C) + 1 = R(C).
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Here is a small example to explain this definition.

Let C = {co = 000,c; = 111} be a binary linear [3,1, 3] code. lts packing
radius t(C) = | 451 | = 1. It is obvious that

U B(ci0) =C #F3.

ceC

It follows that R(C) > 1.
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Note that
B(co; 1) = {000, 100,010,001} and B(cy;1) = {111,110,011,101}.
It follows that
F3 = | B(c;1).
ceC

Hence, its covering radius R(C) = 1. This implies that the code C is a perfect
code since t(C) = R(C) = 1.
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Figure: Diagram of the example above
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Let g be a prime power and F, denote the finite field with g elements. A
g-ary linear code C of length n dimension k, and d is the minimum weight of

C written as
[n7 ka d]Q7

is a k-dimensional subspace of F7, i.e.

CCFl.
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Let C be an [n, k, d]q linear code. A matrix
H e ]anfk)xn
is called a parity—check matrix of C such that
C={ceF)|Hc" =0}.

Namely, C = Ker H.
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Let C be a g-ary [n, k, d]4 linear code with parity-check matrix
H=(h{|h]|...|hY) eF{—xn

where h;r denotes the i-th column. For t > 0, the t-order generalized

covering radius denoted as
Re(C)

is the smallest non-negative integer r such that for s/ ... s € Fg*k there
exist indices i, ..., i, such that {s],....sT} C (hl,... AT).
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Let g be a prime power and F, denote the finite field with g elements. Let
m > 1 an integer. Let o be a primitive element of order n = q¢™ — 1. The
Melas code M(m, q) C [Fg is the linear code with parity-check matrix

1 « o ... a1 oxn
P= 1 al o2 ... o1 €F™

Except for the degenerate cases M(1,2) and M(1,3), dim M(m, q) = n—2m.
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Melas Codes

Here the representation of the parity check matrix is in short. In fact, each
o | . . . o o .
column [a"} in P is considered as ¢( [a"}) € F™, where ¢ is any

[Fg-linear bijective map from Fym to Fg'.
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The Radius of Melas Codes

So far, the radius of Melas codes under some special conditions has been
found, and the results are listed in the table below.

Table 2. The radius of M(m, q) over F, that have been discovered

Conditions Radius
m=1,g=2 1
m>2,qg=2 3
m>1,q>2, charlF, is 2 2
m=1qg=3 1
m=2,qg=3 4
m>3,qg=3 3
m>1,q2>5, charF, is odd 2
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Zetterberg Codes

Let go be an odd prime power and s > 1. Put

q=4p, n=gq+L

Let H C Fe. be the unique subgroup of order n with enumeration
H ={hy,...,h,}. The generalized Zetterberg code

is the go-ary linear code whose parity-check matrix is
P=1[hhy ... hy| €F*".

It has parameters [n, n — 2s, d] with d > 3 and dim C,(qo) = n — 2s.
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The Covering Radius of Zetterberg Codes

Let £ > 3 and let the base field Fg, satisfy go = 2° — 1 (mod 2¢*1). Denote
by Cs(qo) the generalized Zetterberg code of odd characteristic.
First, we introduce some notation.

® Assume that ¢ = g§ = 2° — 1 (mod 2¢*+1).

® Let 6 be a primitive 2¢_th root of 1 in IF;z.

® Let H be the multiplicative subgroup of F7, with |[H =g+ 1.

® Put m=(qo —1)/2. Let Hn be the multiplicative subgroup of F, with
|Hm| = m(qg + 1).

Clearly, H,, = IFZO - H.

Definition

For index 0 < i < 2 — 1, let Property NPi be the property defined as follows:
There exists v € Fee such that v9 = 0’ and the equation

hi+ hy =7

is not solvable with hy, h, € H,,.
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The Covering Radius of Zetterberg Codes

According to the definition of covering radius, we obtain the following
theorem.

Let Fg, be a finite field such that
g =2"—1 (mod2°1).
Then the covering radius of Cs(qo) is 3 if and only if there exists an index

0<i<2%—1 such that Property NPi holds. Otherwise, the covering radius
is 2.

v
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The Covering Radius of Zetterberg Codes

We first consider Property NPi if i is even.

Assume that 0 < j < 2¢ — 1 is an even integer. Let aq,...,am be an

enumeration of all nonzero squares in Fy,. Then Property NPi is equivalent
to the following: The system

2 2

.yl = X — 0,
2 _ 2

Y2 = X — Qo
2 2

Ym X" = Qm,

is solvable with x, y1, ya, ..., ym € Fy.
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The Covering Radius of Zetterberg Codes

We next consider Property NPi if i is odd.

Assume that 0 < i < 2° — 1 is an odd integer. Let B1,...,[m be an
enumeration of all nonzero non-squares in IF,,. Then Property NPi is
equivalent to the following: The system

vi
V3

v

is solvable with x, y1, ya, ..., ym € Fy.

X2 _517
x? = B,
X2 _ﬂm,
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The Covering Radius of Zetterberg Codes

Using the previous theorems, the following corollaries are obtained.

The covering radius of Cs(qo) is 2 if s = 1.

The covering radius of Cs(qo) is 3 if s is even.

It remains to consider s is odd with s > 3.
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The Covering Radius of Zetterberg Codes

Using the arithmetic of the fibre product of Kummer curves over finite fields
and Hasse-Weil inequality, we determine that the covering radius of Cs(qo) is
3 for all sufficiently large odd s.

Recall that m = (qo — 1)/2. Let s* be the smallest odd integer such that
s* >3 and

G +1-2(1+2"Ym—-2))q > >2m (1)

If s > s* is an odd integer, then the covering radius of Cs(qo) is 3.
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The Covering Radius of Zetterberg Codes

We do not know the finite initial interval corresponding to the case that the
covering radius of generalized Zetterberg code is 2.
We define the set

I(q0) == {odds>3: R(Cs(q0)) =3}

collects precisely those odd exponents for which the covering radius of
generalized Zetterberg code, R(Cs(qo)) = 3. If sisodd, s > 3 and s ¢ /(qo),
then R(Cs(qo)) = 2.

The last theorem implies that {odd s > 3} \ /(qo) is finite.

We determine /(qo) for certain small go. They produce some new
quasi-perfect codes.
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Binary Primitive Double-Error-Correcting BCH Code

Definition
Let m > 2 and n = 2™ — 1. The binary primitive double-error-correcting BCH
code BCH(2, m) is the [n, k, d]-code defined by

n=2"-1, k>n—-2m-—1, d>5,
Fix a primitive element w € [F5,, and form the 2 X n matrix over Fom

1 w w? ... W"_I]

H(2 =
(2,m) 1 w3 wb ... w31

Choosing a basis of [Fom over IF> and expanding each entry yields a binary
2m x n parity-check matrix H(2, m), and

BCH(2,m) = {x € F3 | H(2,m)x" =0}.
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Index the columns of the BCH parity-check matrix by elements x € F3,..

Then any target syndrome [gl} € [F2,, such that
2

.7 _ [P
Hx' = {52}

can be realized as the span of three columns corresponding to x1, X2, x3 € 5,
satisfying
x1+x2 +x3 = f,

X13+x§’+x33262.
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Covering Radius of BCH(2, m)

For all m > 3, the covering radius Ry(BCH(2, m)) of BCH(2, m) determined

as
Ry(BCH(2, m)) = 3,

i.e., every syndrome in 2, lies in the span of at most three columns of the
parity-check matrix.
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Second Generalized Covering Radius of BCH(2, m)

Definition
Let g be a prime power and F, denote the finite field with g elements. For
an [n, k, d]-code C C IFy, the second generalized covering radius denoted

Rx(C)

is the least integer r such that any two syndromes in Fg’k can be generated
by at most r columns of a parity-check matrix of C.
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Second Generalized Covering Radius of BCH(2, m)

Using detailed methods of arithmetic and coding theory, recently L.
Yohananov and M. Schwartz (2024) determined the second generalized
covering radius the binary primitive double-error-correcting BCH code

BCH(2, m) as their main result, which is

Ry(BCH(2, m)) = {2 Z i j’
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Third Generalized Covering Radius of BCH(2, m)

Using some methods derived from the theory of algebraic curves over finite
fields, later F.O. and I.Oztiirk (2025) obtained the third generalized covering
radius of BCH(2, m).

7, m > 8 even,

R3(BCH(2, m)) = {6 or7. m>9 odd.
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Upper Bound on R3(BCH(2, m))

Let m > 8 and choose f1, ..., 3 € F3» with

Br# B3, B1#PBs, Bs#Bs, Bi# B B3#Ba B2 Be.

Then there exist 01, 0,,05 € F5,, with Tr(6;) = 0 and an x € F3,, satisfying
the system of three Artin—Schreier equations

3 3 3
2 Bi + B2 2 B3 + Ba 2 Bs + Be
= R D o 7 e .y
S AR CEN R

A genus-7 curve argument shows a suitable solution exists, forcing the
following theorem.

For all m > 8, Ry(BCH(2,m)) < 7.
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Lower Bound on R3(BCH(2, m)): Particular Patterns

pl : (1’ 1) 17 17 1’ 1’0)7 p2 : (1’ 1707 1’ 1’ 17 1)7 p3 : (17 17 170) 17 17 1)’ p4 : (07 1’ 1) 17 17

O

Ps P,
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Lower Bound on Third Generalized Covering Radius of

BCH(2, m)

‘ P1 P2 P3 P4
ap | o+ B3 B+ B3 B b1
ay | B+ B3 B2 B2 B+ B3
ag B3 Br+B2 B3z B+ B2

In each column, the three values cannot simultaneously satisfy the necessary
consistency conditions for the corresponding system of equations. Therefore,
no solution exists under the assumption R3(BCH(2, m) < 6, where m is even.
This contradiction yields the desired lower bound.

For all even integers m > 4, we have

Rs(BCH(2,m)) > 7.
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Lower Bound on Third Generalized Covering Radius of

BCH(2, m)

For odd m, a parallel analysis shows that any five or fewer columns also fails.

For all odd integers m > 5, we have

Ry(BCH(2, m)) > 6.
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Covering Radius of Triple Error Correcting BCH Codes

BCH(3, m)

® Ry (BCH(3,m)) =5 for large m.
® Put g = 2™ and assume m is large enough.
® This means that for every vector
a1
az| € ]F?I’
as
there exist x1, x2, X3, x4, x5 € Fy, such that:
X1+ X+ X3+ X3 + X5 = ay,
x13—|—x23—|—x33+xf+xg = az,

xf—|—x§—|—x§+xf+x§:a5.
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Covering Radius of Triple Error Correcting BCH Codes

BCH(3, m)

It is equivalent to the following: We can assume that a; = 0 without loss of
generality. Hence, given

0

az| € Ff’?’

as

there exist xi, x2, X3, xa, X5 € Fy such that
X1+ X0 4+ X3+ x4 + x5 = 0,
X345+ X3 4G+ X = a3,

5 5 5 5 5
X1+ X + X3+ X3 + X5 = as.
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Covering Radius of Triple Error Correcting BCH Codes

BCH(3, m)

We obtain a result in the direction of the second generalized covering radius
of the triple error correcting code BCH(3, m) as follows:

As Ri(BCH(3, m)) =5, it is immediate that:

Given
al b1
as| , bs| € F:;’
as bs

there exist x1, X2, X3, X4, X5, Y1, V2, V3, Ya, V5 € ]Fj; such that
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Covering Radius of Triple Error Correcting BCH Codes

BCH(3, m)

X1+ Xo + X3+ X4 + X5 = ay, vi+y2+ys+yatys=b,
X546+ 3 +0G + X8 = a3, and Vi+Ys+Y3+yi+ye=bs,
X406 433 + G + x5 = as. VAYs+ys+ys+ys =bs.
Hence, Ry(BCH(3, m)) < 10 for sufficiently large m. J

We obtain an improved upper bound 9 under some conditions. )
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3, m)

Let g = 2™ with m sufficiently large. Assume further that m is even.

Given
0 0
a|, |bs| €F,
ds b5

there exist x1, X2, X3, y1, Y2, 3, &, 3,y € Fy such that
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Covering Radius of Triple Error Correcting BCH Codes

BCH(3, m)

Theorem (continued)

xX1+x+x3+a+ =0, vi+y2+ys+y+3=0,
43 +x3 + P+ 5 = a, ged vi+yi+ys+7+ 8 =bs,
X453 +x3+a°+ B =as. i+ +7°+B8=bs

and hence the “weak” second generalized covering radius Ry(BCH(3, m)) of
BCH(3, m) is at most 9.
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Covering Radius of Triple Error Correcting BCH Codes
BCH(3, m)

Note that the classical covering radius problem Ry is known to be equivalent
to the “weak” one. We hope to extend this to the case of second generalized
covering radius.

It seems the case m is odd requires additional techniques. We plan to
consider them as well using further detailed techniques.
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Sketch of the Proof

Put f(T) = (T +x1)(T +x)(T + x3) and
g(T)=(T +y1)(T + y2)(T + y3). Aim to choose x = /3 such that for
suitable o and 7y of the corresponding conditions are satisfied if

T3+ T+ A(az, a3, a, x)

and

T3+ T + B(by, b3, 7,x)

both split.
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Sketch of the Proof (continued)

Here, A(as, as, a, x) and B(bs, bs,, x) are rational functions depending on
the syndromes

0 0
as| , b3 ’
ds b5

and the structure of the code BCH(3, m).

The proof uses:
® properties of certain Dickson polynomials, and also

® algebraic curves over finite fields to show the existence of the
corresponding solutions.
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Thank you very much for your attention.
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