

Sequentially Cohen-Macaulay binomial edge ideals of graphs

Francesco Romeo

University of Cassino and Southern Lazio, Italy

5th Pythagorean Conference – June 2, 2025

Section 1

Introduction

Bibliography

HHKR J. Herzog, T. Hibi, F. Hreinsdottir, T. Kahle, J. Rauh, *Binomial edge ideals and conditional independence statements*, Advances in Applied Mathematics, 2010.

O M. Ohtani, *Graphs and ideals generated by some 2-minors*, Comm. Algebra (39), 2011.

EHH V. Ene, J. Herzog, T. Hibi, *Cohen-Macaulay binomial edge ideals*, Nagoya Math. J. Volume 204, 2011.

...

G A. Goodarzi, *Dimension filtration, sequential Cohen–Macaulayness and a new polynomial invariant of graded algebras*. J. Algebra, **456**, 250–265, 2016.

ERT V. Ene, G. Rinaldo, N. Terai, *Sequentially Cohen-Macaulay binomial edge ideals of closed graphs*. Res. Math. Sci.m **9**, 39, 2022.

LRR E. Lax, G. Rinaldo, F. Romeo, *Sequentially Cohen-Macaulay binomial edge ideals*, arXiv:2405.08671, 2024.

Binomial edge ideal on G

Let G be a simple graph on the vertex set $V(G) = \{1, \dots, n\}$ and let $S = K[x_1, \dots, x_n, y_1, \dots, y_n]$ be the polynomial ring in $2n$ variables over the field K .

Binomial edge ideal on G

Let G be a simple graph on the vertex set $V(G) = \{1, \dots, n\}$ and let $S = K[x_1, \dots, x_n, y_1, \dots, y_n]$ be the polynomial ring in $2n$ variables over the field K .

Binomial edge ideal

A *binomial edge* ideal $J_G \subset S$ is the ideal generated by the binomials $f_{ij} = x_i y_j - x_j y_i$, with $i < j$ and $\{i, j\}$ is an edge of G .

Binomial edge ideal on G

Let G be a simple graph on the vertex set $V(G) = \{1, \dots, n\}$ and let $S = K[x_1, \dots, x_n, y_1, \dots, y_n]$ be the polynomial ring in $2n$ variables over the field K .

Binomial edge ideal

A *binomial edge* ideal $J_G \subset S$ is the ideal generated by the binomials $f_{ij} = x_i y_j - x_j y_i$, with $i < j$ and $\{i, j\}$ is an edge of G .

In general S/J_G is not a domain.

$$y_2(x_1y_3 - x_3y_1) \in J_G = (x_1y_2 - x_2y_1, x_2y_3 - x_3y_2)$$

Binomial edge ideal on G

Let G be a simple graph on the vertex set $V(G) = \{1, \dots, n\}$ and let $S = K[x_1, \dots, x_n, y_1, \dots, y_n]$ be the polynomial ring in $2n$ variables over the field K .

Binomial edge ideal

A *binomial edge* ideal $J_G \subset S$ is the ideal generated by the binomials $f_{ij} = x_i y_j - x_j y_i$, with $i < j$ and $\{i, j\}$ is an edge of G .

In general S/J_G is not a domain.

$$y_2(x_1y_3 - x_3y_1) \in J_G = (x_1y_2 - x_2y_1, x_2y_3 - x_3y_2)$$

Neither y_2 nor $x_1y_3 - x_3y_1 \in J_G$.

Binomial edge ideal on G

Let G be a simple graph on the vertex set $V(G) = \{1, \dots, n\}$ and let $S = K[x_1, \dots, x_n, y_1, \dots, y_n]$ be the polynomial ring in $2n$ variables over the field K .

Binomial edge ideal

A *binomial edge* ideal $J_G \subset S$ is the ideal generated by the binomials $f_{ij} = x_i y_j - x_j y_i$, with $i < j$ and $\{i, j\}$ is an edge of G .

In general S/J_G is not a domain.

$$y_2(x_1y_3 - x_3y_1) \in J_G = (x_1y_2 - x_2y_1, x_2y_3 - x_3y_2)$$

Neither y_2 nor $x_1y_3 - x_3y_1 \in J_G$. S/J_G is a domain if and only if G is a complete graph, that is, J_G is a determinantal ideal induced by the 2 by 2 minors of the 2 by n matrix

$$\begin{pmatrix} x_1 & \dots & x_n \\ y_1 & \dots & y_n \end{pmatrix}$$

Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices $V(G) = [n]$.

Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices $V(G) = [n]$. For a subset $S \subset [n]$, let $c(S)$ be the number of connected components of the graph $G_{[n] \setminus S}$.

Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices $V(G) = [n]$. For a subset $S \subset [n]$, let $c(S)$ be the number of connected components of the graph $G_{[n] \setminus S}$. S is called a cutset of G if for all $i \in S$, $c(S \setminus \{i\}) < c(S)$. A cut vertex is the element of a cutset of cardinality 1.

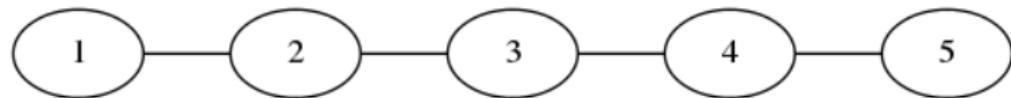
Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices $V(G) = [n]$. For a subset $S \subset [n]$, let $c(S)$ be the number of connected components of the graph $G_{[n] \setminus S}$. S is called a cutset of G if for all $i \in S$, $c(S \setminus \{i\}) < c(S)$. A cut vertex is the element of a cutset of cardinality 1.

We consider the path of length 4,



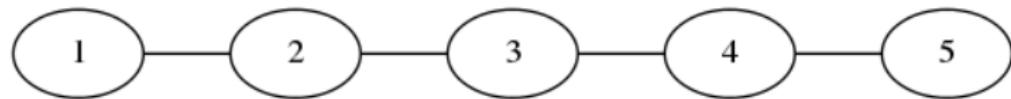
Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices $V(G) = [n]$. For a subset $S \subset [n]$, let $c(S)$ be the number of connected components of the graph $G_{[n] \setminus S}$. S is called a cutset of G if for all $i \in S$, $c(S \setminus \{i\}) < c(S)$. A cut vertex is the element of a cutset of cardinality 1.

We consider the path of length 4,



Its cutsets are

$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

A bit of Commutative Algebra...

Let $S = K[x_1, \dots, x_n]$ a polynomial ring over a field K with a standard graduation, I homogeneous ideal, \mathfrak{m} the maximal graded ideal of $R = S/I$.

Let $I = \bigcap_i^r Q_i$ be the primary decomposition of I and

$\text{Ass } R = \{P_1, \dots, P_r\}$ the ideals $P_i = \sqrt{Q_i}$, $i = 1, \dots, r$.

We recall that

- ① The Krull dimension of R is the maximum length over the chains of prime ideals in $\text{Ass } R$;

A bit of Commutative Algebra...

Let $S = K[x_1, \dots, x_n]$ a polynomial ring over a field K with a standard graduation, I homogeneous ideal, \mathfrak{m} the maximal graded ideal of $R = S/I$.

Let $I = \bigcap_i^r Q_i$ be the primary decomposition of I and

$\text{Ass } R = \{P_1, \dots, P_r\}$ the ideals $P_i = \sqrt{Q_i}$, $i = 1, \dots, r$.

We recall that

- ① The Krull dimension of R is the maximum length over the chains of prime ideals in $\text{Ass } R$;
- ② An ideal is called unmixed if the prime ideals in $\text{Ass } R$ have the same height;

A bit of Commutative Algebra...

Let $S = K[x_1, \dots, x_n]$ a polynomial ring over a field K with a standard graduation, I homogeneous ideal, \mathfrak{m} the maximal graded ideal of $R = S/I$.

Let $I = \bigcap_i^r Q_i$ be the primary decomposition of I and

$\text{Ass } R = \{P_1, \dots, P_r\}$ the ideals $P_i = \sqrt{Q_i}$, $i = 1, \dots, r$.

We recall that

- ① The Krull dimension of R is the maximum length over the chains of prime ideals in $\text{Ass } R$;
- ② An ideal is called unmixed if the prime ideals in $\text{Ass } R$ have the same height;
- ③ $\theta_1, \theta_2, \dots, \theta_r \in \mathfrak{m} \subset R$ is a homogeneous regular sequence if θ_i is a non zero-divisor of $R/(\theta_1, \dots, \theta_{i-1})R$ for all i ;

A bit of Commutative Algebra...

Let $S = K[x_1, \dots, x_n]$ a polynomial ring over a field K with a standard graduation, I homogeneous ideal, \mathfrak{m} the maximal graded ideal of $R = S/I$.

Let $I = \bigcap_i^r Q_i$ be the primary decomposition of I and

$\text{Ass } R = \{P_1, \dots, P_r\}$ the ideals $P_i = \sqrt{Q_i}$, $i = 1, \dots, r$.

We recall that

- ① The Krull dimension of R is the maximum length over the chains of prime ideals in $\text{Ass } R$;
- ② An ideal is called unmixed if the prime ideals in $\text{Ass } R$ have the same height;
- ③ $\theta_1, \theta_2, \dots, \theta_r \in \mathfrak{m} \subset R$ is a homogeneous regular sequence if θ_i is a non zero-divisor of $R/(\theta_1, \dots, \theta_{i-1})R$ for all i ;
- ④ $\text{depth } R = \text{maximum length between the lengths of regular sequences over } R$;

A bit of Commutative Algebra...

Let $S = K[x_1, \dots, x_n]$ a polynomial ring over a field K with a standard graduation, I homogeneous ideal, \mathfrak{m} the maximal graded ideal of $R = S/I$.

Let $I = \bigcap_i^r Q_i$ be the primary decomposition of I and

$\text{Ass } R = \{P_1, \dots, P_r\}$ the ideals $P_i = \sqrt{Q_i}$, $i = 1, \dots, r$.

We recall that

- ① The Krull dimension of R is the maximum length over the chains of prime ideals in $\text{Ass } R$;
- ② An ideal is called unmixed if the prime ideals in $\text{Ass } R$ have the same height;
- ③ $\theta_1, \theta_2, \dots, \theta_r \in \mathfrak{m} \subset R$ is a homogeneous regular sequence if θ_i is a non zero-divisor of $R/(\theta_1, \dots, \theta_{i-1})R$ for all i ;
- ④ $\text{depth } R = \text{maximum length between the lengths of regular sequences over } R$;
- ⑤ A ring is said Cohen-Macaulay if $\dim R = \text{depth } R$.

A bit of Commutative Algebra...

Let M be a finitely generated graded module over R . The module M is called sequentially Cohen-Macaulay if there exists a finite filtration with graded submodules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that the following two conditions are fulfilled:

- ① M_i/M_{i-1} is a Cohen-Macaulay module for $1 \leq i \leq r$;
- ② $\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1})$.

Goodarzi filtration of ideals

We recall a characterization of sequentially Cohen–Macaulay homogeneous ideals due to Goodarzi [G]

Let $I \subset S$ be a homogeneous ideal, with $d = \dim S/I$, and let $I = \bigcap_{j=1}^r Q_j$ be the minimal primary decomposition of I . For all $1 \leq j \leq r$, let $P_j = \sqrt{Q_j}$ be the radical of Q_j . For all $-1 \leq i \leq d$, denote

$$I^{*} = \bigcap_{\dim S/P_j > i} Q_j,*$$

where $I^{<-1>} = I$ and $I^{} = S$.

Proposition

Let $I \subset S$ be a homogeneous ideal and suppose $d = \dim S/I$. Then, S/I is sequentially Cohen–Macaulay if and only if

$$\operatorname{depth} S/I^{*} \geq i + 1, \quad \text{for all } 0 \leq i < d.*$$

Primary decomposition of J_G

In [HHHKR] the authors observe that the binomial edge ideal is radical. Moreover its primary decomposition is

$$J_G = \bigcap_T P_T(G)$$

Primary decomposition of J_G

In [HHHKR] the authors observe that the binomial edge ideal is radical. Moreover its primary decomposition is

$$J_G = \bigcap_T P_T(G)$$

where T are the cutsets of G ,

Primary decomposition of J_G

In [HHHKR] the authors observe that the binomial edge ideal is radical. Moreover its primary decomposition is

$$J_G = \bigcap_T P_T(G)$$

where T are the cutsets of G ,

$$P_T(G) = \left(\bigcup_{i \in T} \{x_i, y_i\}, J_{\tilde{G}_1}, \dots, J_{\tilde{G}_{c(T)}} \right),$$

$P_T(G)$ is prime and its generators $J_{\tilde{G}_{c(T)}}$ are the binomial edge ideals of complete graphs on the vertices of the connected components induced by the cutset T , $G_1, \dots, G_{c(T)}$,

Primary decomposition of J_G

In [HHHKR] the authors observe that the binomial edge ideal is radical. Moreover its primary decomposition is

$$J_G = \bigcap_T P_T(G)$$

where T are the cutsets of G ,

$$P_T(G) = \left(\bigcup_{i \in T} \{x_i, y_i\}, J_{\tilde{G}_1}, \dots, J_{\tilde{G}_{c(T)}} \right),$$

$P_T(G)$ is prime and its generators $J_{\tilde{G}_{c(T)}}$ are the binomial edge ideals of complete graphs on the vertices of the connected components induced by the cutset T , $G_1, \dots, G_{c(T)}$, that is

$$J_{\tilde{G}_k} = (f_{i,j} : i, j \in V(G_k))$$

Primary decomposition of J_G

In [HHHKR] the authors observe that the binomial edge ideal is radical. Moreover its primary decomposition is

$$J_G = \bigcap_T P_T(G)$$

where T are the cutsets of G ,

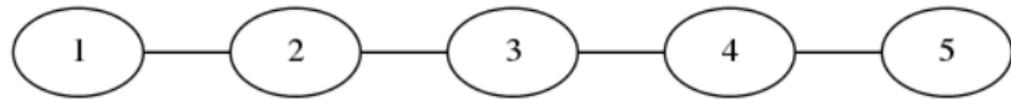
$$P_T(G) = \left(\bigcup_{i \in T} \{x_i, y_i\}, J_{\tilde{G}_1}, \dots, J_{\tilde{G}_{c(T)}} \right),$$

$P_T(G)$ is prime and its generators $J_{\tilde{G}_{c(T)}}$ are the binomial edge ideals of complete graphs on the vertices of the connected components induced by the cutset T , $G_1, \dots, G_{c(T)}$, that is

$$J_{\tilde{G}_k} = (f_{i,j} : i, j \in V(G_k))$$

$$\dim S/P_T = n - |T| + c(T)$$

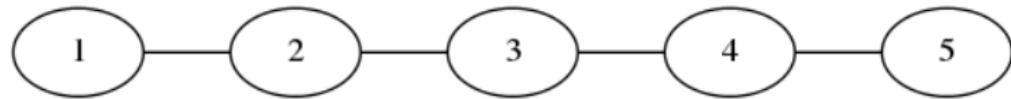
An example



The cutsets are

$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

An example



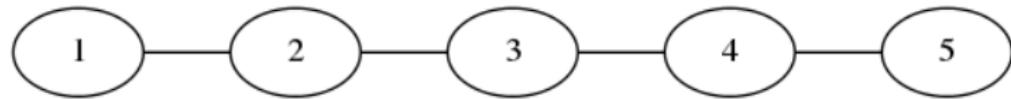
The cutsets are

$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

The minimal prime ideals are:

$$P_\emptyset = (f_{ij} : 1 \leq i < j \leq 5)$$

An example



The cutsets are

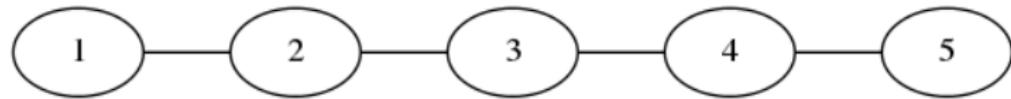
$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

The minimal prime ideals are:

$$P_{\emptyset} = (f_{ij} : 1 \leq i < j \leq 5)$$

$$P_{\{2\}} = (x_2, y_2, f_{ij} : 3 \leq i < j \leq 5), P_{\{4\}} = (x_4, y_4, f_{ij} : 1 \leq i < j \leq 3),$$

An example



The cutsets are

$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

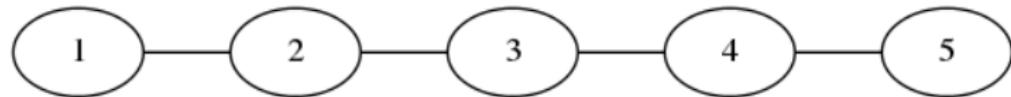
The minimal prime ideals are:

$$P_{\emptyset} = (f_{ij} : 1 \leq i < j \leq 5)$$

$$P_{\{2\}} = (x_2, y_2, f_{ij} : 3 \leq i < j \leq 5), P_{\{4\}} = (x_4, y_4, f_{ij} : 1 \leq i < j \leq 3),$$

$$P_{\{3\}} = (x_3, y_3, f_{12}, f_{45}),$$

An example



The cutsets are

$$\emptyset, \{2\}, \{3\}, \{4\}, \{2, 4\}.$$

The minimal prime ideals are:

$$P_{\emptyset} = (f_{ij} : 1 \leq i < j \leq 5)$$

$$P_{\{2\}} = (x_2, y_2, f_{ij} : 3 \leq i < j \leq 5), P_{\{4\}} = (x_4, y_4, f_{ij} : 1 \leq i < j \leq 3),$$

$$P_{\{3\}} = (x_3, y_3, f_{12}, f_{45}),$$

$$P_{\{2,4\}} = (x_2, y_2, x_4, y_4).$$

For a graph G set $\mathcal{D}(G) = \{\dim S/P_T : T \in \mathcal{C}(G)\}$.

Lemma (LR_-)

Let G be a graph and let $\mathcal{D}(G) = \{d_1, \dots, d_\ell\}$, with $d_1 < \dots < d_\ell$. Then, S/J_G is Sequentially Cohen-Macaulay if and only if

$$\operatorname{depth} S/J_G^{} = d_j, \quad \text{for all } j = 1, \dots, \ell.$$

Hence, we only look at the d_i that define "depth layers".

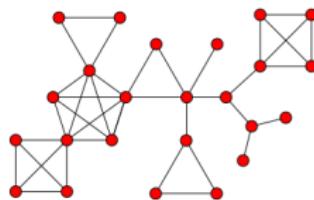
Moreover, d_ℓ is the Krull dimension of S/J_G , and we set $m(G) = d_1$.

Connectivity

A graph G on n vertices is ℓ -vertex-connected (or simply ℓ -connected) if $\ell < n$ and for every subset $T \subset V(G)$ of vertices such that $|T| < \ell$, the graph $G \setminus T$ is connected. The vertex-connectivity (or simply connectivity) of G , denoted by $\kappa(G)$, is the maximum integer ℓ such that G is ℓ -vertex-connected.

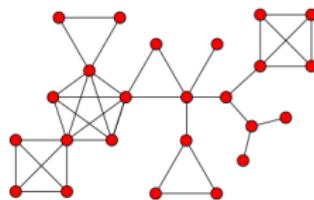
Connectivity

A graph G on n vertices is ℓ -vertex-connected (or simply ℓ -connected) if $\ell < n$ and for every subset $T \subset V(G)$ of vertices such that $|T| < \ell$, the graph $G \setminus T$ is connected. The vertex-connectivity (or simply connectivity) of G , denoted by $\kappa(G)$, is the maximum integer ℓ such that G is ℓ -vertex-connected. $\kappa(G) = 1$)

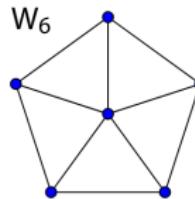


Connectivity

A graph G on n vertices is ℓ -vertex-connected (or simply ℓ -connected) if $\ell < n$ and for every subset $T \subset V(G)$ of vertices such that $|T| < \ell$, the graph $G \setminus T$ is connected. The vertex-connectivity (or simply connectivity) of G , denoted by $\kappa(G)$, is the maximum integer ℓ such that G is ℓ -vertex-connected. $\kappa(G) = 1$)



$$\kappa(G) = 3$$



Connectivity and a bound on the depth

A nice result that relates depth S/J_G and $\kappa(G)$ has been obtained in

BB A. Banerjee, L. Núñez-Betancourt, "Graph connectivity and binomial edge ideals". Proc. Am. Math. Soc. , 487–499, 2017.

that is:

Theorem (BB)

Let G be a non-complete, connected graph on n vertices and J_G the corresponding binomial edge ideal. Then,

$$\text{depth } S/J_G \leq n - \kappa(G) + 2,$$

where $\kappa(G)$ is the connectivity of the graph G .

Section 2

SCMness of Binomial Edge Ideals

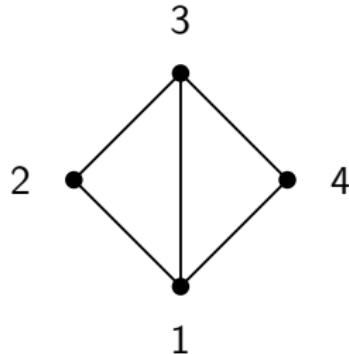
Condition for SCMness

Lemma (LR₋)

Let G be a non-complete, connected graph on n vertices. Let $T \in \mathcal{C}(G)$ such that $\dim S/P_T = m(G)$. If J_G is SCM, then

$$\kappa(G) - |T| + c(T) \leq 2,$$

where $\kappa(G)$ is the connectivity of the graph G . In particular, if $T = \emptyset$, then G has a cutpoint.



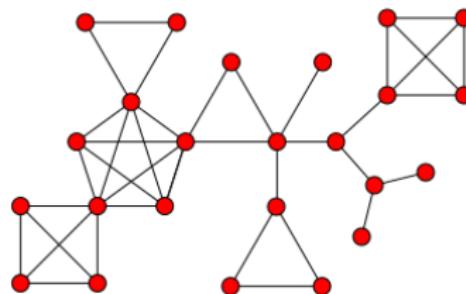
$$\begin{aligned}k(G) &= 2 \\ \mathcal{C}(G) &= \{\emptyset, \{1, 3\}\}\end{aligned}$$

- $\dim P_{\emptyset} = 4 - 0 + 1 = 5$
- $\dim P_{\{1, 3\}} = 4 - 2 + 2 = 4$

Block graphs

A *block* of G is a connected subgraph of G that has no cutpoints, which is maximal with respect to this property.

A *block graph* is a graph in which every block is a complete graph.

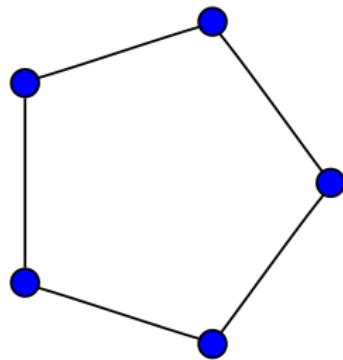


Theorem (LR-)

Any *block graph* is *Sequentially Cohen-Macaulay*.

Cycles and wheels

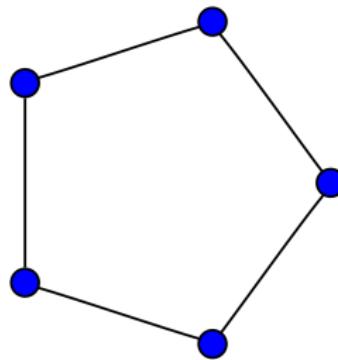
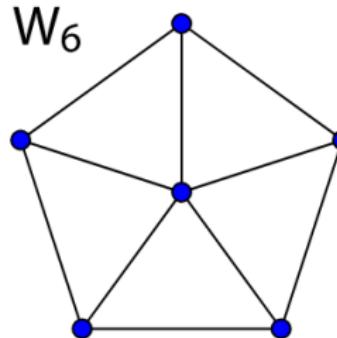
We start observing that all non empty cutsets of a cycle are sets of non adjacent vertices, and $c(T) = |T|$.



Cycles and wheels

We start observing that all non empty cutsets of a cycle are sets of non adjacent vertices, and $c(T) = |T|$.

Moreover, the non empty cutsets of a wheel are the cutsets of the cycle adding the central vertex, and $c(T) = |T| - 1$.



Proposition (LR-)

Let C_n be a cycle with n vertices. Then, J_{C_n} is SCM.

Proof.

By the previous observation we have that $\mathcal{D}(G) = \{n, n+1\}$ Our aim is to apply Lemma to prove that S/J_{C_n} is SCM. That is S/J_{C_n} is SCM if

$$\text{depth } S/J_{C_n}^{} = n$$

and $\text{depth } S/J_{C_n}^{} = n+1$. From $J_{C_n}^{} = J_{C_n}$ and $S/J_{C_n}^{} = P_\emptyset$, the assertion follows. □

Cycles and wheels are SCM

Proposition (LR-)

Let C_n be a cycle with n vertices. Then, J_{C_n} is SCM.

Proof.

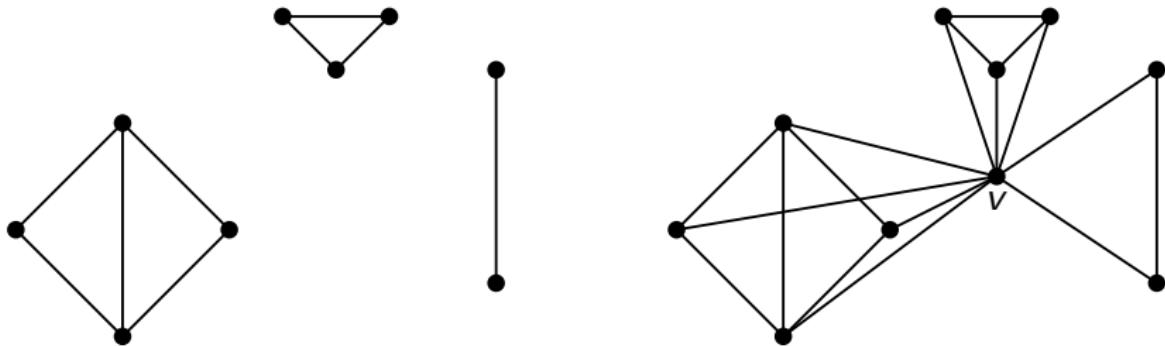
By the previous observation we have that $\mathcal{D}(G) = \{n, n+1\}$ Our aim is to apply Lemma to prove that S/J_{C_n} is SCM. That is S/J_{C_n} is SCM if

$$\text{depth } S/J_{C_n}^{} = n$$

and $\text{depth } S/J_{C_n}^{} = n+1$. From $J_{C_n}^{} = J_{C_n}$ and $S/J_{C_n}^{} = P_\emptyset$, the assertion follows. □

The same proof works for wheels, too!

Cone on multiple components



Theorem (LR-)

Let $H = G_1 \sqcup G_2 \sqcup \dots \sqcup G_r$ be a graph, where G_i is a connected graph for each $i = 1, \dots, r$, with $r \geq 2$. Let v be a vertex such that $v \notin V(H)$ and $G = \text{Cone}(v, H)$. Then, J_G is SCM if and only if J_{G_1}, \dots, J_{G_r} are SCM.

Cone on a single component

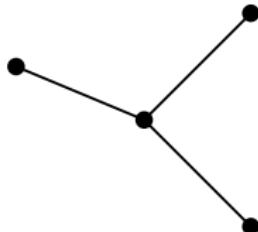
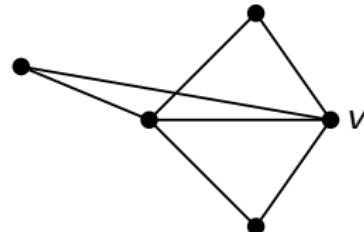


Figure: A Sequentially Cohen-Macaulay graph G such that $\text{Cone}(v, G)$ is not Sequentially Cohen-Macaulay

Theorem

Let H be a connected graph on vertices $[n - 1]$ and let $G = \text{Cone}(v, H)$, $R_H = \mathbb{K}[x_1, y_1, \dots, x_{n-1}, y_{n-1}]$ and $R = R_H[x_v, y_v]$. The following are equivalent

- ① J_G is Sequentially Cohen-Macaulay;
- ② J_H is Sequentially Cohen-Macaulay and $\dim R_H/J_H \leq n$

Section 3

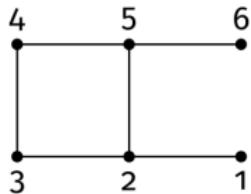
Open Questions and Remarks

Accessible graphs

BB [BMS] D. Bolognini, A. Macchia, F. Strazzanti, *Cohen-Macaulay binomial edge ideals and accessible graphs*, J. Algebr. Combin., 1139–1170, 2022.

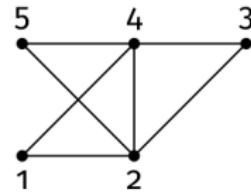
A graph G is called *accessible* if

- ① J_G is unmixed
- ② The set of cutsets is an *accessible set system*, i.e., for every non-empty cutset S , there exists $s \in S$ such that $S \setminus \{s\}$ is a cutset.



$$\mathcal{C}(H) = \{\emptyset, \{2\}, \{5\}, \{2, 5\}, \{2, 4\}, \{3, 5\}\}$$

H accessible



$$\mathcal{C}(G) = \{\emptyset, \{2, 4\}\}$$

G not accessible

SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an accessible set systems and is SCM.

SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an accessible set systems and is SCM. In fact, any cutset of a block graph is a set of cutpoints, namely S .

SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an accessible set systems and is SCM. In fact, any cutset of a block graph is a set of cutpoints, namely S . Obviously, for any $v \in S$, $S \setminus \{v\}$ is a cutset, too!

SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an accessible set systems and is SCM. In fact, any cutset of a block graph is a set of cutpoints, namely S . Obviously, for any $v \in S$, $S \setminus \{v\}$ is a cutset, too!

Unfortunately, cycles and wheels are SCM but not “accessible”.

SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an accessible set systems and is SCM. In fact, any cutset of a block graph is a set of cutpoints, namely S . Obviously, for any $v \in S$, $S \setminus \{v\}$ is a cutset, too!

Unfortunately, cycles and wheels are SCM but not “accessible”.

- ① Is it possible to extend the “accessible notion” to give a combinatorial interpretation to SCMness?
- ② Find other families of SCM graphs that are accessible.

W.r.t. (2), by a Lemma of the first part, we have that if $\dim S/P_T = m(G)$ with $T = \emptyset$, and J_G is SCM then G has a cutpoint. Using inductively this property one can find SCM families.

What are the SCM Bipartite graphs?

What we know:

SZ P. Schenzel, S. Zafar, *Algebraic properties of the binomial edge ideal of a complete bipartite graph*, Univ. “Ovidius” Constanța Ser. Mat. **22**(2), 217–237, 2014.

has been characterized the complete bipartite graphs that are SCM.

Moreover, in this talk we showed that:

- ① All cycles are SCM. In particular the even ones.
- ② All trees are block graphs, hence they are SCM.
- ③ The complete bipartite graphs not in 1. and 2. are not SCM by [SZ].

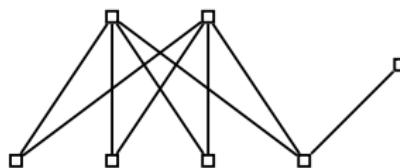


Figure: A non-SCM bipartite graph with cutpoint

THANKS FOR YOUR ATTENTION!!