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Binomial edge ideal on G

Let G be a simple graph on the vertex set V(G) = {1,...,n} and let

S=K][x1,...,Xn, ¥1,---,Yn] be the polynomial ring in 2n variables over
the field K.
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Binomial edge ideal on G

Let G be a simple graph on the vertex set V(G) = {1,...,n} and let

S=K][x1,...,Xn, ¥1,---,Yn] be the polynomial ring in 2n variables over
the field K.

Binomial edge ideal

A binomial edge ideal Js C S is the ideal generated by the binomials
fi = xiyj — xjyi, with i < j and {i,j} is an edge of G.

In general S/Jg is not a domain.

ya(x1y3 — x3y1) € Jo = (x1y2 — Xay1, X23 — X3Y2)

Neither y» nor x1y3 — x3y1 € Jg. S/Jg is a domain if and only if G is a
complete graph, that is, Jg is a determinantal ideal induced by the 2 by 2
minors of the 2 by n matrix

<X1 Xn>
yi ... Yn
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Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition
Let G be a graph with vertices V(G) = [n].
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Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices V(G) = [n]. For a subset S C [n], let ¢(S)
be the number of connected components of the graph Gp,s. S is called a
cutset of G if forall i € S, ¢(S\ {i}) < ¢(S). A cut vertex is the element
of a cutset of cardinality 1.
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be the number of connected components of the graph Gp,s. S is called a
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of a cutset of cardinality 1.

We consider the path of length 4,

Francesco Romeo (Unicas) SCM BEI of graphs June 2, 2025 5/25



Cut vertices and cutsets

The following is central in the study of binomial edge ideals

Definition

Let G be a graph with vertices V(G) = [n]. For a subset S C [n], let ¢(S)
be the number of connected components of the graph Gp,s. S is called a
cutset of G if forall i € S, ¢(S\ {i}) < ¢(S). A cut vertex is the element
of a cutset of cardinality 1.

We consider the path of length 4,

Its cutsets are

0,{2}, {3}, {4},{2,4}.
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A bit of Commutative Algebra...

Let S = K[xi,...,xn| a polynomial ring over a field K with a standard
graduation, / homogeneous ideal, m the maximal graded ideal of R = S/I.
Let / =[] Qi be the primary decomposition of / and
AssR = {Py,...,P,} theideals P, = /Q;, i=1,...,r.
We recall that
@ The Krull dimension of R is the maximum length over the chains of
prime ideals in Ass R;
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A bit of Commutative Algebra...

Let S = K[xi,...,xn| a polynomial ring over a field K with a standard
graduation, / homogeneous ideal, m the maximal graded ideal of R = S/I.
Let / =[] Qi be the primary decomposition of / and
AssR ={P1,...,P,} theideals P, =/Q;, i=1,...,r.
We recall that
@ The Krull dimension of R is the maximum length over the chains of
prime ideals in Ass R;
@ An ideal is called unmixed if the prime ideals in Ass R have the same
height;
Q 01,05,...,0, ¢ m C R is a homogeneous regular sequence if §; is a
non zero-divisor of R/(f1,...,0;_1)R for all i;
@ depth R = maximum length between the lengths of regular sequences
over R;
© A ring is said Cohen-Macaulay if dim R = depth R.
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A bit of Commutative Algebra...

Let M be a finitely generated graded module over R. The module M is
called sequentially Cohen-Macaulay if there exists a finite filtration with

graded submodules

O=MycMycC---CcM =M

such that the following two conditions are fulfilled:
Q@ M;/M;_; is a Cohen-Macaulay module for 1 < i <r;
Q dim(Ml/Mo) < dim(Mg/Ml) <L e dim(l\/l,/Mr_l).
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Goodarzi filtration of ideals

We recall a characterization of sequentially Cohen—Macaulay homogeneous
ideals due to Goodarzi [G]

Let / C S be a homogeneous ideal, with d = dim S//, and let | = ﬂjzl Qj
be the minimal primary decomposition of /. For all 1 <j <, let
P; = \/Qj be the radical of Q;. For all =1 </ < d, denote

J<i> — m Q;,

dim S/P;>i

where [<71> = [ and /<9> = §S.

Proposition

Let | C S be a homogeneous ideal and suppose d = dim S/I. Then, S/I is
sequentially Cohen-Macaulay if and only if

depth S/I<"> > i+ 1, forall0 < i<d.
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Primary decomposition of Jg

In [HHHKR] the authors observe that the binomial edge ideal is radical.
Moreover its primary decomposition is

Je =(Pr(6)
T
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Moreover its primary decomposition is

Je =(Pr(6)
T

where T are the cutsets of G,

Pr(G) = (U6 vt g Je
ieT

)7

(M)

P7(G) is prime and its generators J o 2re the binomial edge ideals of

complete graphs on the vertices of the connected components induced by
the cutset T, Gi,..., G (1),
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Primary decomposition of Jg

In [HHHKR] the authors observe that the binomial edge ideal is radical.
Moreover its primary decomposition is

Je =(Pr(6)
T

where T are the cutsets of G,

Pr(G) = (U6 vt g Je
ieT

)7

(M)

P7(G) is prime and its generators J o 2re the binomial edge ideals of

complete graphs on the vertices of the connected components induced by
the cutset T, Gi,..., Gy (1), thatis

Jék = (f,,J : i,_j S V(Gk))

dimS/Pr=n—|T|+¢(T)
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The cutsets are

0.{2},{3},{4},{2,4}.
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The cutsets are

0.{2},{3},{4},{2,4}.

The minimal prime ideals are:

Py=(fj:1<i<j<5)
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The cutsets are

0.{2},{3},{4},{2,4}.

The minimal prime ideals are:

Py=(fj:1<i<j<5)

Pioy = (x2,y2,f;j : 3 < i <j <5),Pay = (xa,ya,f; : 1 < i < j < 3),
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The cutsets are

0.{2},{3},{4},{2,4}.

The minimal prime ideals are:

P@:(ﬁj:1§i<j§5)
Py = (%2, 2, : 3 <0 <j <5), Py = (xa,ya, f 1 1 < i < j < 3),

P{3} = (X37y37 ﬁ.27 f45)7
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The cutsets are

0.{2},{3},{4},{2,4}.

The minimal prime ideals are:

P@:(ﬁj:1§i<j§5)
Pioy = (x2,y2,f;j : 3 < i <j <5),Pay = (xa,ya,f; : 1 < i < j < 3),
Pi3y = (x3, 3, f12, fa5),

P{2,4} = (x2, ¥2, Xa, ya).
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Goodarzi + Binomial edge ideals

For a graph G set D(G) = {dimS/Pr : T € C(G)}.

Let G be a graph and let D(G) = {d1,...,d¢}, with di < ... < d. Then,
S/Jc is Sequentially Cohen-Macaulay if and only if

depth S/JS9™Y = ¢ forall j=1,...,1.

Hence, we only look at the d; that define "depth layers”.
Morover, d is the Krull dimension of S/Jg, and we set m(G) = d;.
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Connectivity

A graph G on n vertices is (-vertex-connected (or simply ¢-connected) if
¢ < n and for every subset T C V/(G) of vertices such that |T| </, the
graph G \ T is connected. The vertex-connectivity (or simply connectivity)

of G, denoted by k(G), is the maximum integer ¢ such that G is
{-vertex-connected.
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Connectivity and a bound on the depth

A nice result that relates depth S/Jg an k(G) has been obtained in

BB A. Banerjee, L. Ntfez-Betancourt, “"Graph connectivity and binomial
edge ideals”. Proc. Am. Math. Soc. , 487-499, 2017.

that is:
Theorem (BB)

Let G be a non—complete, connected graph on n vertices and Jg the
corresponding binomial edge ideal. Then,

depthS/Jg < n—k(G) +2,

where k(G) is the connectivity of the graph G.
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Section 2

SCMness of Binomial Edge Ideals
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Condition for SCMness

Lemma (LR.)

Let G be a non—complete, connected graph on n vertices. Let T € C(G)
such that dim S/Pt = m(G). If Jg is SCM, then

#(G) = [T+ ¢(T) <2,

where k(G) is the connectivity of the graph G. In particular, if T = (),
then G has a cutpoint.

3 k(G) =2
C(G) ={0,{1,3}}
e dmPy=4-0+1=5
o dimP{173}:4—2—|—2:4

1
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Block graphs

A block of G is a connected subgraph of G that has no cutpoints, which is
maximal with respect to this property.

A block graph is a graph in which every block is a complete graph.

Theorem (LR.)
Any block graph is Sequentially Cohen-Macaulay.
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Cycles and wheels

We start observing that all non empty cutsets of a cycle are sets of non
adjacent vertices, and ¢(T) = |T|.
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Cycles and wheels

We start observing that all non empty cutsets of a cycle are sets of non
adjacent vertices, and ¢(T) = |T|.

Moreover, the non empty cutsets of a wheel are the cutsets of the cycle
adding the central vertex, and ¢(T) = |T|— 1.

We
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Cycles and wheels are SCM

Proposition (LR.)
Let C, be a cycle with n vertices. Then, Jc, is SCM.

Proof.

By the previous observation we have that D(G) = {n, n+ 1} Our aim is to
apply Lemma to prove that S/Jc, is SCM. That is S/Jc, is SCM if

depth S/Jc,<""1> =n

and depth S/Jc, <™ = n+1. From Jc,<""'> = Jc, and S/Jc, =™ = Py,
the assertion follows. )
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Cycles and wheels are SCM

Proposition (LR.)
Let C, be a cycle with n vertices. Then, Jc, is SCM.

Proof.

By the previous observation we have that D(G) = {n, n+ 1} Our aim is to
apply Lemma to prove that S/Jc, is SCM. That is S/Jc, is SCM if

depth S/Jc,<""1> =n

and depth S/Jc, <™ = n+1. From Jc,<""'> = Jc, and S/Jc, =™ = Py,
the assertion follows. )

The same proof works for wheels, too!
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Cone on multiple components

N

Theorem (LR.)

Let H= Gy U Gy ... G, be a graph, where G; is a connected graph for
eachi=1,...,r, withr > 2. Let v be a vertex such that v ¢ V(H) and
G = Cone(v, H). Then, Jg is SCM if and only if Jg,,...,Js, are SCM.
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Cone on a single component

Figure: A Sequentially Cohen-Macaulay graph G such that Cone(v, G) is not
Sequentially Cohen-Macaulay

Theorem

Let H be a connected graph on vertices [n — 1] and let G =Cone(v, H),
Ry = K[x1,y1, ..., Xn—1,¥n—1] and R = Ry[xv, yv|. The following are
equivalent

© Jg is Sequentially Cohen-Macaulay;

v

@ Jy is Sequentially Cohen-Macaulay and dim Ry /Jy < n
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Section 3

Open Questions and Remarks
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Accessible graphs

BB [BMS] D. Bolognini, A. Macchia, F. Strazzanti, Cohen-Macaulay
binomial edge ideals and accessible graphs, J. Algebr. Combin,
1139-1170, 2022.

A graph G is called accessible if
@ Jc is unmixed

@ The set of cutsets is an accessible set system, i.e., for every
non-empty cutset S, there exists s € S such that S\ {s} is a cutset.

4 5 6 5 4 3
3 2 1 1 2

C(H) = {2, {2}, {5}, {25}, {2,4},{3,5}}  C(6) ={@,{2,4}}

H accessible G not accessible
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SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an
accessible set systems and is SCM.
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SCM graphs Vs Accessible graphs

Without the hypothesis of unmixedness, a block graph induces an
accessible set systems and is SCM. In fact, any cutset of a block graph is
a set of cutpoints, namely S. Obviously, for any v € S, S\ {v} is a cutset,
too!

Unfortunately, cycles and wheels are SCM but not “accessible”.

© Is it possible to extend the “accessible notion” to give a combinatorial
interpretation to SCMness?

@ Find other families of SCM graphs that are accessible.

W.r.t. (2), by a Lemma of the first part, we have that if
dimS/P1 = m(G) with T =, and Jg is SCM then G has a cutpoint.
Using inductively this property one can find SCM families.
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What are the SCM Bipartite graphs?

What we know:

SZ P. Schenzel, S. Zafar, Algebraic properties of the binomial edge ideal
of a complete bipartite graph, Univ. "Ovidius” Constanta Ser. Mat.
22(2), 217-237, 2014.

has been characterized the complete bipartite graphs that are SCM.
Moreover, in this talk we showed that:

@ All cycles are SCM. In particular the even ones.
@ All trees are block graphs, hence they are SCM.
© The complete bipartite graphs not in 1. and 2. are not SCM by [SZ].

Figure: A non-SCM bipartite graph with cutpoint
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THANKS FOR YOUR ATTENTION!!
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