

QUADRATIC SETS AND $(t \pmod q)$ -ARCS IN $\text{PG}(r, q)$

Ivan Landjev
New Bulgarian University

(joint work with Sascha Kurz and Assia Rousseva)

– 5th Pythagorean Conference, Kalamata, Greece, June 1-6, 2025 –

1. $(t \bmod q)$ -**Arcts**

- ◊ A multiset in $\text{PG}(r, q)$ is a mapping

$$\mathcal{K} : \begin{cases} \mathcal{P} & \rightarrow \mathbb{N}_0, \\ P & \rightarrow \mathcal{K}(P). \end{cases}$$

- ◊ $\mathcal{K}(P)$ – multiplicity of the point P .
- ◊ $\mathcal{Q} \subset \mathcal{P}$: $\mathcal{K}(\mathcal{Q}) = \sum_{P \in \mathcal{Q}} \mathcal{K}(P)$ – multiplicity of the set \mathcal{Q} .
- ◊ $\mathcal{K}(\mathcal{P})$ – the cardinality of \mathcal{K} .

Definition. (n, w) -arc in $\text{PG}(r, q)$: a multiset \mathcal{K} with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane H : $\mathcal{K}(H) \leq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. (n, w) -blocking set in $\text{PG}(r, q)$

(or (n, w) -minihyper): a multiset \mathcal{K} with

- 1) $\mathcal{K}(\mathcal{P}) = n$;
- 2) for every hyperplane H : $\mathcal{K}(H) \geq w$;
- 3) there exists a hyperplane H_0 : $\mathcal{K}(H_0) = w$.

Definition. Let $t < q$ be a non-negative integer.

An arc \mathcal{K} in $\text{PG}(r, q)$ is called a $(t \pmod q)$ -arc if every subspace S of positive dimension has multiplicity $\mathcal{K}(S) \equiv t \pmod q$.

If in addition, every point P has multiplicity at most t , i.e. $\mathcal{K}(P) \leq t$; the \mathcal{K} is called a **strong** $(t \pmod q)$ -arc.

Remark. It is enough to require the congruence in the definition only for the the subspaces of dimension 1 (i.e. for the lines).

Theorem A. Let $t_1 < q$ and $t_2 < q$ be positive integers. The sum of a $(t_1 \bmod q)$ -arc and a $(t_2 \bmod q)$ -arc in $\text{PG}(r, q)$ is a $(t \bmod q)$ -arc with $t = t_1 + t_2 \pmod{q}$.

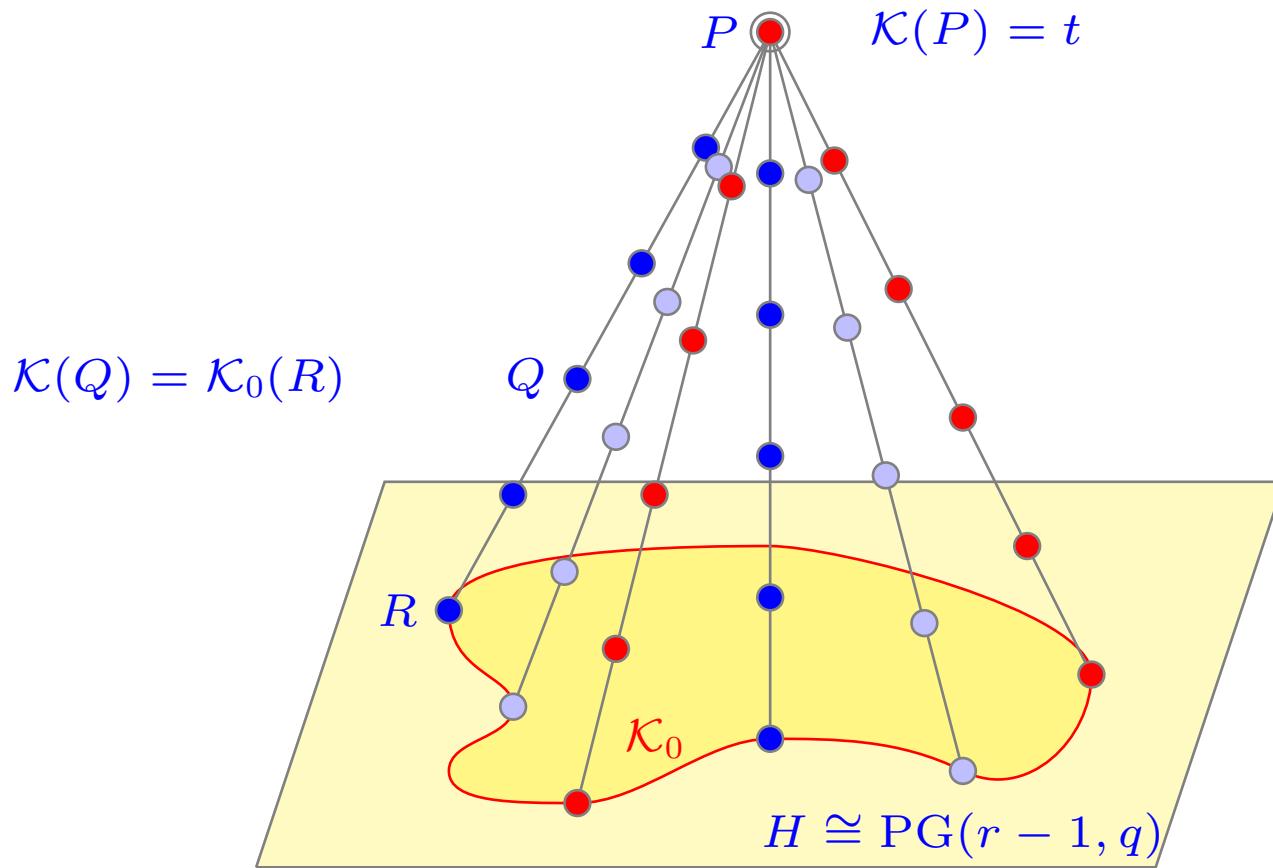
In particular, the sum of t hyperplanes in $\text{PG}(r, q)$ is a strong $(t \bmod q)$ -arc.

Theorem B. Let \mathcal{K}_0 be a $(t \pmod q)$ -arc in a hyperplane $H \cong \text{PG}(r-1, q)$ of $\Sigma = \text{PG}(r, q)$. For a fixed point $P \in \Sigma \setminus H$, define an arc \mathcal{K} in Σ as follows:

- $\mathcal{K}(P) = t$;
- for each point $Q \neq P$: $\mathcal{K}(Q) = \mathcal{K}_0(R)$ where $R = \langle P, Q \rangle \cap H$.

Then the arc \mathcal{K} is a $(t \pmod q)$ -arc in $\text{PG}(r, q)$ of size $q|\mathcal{K}_0| + t$.

Definition. $(t \pmod q)$ -arcs obtained by Theorem D are called **lifted arcs**.



Theorem C. A strong $(t \pmod q)$ -arc \mathcal{K} in $\text{PG}(2, q)$ of cardinality $mq + t$ exists if and only if there exists an $((m - t)q + m, m - t)$ -blocking set \mathcal{B} with line multiplicities contained in $\{m - t, m - t + 1, \dots, m\}$.

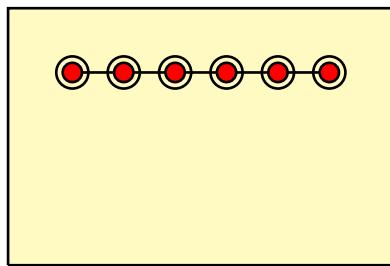
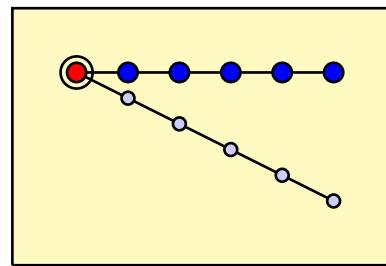
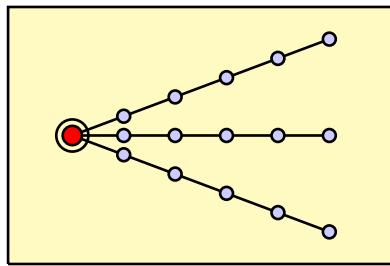
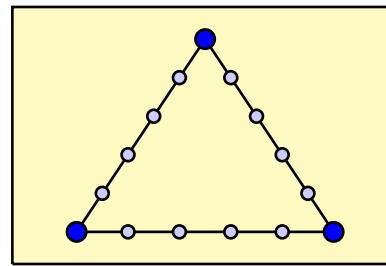
$(1 \pmod q)$	$\text{PG}(r, q)$	a hyperplane
$(2 \pmod q)$	$\text{PG}(2, q)$, $q \geq 5$	lifted from a $2, q + 2$, or $2q + 2$ -line, or an oval + a tangent + 2×the internal points
	$\text{PG}(r, q)$, $r \geq 3$	lifted from a $(2 \pmod q)$ -arc in $\text{PG}(r, q)$
$(3 \pmod 5)$	$\text{PG}(2, 5)$	185 arcs
	$\text{PG}(3, 5)$	lifted and three sporadic $(3 \pmod 5)$ -arcs of sizes 128, 143, and 168
	$\text{PG}(r, 5)$, $r \geq 4$	lifted and ...

2. Strong $(3 \pmod 5)$ -Arcs in $\text{PG}(2, 5)$

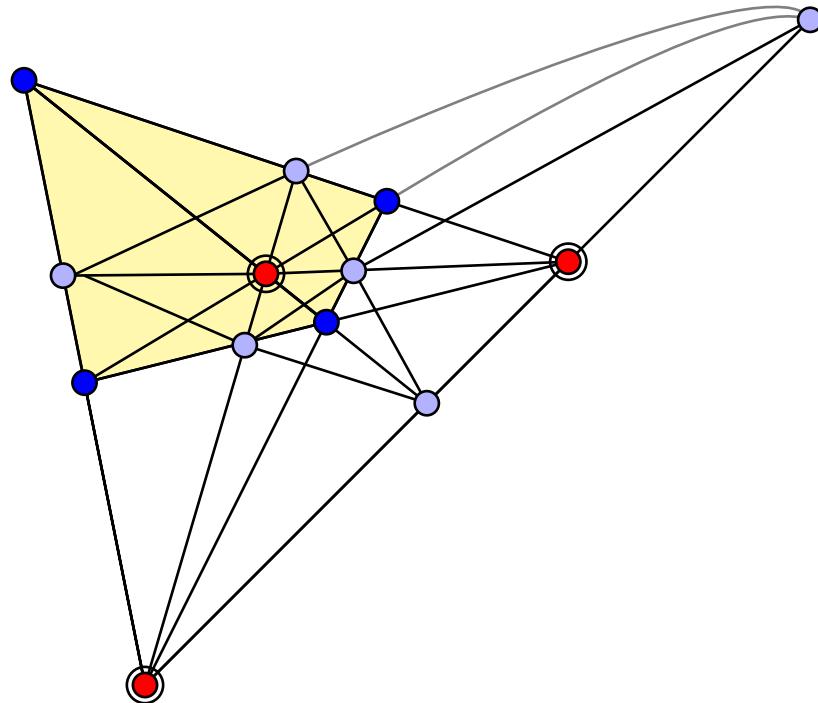
$ \mathcal{K} $	BS	# arcs	$ \mathcal{K} $	BS	# arcs
18	(3, 0)	4	48	(39, 6)	49
23	(9, 1)	1	53	(45, 7)	17
28	(15, 2)	1	58	(51, 8)	11
33	(21, 3)	10	63	(57, 9)	9
38	(27, 4)	23	68	(63, 10)	6
43	(33, 5)	53	93	(93, 15)	1

- Ivan Landjev & Assia Rousseva (computerfree)
- Sascha Kurz (computer search)

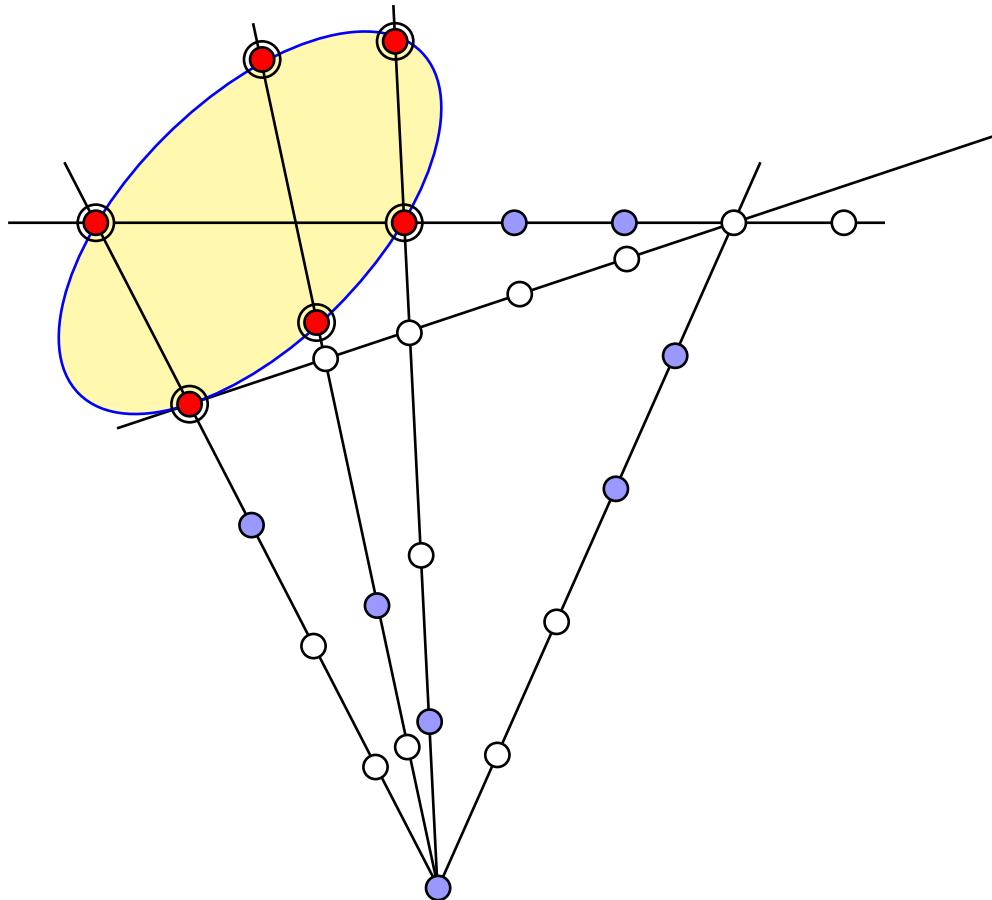
$(18, \{3, 8, 13, 18\})$ -arcs



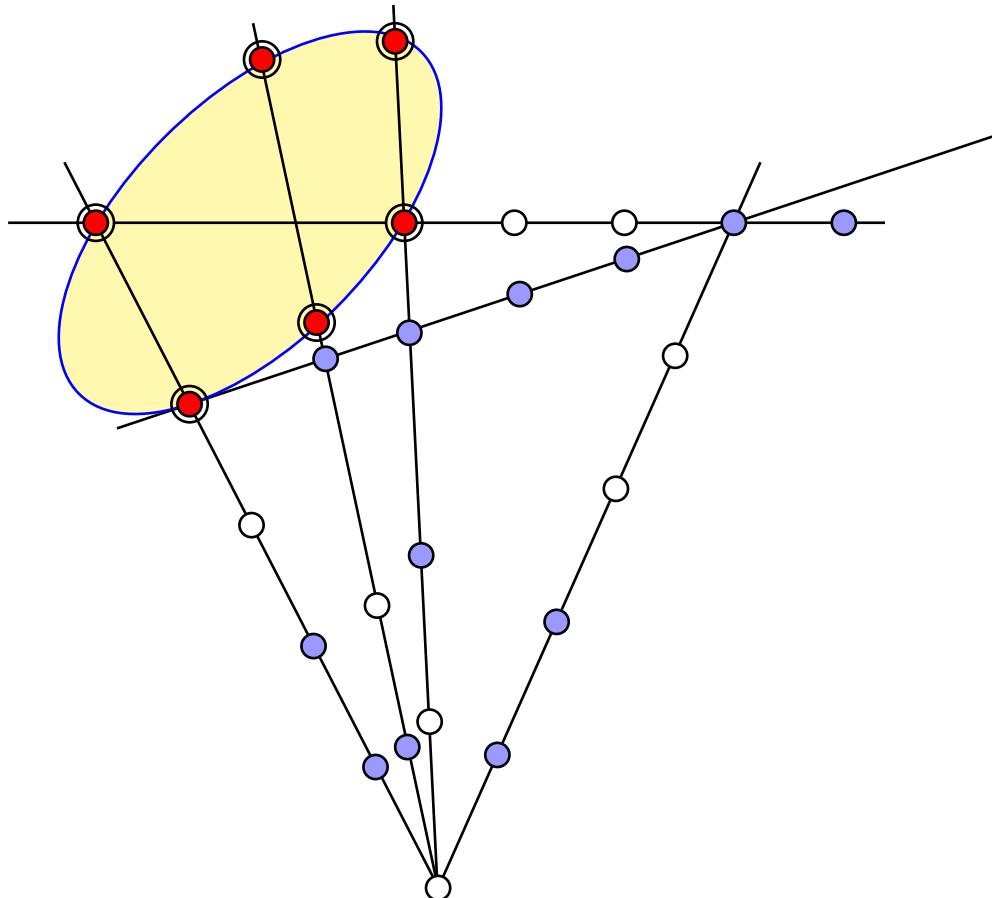
$(23, \{3, 8\})$ -arc in $\text{PG}(2, 5)$



$(28, \{3, 8\})$ -arc in $\text{PG}(2, 5)$



$(33, \{3, 8\})$ -arc in $\text{PG}(2, 5)$



3. $(3 \pmod 5)$ -Arcs in $\text{PG}(3, 5)$

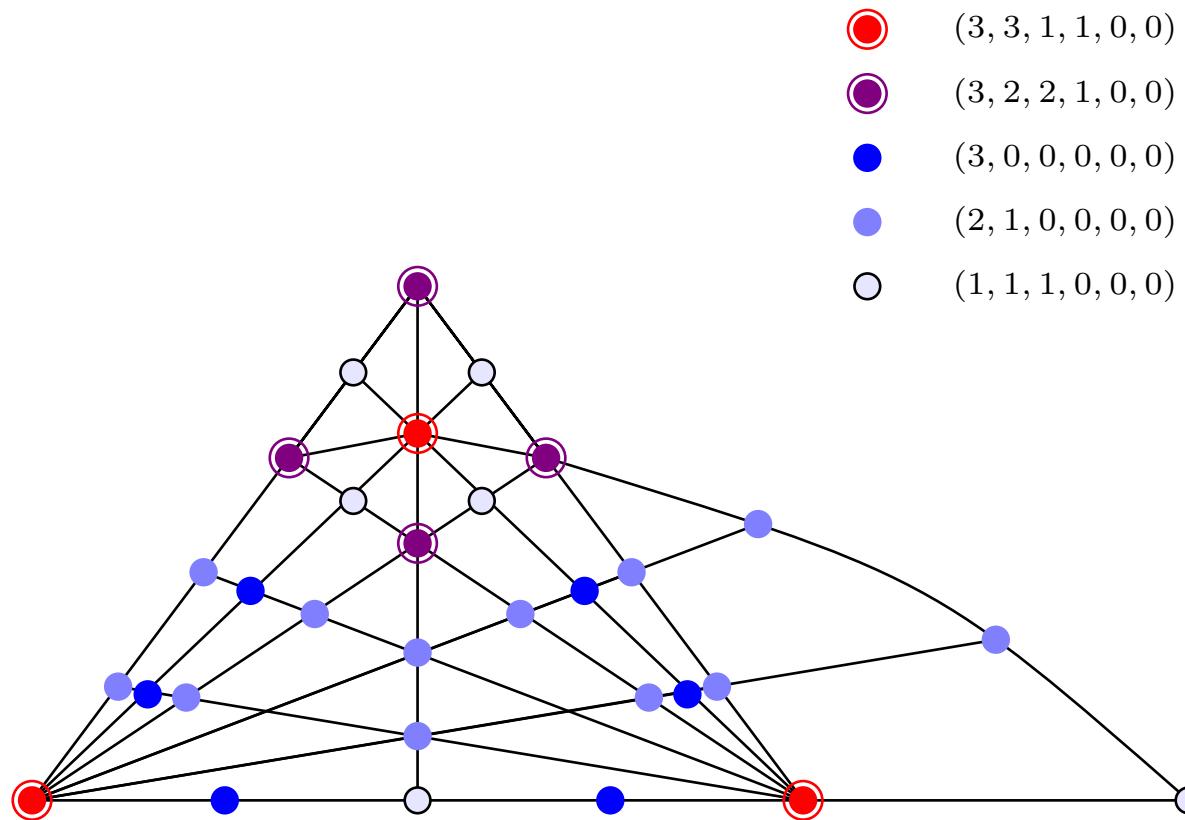
Theorem D. Let \mathcal{K} be a strong $(3 \pmod 5)$ -arc in $\text{PG}(3, 5)$ that is neither lifted nor contains a full hyperplane in its support. Then $|\mathcal{K}| \in \{128, 143, 168\}$ and in each case the corresponding arc is unique up to isomorphism.

4. The 128-Arc in $\text{PG}(3, 5)$

Lemma. Let \mathcal{K} be a strong $(3 \pmod 5)$ -arc in $\text{PG}(3, 5)$ of cardinality 128. Let φ be the projection from an arbitrary 0-point in $\text{PG}(3, 5)$. Then the arc \mathcal{K}^φ is unique up to isomorphism and has the structure described below.

- A 0-point is incident only with 3- and 8-lines.
- An 8-line with a 0-point is of type $(3, 3, 1, 1, 0, 0)$ or $(3, 2, 2, 1, 0, 0)$.

Projection of a 128-arc from a 0-point



Each 0-point is incident with:

three 8-lines of type $(3, 3, 1, 1, 0, 0)$,
four 8-lines of type $(3, 2, 2, 1, 0, 0)$,
six 3-lines of type $(3, 0, 0, 0, 0, 0)$,
twelve 3-lines of type $(2, 1, 0, 0, 0, 0)$,
six 3-lines of type $(1, 1, 1, 0, 0, 0)$

This implies that

$$\lambda_3 = 16, \lambda_2 = 20, \lambda_1 = 40, \lambda_0 = 80.$$

$$a_{33} = 40, a_{28} = 16, a_{23} = 80, a_{18} = 20.$$

The 2-points form a 20-cap C with spectrum:

$$a_6(C) = 40, a_4(C) = 80, a_3(C) = 20, a_0(C) = 16.$$

This cap is **not** extendable to the elliptic quadric. In such case it would have (at least 20) tangent planes.

Hence the 20-cap on the 2-points in $\text{PG}(3, 5)$ is isomorphic to one of the two maximal 20-caps found by Abatangelo, Korchmaros and Larato. We denote these two caps by K_1 and K_2 .

Consider the complete cap K_1 . The collineation group G of K_1 is a semidirect product of an elementary abelian group of order 16 and a group isomorphic to S_5 . Hence $|G| = 16 \cdot 120 = 1920$.

The action of G on $\text{PG}(3, 5)$ gives four orbits on points, denoted O_1^P, \dots, O_4^P and six orbit on lines, denoted O_1^L, \dots, O_6^L .

The respective sizes of these orbits are

$$|O_1^P| = 40, |O_2^P| = 80, |O_3^P| = 20, |O_4^P| = 16;$$

$$|O_1^L| = 160, |O_2^L| = 240, |O_3^L| = 30, |O_4^L| = 160, |O_5^L| = 120, |O_6^L| = 96.$$

The point-by-line orbit matrix $A = (a_{ij})_{4 \times 6}$, where a_{ij} is the number of the points from the i -th point orbit incident with any line from the j -th line orbit is the following

$$A = \begin{pmatrix} 3 & 1 & 4 & 1 & 2 & 0 \\ 3 & 4 & 0 & 2 & 2 & 5 \\ 0 & 1 & 2 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \end{pmatrix}.$$

Let w_i be the multiplicity of any point from O_i^P and let $w = (w_1, w_2, w_3, w_4)$. In order to get a $(3 \pmod 5)$ -arc we should have

$$wA \equiv 3j \pmod{5},$$

where j is the all-one vector, and $w_i \leq 3$ for all $i = 1, 2, 3$.

The set of all solutions is given by

$$w = \{(w_1, w_2, w_3, w_4) \mid w_i \in \{0, \dots, 4\}, \\ w_2 \equiv 1 - w_1 \pmod{5}, w_3 \equiv 4 - 2w_1 \pmod{5}, w_4 = 3\}. \quad (1)$$

Solutions: $w = (3, 3, 3, 3)$ and $w = (1, 0, 2, 3)$.

The second solution gives the desired 128-arc.

5. The 143- and 168-Arc

Two strong non-lifted $(3 \pmod 5)$ -arcs in $\text{PG}(3, 5)$ were constructed by computer search. The respective spectra are:

$$|\mathcal{F}_1| = 143, a_{18}(\mathcal{F}_1) = 26, a_{28}(\mathcal{F}_1) = 65, a_{33}(\mathcal{F}_1) = 65;$$

$$\lambda_0(\mathcal{F}_1) = 65, \lambda_1(\mathcal{F}_1) = 65, \lambda_2(\mathcal{F}_1) = 0, \lambda_3(\mathcal{F}_1) = 26,$$

$$|\text{Aut}(\mathcal{F}_1)| = 62400.$$

$$|\mathcal{F}_2| = 168, a_{28}(\mathcal{F}_2) = 60, a_{33}(\mathcal{F}_2) = 60, a_{43}(\mathcal{F}_2) = 36;$$

$$\lambda_0(\mathcal{F}_2) = 60, \lambda_1(\mathcal{F}_2) = 60, \lambda_2(\mathcal{F}_2) = 0, \lambda_3(\mathcal{F}_2) = 36.$$

$$|\text{Aut}(\mathcal{F}_2)| = 57600.$$

There exist two quadrics in $\text{PG}(3, 5)$.

$$\mathcal{E}_3 = \{P(X_0, X_1, X_2, X_3) \mid X_0^2 + 2X_1^2 + X_2X_3 = 0, \} \quad (2)$$

$$\mathcal{H}_3 = \{P(X_0, X_1, X_2, X_3) \mid X_0X_1 + X_2X_3 = 0, \} \quad (3)$$

- \mathcal{F}_1 : for a point $P(x_0, x_1, x_2, x_3)$ set

$$\mathcal{F}_1(P) = \begin{cases} 3 & \text{if } P \in \mathcal{E}_3, \\ 1 & \text{if } x_0^2 + 2x_1^2 + x_2x_3 \text{ is a square in } \mathbb{F}_5, \\ 0 & \text{if } x_0^2 + 2x_1^2 + x_2x_3 \text{ is a non-square in } \mathbb{F}_5. \end{cases} \quad (4)$$

- \mathcal{F}_2 : for a point $P(x_0, x_1, x_2, x_3)$ set

$$\mathcal{F}_2(P) = \begin{cases} 3 & \text{if } P \in \mathcal{H}_3, \\ 1 & \text{if } x_0x_1 + x_2x_3 \text{ is a square in } \mathbb{F}_5, \\ 0 & \text{if } x_0x_1 + x_2x_3 \text{ is a non-square in } \mathbb{F}_5. \end{cases} \quad (5)$$

Let F be a quadratic form in $r+1$ variables. Define an arc \mathcal{F} in the following way:

$$\mathcal{F}(P(X)) = \begin{cases} \frac{q+1}{2} & \text{if } F(X) = 0, \\ 1 & \text{if } F(X) \text{ is a square/non-square,} \\ 0 & \text{if } F(X) \text{ is a non-square/square.} \end{cases}$$

This arc is a strong non-lifted $(t \pmod q)$ -arc with $t = \frac{q+1}{2}$.

Arcs obtained by this construction are called **quadratic $(t \pmod q)$ -arcs**.

The case $q = 5$

Theorem E. Assume that every strong $(3 \pmod 5)$ -arc in $\text{PG}(r, 5)$, which does not contain a hyperplane in its support is lifted or obtained from a quadric. Then every strong $(3 \pmod 5)$ -arc in $\text{PG}(r + 1, 5)$, is also lifted or a quadratic arc.

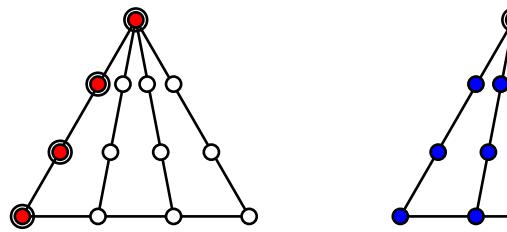
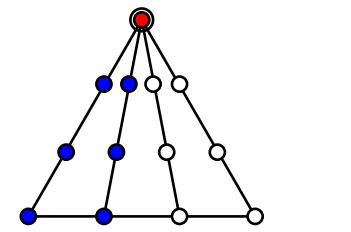
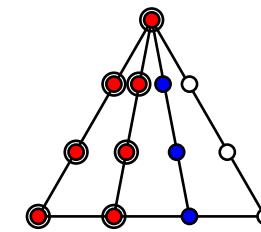
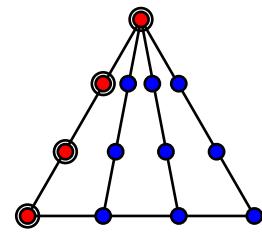
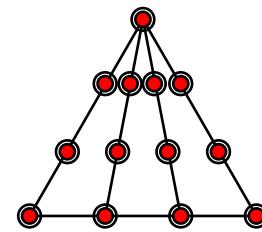
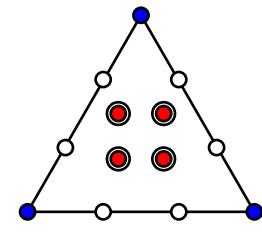
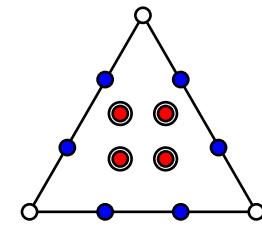
Theorem F. Every strong $(3 \pmod 5)$ -arc in $\text{PG}(4, 5)$, which does not contain a hyperplane in its support is lifted or a quadratic arc.

Corollary. Every strong $(3 \pmod 5)$ -arc in $\text{PG}(r, 5)$, $r \geq 4$, which does not contain a hyperplane in its support is lifted or a quadratic arc.

The case $q = 3$

Theorem G. Assume that every strong $(2 \pmod 3)$ -arc in $\text{PG}(r, 3)$ is lifted or obtained from a quadric. Then every strong $(2 \pmod 3)$ -arc in $\text{PG}(r + 1, 3)$, is also lifted or a quadratic arc.

Theorem H. Every strong $(2 \pmod 3)$ -arc in $\text{PG}(2, 3)$, is lifted or a quadratic arc.



Corollary. Every strong $(2 \pmod 3)$ -arc in $\text{PG}(r, 3)$, $r \geq 2$, is lifted or a quadratic arc.