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Permutation Polynomials

Polynomials over finite fields

Let p be a prime, r ∈ N and q = pr , we denote by Fq the field of q elements.
Fq = {0, u1, u2, . . . , uq−1}, where u is a primitive element.

Let n ∈ N with n > 0 and Fn
q = Fq × · · ·n) · · · × Fq

Fq[x1, . . . , xn] the polynomial ring in variables x1, . . . , xn

Lemma (Lagrange interpolation several variables)

If f ∈ Fq[x1, . . . , xn], there exists a unique g ∈ Fq[x1, . . . , xn] of degree < q in
each variable with f (c1, . . . , cn) = g(c1, . . . , cn) for all (c1, . . . , cn) ∈ Fn

q and

f ≡ g mod (xq1 − x1, . . . , x
q
n − xn)

Proof.
g(x1, . . . , xn) =

∑
(c1,...,cn)∈Fn

q

f (c1, . . . , cn)(1− (x1 − c1)q−1) · · · (1− (xn − cn)q−1)

Identifying f ≡ g , f will be of degree degxi (f ) < q
[R. Lidl, H. Niederreiter, Finite Fields (1997)
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Permutation Polynomials

Permutation and Local Permutation Polynomials

Definition (Niederreiter(1970))

f ∈ Fq[x1, . . . , xn] is a Permutation Polynomial (or PP) if the equation

f (x1, . . . , xn) = α

has qn−1 solutions in Fn
q for each α ∈ Fq.

Definition (Mullen(1981))

f ∈ Fq[x1, . . . , xn] is a Local Permutation Polynomial (or LPP) if for each i ,
1 ≤ i ≤ n,

f (α1, . . . , αi−1, xi , αi+1, . . . , αn) ∈ Fq[xi ]

is a PP in Fq[xi ], for all choices of points of the form
(α1, . . . , αi−1, αi+1, . . . αn) ∈ Fn−1

q .

LPP ⊂ PP.

The opposite is not true in general (n ≥ 2).

If n = 1 : LPP = PP.
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Hypercubes

Latin squares

Definition (L. Euler (1707))

A square of order q ∈ N is an q × q array L with entries from a set F of size q s.
t. each element of F occurs q in L. And is a latin square if each element of F
occurs exact once in every row and every column of L.

S1 =


0 2 3 1
3 1 0 2
0 3 2 1
2 0 1 3

, S2 =


0 2 3 1
3 1 0 2
1 3 2 0
2 0 1 3


q = 4, F = {0, 1, 2, 3}

Latin square =⇒ square.

1 Squares of order q = pr ⇐⇒ PP in Fq[x , y ].

2 Latin squares of order q = pr ⇐⇒ LPP in Fq[x , y ] [Mullen(1981)].
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Hypercubes

Hypercubes

Definition (Ethier, Mullen, Panario, Stevens, Thomson(2012))

Let n, q ∈ N and F a set of q elements(symbols). An hypercube H of order q,
dimension n and type j (0 ≤ j ≤ n − 1), is an n−dimensional array q × · · · × q
with qn symbols, such that if whenever any j of the coordinates are fixed each of
the q elements of F appears qn−j−1 in that subarray.
A Latin hypercube is hypercube of type n − 1.

1 If n = 1 (Permutation)
2 If n = 2

j = 0 (Square)
j = 1 (Latin square)

3 n = 3

j = 0 (Cube)
j = 2 (Latin cube)

Remark

Any hypercube H of type j is also of types 0, 1, ..., j − 1.
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Hypercubes

Notation

The set F = {0, 1, . . . , q − 1}
The qn cells: [0, 0, ..., 0], [0, 0, ..., 1], ..., [q − 1, q − 1, ..., q − 1]

The hypercube is represented as a n-dimensional array H with

H[x1, x2, ..., xn] = xn+1

C1 C2

0123 1032 2301 3210 || 0123 3210 3210 3210

1032 0123 3210 2301 || 1032 2301 2301 2301

2301 3210 0123 1032 || 2301 1032 1032 1032

3210 2301 1032 0123 || 3210 0123 0123 0123

(0) (1) (2) (3) (0) (1) (2) (3)

For instance:

C1(1,3,0)=2, C1(0,0,1)=1, C2(1,1,2)=3, C2(3,0,3)=0
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Hypercubes

j−Permutation polynomial

Definition

f ∈ Fq[x1, . . . , xn] and 0 ≤ j ≤ n− 1 is a j-permutation polynomial (or j-PP) if for
all choices of j variables xi1 , . . . , xij (W.L.O.G xi1 , . . . , xij = x1, . . . , xj), and for all
choices of points (α1, . . . , αj) ∈ Fj

q the equation

f (a1, . . . , aj , xj+1, . . . , xn) = α

has qn−j−1 solutions in Fn−j
q for each α ∈ Fq.

f is (n − 1)-PP ⇐⇒ f is Local permutation polynomial

f is 0−PP ⇐⇒ f is Permutation polynomial

Remark

Any j-PP is also k−PP for k = 0, 1, . . . , j − 1
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Hypercubes

Hypercube of type j and j−Permutation polynomial

Theorem

There is a bijective map between n−dimensional hypercubes H of order a prime
power q of type j (0 ≤ j ≤ n − 1) and j-PP polynomials f ∈ Fq[x1, . . . , xn] such
that degxi (f ) < q.

Proof.

Given H, identify the symbols to the elements of Fq = {c1, . . . , cq} and, then
interpolating. Conversely, given the polynomial f we construct the hypercube H
as follows: given any cell indexed by (i1, . . . , iq)

H(i1, . . . , iq) = f (ci1 , . . . , ciq )

C1←→ X + Y + Z , C2←→ X + Y + Z 3
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j-Permutation Polynomials

Polynomials of separated variables
Let f ∈ Fq[x1, . . . , xn] be a non constant and 0 ≤ j ≤ n − 1.

Theorem

f is j-PP ⇐⇒ for all choices of j variables (xi1 , . . . , xij = x1, . . . , xj), and for all
choices of points (α1, . . . , αj) ∈ Fj

q∑
(cj+1,...,cn)∈Fn−j

q

χb(f (α1, . . . , αj , cj+1, . . . , cn)) = 0

for all additive character χb of Fq with b 6= 0.

Theorem
f = g(x1, . . . , xm) + h(xm+1, . . . , xn).

1 If g is j1-PP and h is j2-PP. Then f is a j1 + j2 + 1-PP.

2 If Fq = Fp and f is j-PP =⇒ for any j1 + j2 = j , with j1 ≤ m − 1 and
j2 ≤ n −m − 1 either g is j1-PP or h is j2-PP.

j = 0 [Niederreiter(1970)]
j = n − 1, f is LPP ⇐⇒ g and h are LPP’s.
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j-Permutation Polynomials

Counting cubes and Latin hypercubes

Theorem

The number of PP’s in Fq[x1, . . . , xn] is qn!
(qn−1)!q .

Proof.

Fq = {c0, . . . , cq−1}, for i = 0, . . . , q − 1:

Ai = {(a1, . . . , an) ∈ Fn
q : f (a1, . . . , an) = ci}

A0 ∪ . . . ∪ Aq−1 = Fn
q, Ai ∩ Aj = ∅ (i 6= j) & |Ai | = qn−1.

Remark (https://users.cecs.anu.edu.au/~bdm/data/)

The number of LPP’s for q=2,3,4,5:

Fq[x1, x2]: 2, 12, 576, 161280

Fq[x1, x2, x3]: 2, 24, 55296, 2781803520

Fq[x1, x2, x3, x4]: 2, 48, 36972288, 52260618977280
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j-Permutation Polynomials

Isotopic j-Hypercubes

Definition (McKay-Wanless(2008))

Given a hypercube A = {(x1, . . . , xn+1)} and permutations (p1, . . . , pn+1) ∈ Σn+1
q

then B = {(p1(x1), . . . , pn+1(xn+1))} is also a hypercube, said to be isotopic to A.
This is an equivalence relation(isotopy classes).

Theorem

1 Let g(z) ∈ Fq[z ] be PP. Then
f is a j-PP ⇐⇒ g(f (x1, . . . , xn)) is a j-PP.

2 Let h1(x1), . . . , hn(xn) be PP’s. Then
f is j-PP ⇐⇒ f (h1(x1), . . . , hn(xn)) is a j-PP

Problem

Input: f , f̄ ∈ Fq[x1, . . . , xn] j-Permutation polynomials

Output: g(z), h1(x1), . . . , hn(xn) PP’s

f̄ = g(f (h1(x1), . . . , hn(xn))
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j-Permutation Polynomials

Galois j-Hypercubes

Definition

Given f an j − PP

f =

q−2,...,q−2∑
k1=0,...,kn=0

ck1k2...knx
k1
1 xk22 · · · x

kn
n =

∑
k

ckx
k ,

then for all σ ∈ Galois(Fq/Fp),

g = f σ =
∑
k

σ(ck)xk

is also a j − PP, said to be Galois to f .
This is an equivalence relation (Galois classes).

Problem

How relating other equivalence classes of hypercubes to Galois classes?
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Reduced Latin hypercube

Definition (McKay-Wanless(2008))

A Latin hypercube H[x1, . . . , xn] = xn+1 is reduced if, whenever n − 1 entries
of a tuple (x1, . . . , xn, xn+1) are 0, the other two entries are equal.

The total number of Latin hypercubes of order q and dimension n is

q!(q − 1)!n−1

times the number of reduced Latin hypercubes.

0123 1032 2301 3210

1032 0123 3210 2301

2301 3210 0123 1032

3210 2301 1032 0123

H(i,j,0) H(i,j,1) H(i,j,2) H(i,j,3)
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Reduced Latin hypercube

Reduced local permutation polynomials

Fq = {0, u1, u2, . . . , uq−2, uq−1 = 1} ←→ [0, 1, 2, . . . , q − 2, q − 1]

Theorem

Let f ∈ Fq[x1, . . . , xn] be a LPP:

f =

q−2,...,q−2∑
k1=0,...,kn=0

ck1k2...knx
k1
1 xk22 · · · x

kn
n

1 If f is a reduced LPP, then for all σ ∈ Galois(Fq/Fp), f σ =
∑

k σ(ck)xk is a
reduced LPP.

2 If is reduced LPP then: c00...0 = 0
c10...0 = 1, c01...0 = 1, . . . , c00...1 = 1
cj0...0 = 0, c0j...0 = 0, . . . , c00...0j = 0, ∀ j = 2, . . . , q − 2

q = 5, n = 2

c33X
3Y 3 + c32X

3Y 2 + c23X
2Y 3 + c31X

3Y + c22X
2Y 2 + c13XY

3 + c21X
2Y +

c12XY
2 + c11XY + X + Y
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The LPP’s algebraic variety

The LPP’s algebraic variety

Given a LPP f ∈ Fq[x1, . . . , xn]

f =

q−2,...,q−2∑
i1=0,...,in=0

ci1i2...inx
i1
1 x

i2
2 . . . x

in
n

l

(c0...0, c0...01, . . . , cq−2...q−2q−1, cq−2...q−2q−2) ∈ Fm
q , m = (q − 1)n

The LPP’s is an algebraic set defined by a polynomial ideal I .

I C Fq[Y1, . . . ,Ym]

LPP ′s = VFm
q

(I ) = {c ∈ Fm
q : g(c) = 0, ∀g ∈ I}

Finding a system of generators T = {g1, . . . , gr} of the ideal I ?

I = (g1, . . . , gr )
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The LPP’s algebraic variety

The Rabinowitsch trick

I = J
⋂

Fq[Y1, . . . ,Ym]

S ⊂ Fq[Z ,Y1, . . . ,Ym] and J C Fq[Z ,Y1, . . . ,Ym] and J = (S ∪ {Z q−1 − 1})
Then, h ∈ S

Choice n − 1 variables xi1 , . . . , xin−1 (assuming without of generality
xi1 , . . . , xin−1 = x1, . . . , xn−1)

Choice (a1, . . . , an−1) ∈ Fn−1
q

Choice c , b ∈ Fq, c 6= b:

h = f (a1, . . . , an−1, b)f (a1, . . . , an−1, c)Z − 1 ∈ S

hq−1 − 1 = f (a1, . . . , an−1, b)f (a1, . . . , an−1, c)q−1 − 1 ∈ T

Y q
j − Yj ∈ T ,∀ j = 1, . . .m = (q − 1)n
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Reduced Latin squares of order 4

Reduced Latin squares of order 4

f = c22X
2Y 2 + c21X

2Y + c12XY
2 + c11XY + X + Y

Computing a Groebner basis of I generated by T with respect lexicografic order in
the variables ci,j

I=[(cc[i*(q-1)+j])**q-(cc[i*(q-1)+j]) for j in range(1,q-1) for i in range(1,q-1)]

for i in range(1, len(K)):

for j in range(1, len(K)):

I.append((K[i]-f(X=K[i],Y=K[j]))**(q-1)-1)

ideal(I).groebner_basis()

[c_11 + c_21^2, c_12 + c_21, c_21^3 + c_22,

c_21*c_22 + c_21, c_22^2 + c_22]

1 X + Y

2 X 2Y 2 + uX 2Y + uXY 2 + u2XY + X + Y

3 X 2Y 2 + u2X 2Y + u2XY 2 + uXY + X + Y

4 X 2Y 2 + X 2Y + XY 2 + XY + X + Y

[Falcón-Morales(2007), Satoa-Inoue-Suzuk-Nabeshima-Sauto(2011)]
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Orthogonal hypercubes

m-Orthogonal Latin hypercubes

Definition (Laywine, Mullen(2008), Ethier, Mullen, Panario, Stevens,
Thomson(2012) )

For n ≥ 2, a set of m (1 ≤ m ≤ n) hypercubes of order q and dimension n is said
to be m-orthogonal if when superimposed, each of the qm order m-tuple occurs
qn−m.
Moreover, a set r ≥ m hypercubes of dimension n is mutually orthogonal if given
any m hypercubes from the set, they are m−orthogonal.

q = 4, r = 3, m = n = 2


0 1 2 1
2 3 0 1
3 2 1 0
1 0 3 2

 ,


0 2 3 1
1 3 2 0
2 0 1 3
3 1 0 2

 ,


0 2 3 1
2 0 1 3
3 1 0 2
1 3 2 0




Applications: Coding theory(MDS), finite geometries, ..
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Orthogonal hypercubes

Orthogonal system of polynomials

Definition (Niederreiter(1971))

A system of polynomials f1, . . . , fm ∈ Fq[x1, . . . , xn], 1 ≤ m ≤ n, is said to be
orthogonal in Fq if the system of equations

f1(x1, . . . , xn) = a1, . . . , fm(x1, . . . , xn) = am

has qn−m solutions in Fn
q for each (a1, . . . , am) ∈ Fm

q .

m hypercubes are m-orthogonal ⇐⇒ the associated polynomials is an OS

If m = n this means that the OS f1, . . . , fn induces a permutation of Fn
q.

Theorem (Niederreiter(1971))

There is a bijective map between orthogonal systems in Fq consisting of
polynomials of degree < q in each variable and permutation polynomials in one
variable over Fqn of degree < qn
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Orthogonal hypercubes

Mutually Orthogonal Latin Squares(MOLS)

Definition

Let M(q) be the size of the largest collection of MOLS of order q, then we
have M(q) ≤ q − 1 H is Complete set of MOLS if #(H) = M(q)

If q = pr is a power of prime p, then M(q) = q − 1

Theorem

1 f (x , y), g(x , y) is an OS ⇐⇒ af (x , y) + bg(x , y), cf (x , y) + dg(x , y) is an
OS, for a, b, c , d ∈ Fq such that ad − bc 6= 0.
And {f (x , y) + ag(x , y), a ∈ F∗q} is a complete set of MOLS.

2 f (z), g(z), h1(z), h2(z) are PP’s in Fq[z ] ⇐⇒ for all a, b, c , d ∈ Fq s.t
ad − bc 6= 0 f (ah1(x) + bh2(y)), g(ch1(x) + dh2(y)) is an OS.
And {f (x) + ah(y), a ∈ F∗q} is complete set of MOLS.

Problem

Generalisation to LPP in Fq[x1, . . . , xn].
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Orthogonal hypercubes
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Orthogonal hypercubes
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