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Permutation Polynomials

Polynomials over finite fields

@ Let p be a prime, r € N and g = p", we denote by I, the field of g elements.
Fy={0,u*,u? ..., u971}, where u is a primitive element.
@ Let n € N with n> 0 and Fg:]qu~~~”)---><Fq

o Fy[x1,...,x,] the polynomial ring in variables xi, ..., x,

Lemma (Lagrange interpolation several variables)

If f € Fg[x1,...,xn], there exists a unique g € Fg[xy,...,x,] of degree < q in
each variable with f(cy,...,c,) = g(cu, ..., ¢y) forall (c1,...,c,) € Fy and

f=gmod (x] — x1,...,x7 — xp)

Proof.
g(x, ... xn) = Z f(cl,...,cn)(lf(xlfcl)q*1)~~(17(x,,fc,,)q*1)

(0174--7Cn)€]FZ

Identifying f = g, f will be of degree deg, () < ¢ -

[R. LipL, H. NIEDERREITER, Finite Fields (1997)
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Permutation Polynomials

Permutation and Local Permutation Polynomials

Definition (NIEDERREITER(1970))

f e Fylxi,...,xn] is a Permutation Polynomial (or PP) if the equation
f(x1,...,xn) =

has q"~* solutions in F} for each a € Fy.

Definition (MULLEN(1981))

f € Fglx1,...,xn] is a Local Permutation Polynomial (or LPP) if for each i,
1<i<n,
f(ozl, e Q1 Xy Oy ,Oz,,) S Fq[X,']
is a PP in Fy[x;], for all choices of points of the form
(01, ..o @im1, g1, .. ) € TFZ*-

o LPP C PP.
@ The opposite is not true in general (n > 2).
o lfn=1:LPP=PP
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Latin squares

Definition (L. Euler (1707))

A square of order q € N is an g x q array L with entries from a set F of size q s.
t. each element of F occurs q in L. And is a latin square if each element of F
occurs exact once in every row and every column of L.

S

S =

N O wo
O WK N
= N O W
W= N =
N~ WO
O WK N
= N O W
W onN =

g=4, F=1{0,1,23}

Latin square = square.
@ Squares of order g = p" <= PP in Fg[x,y].
@ Latin squares of order g = p* <= LPP in Fy[x, y] [MULLEN(1981)].
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Hypercubes

Definition (ETHIER, MULLEN, PANARIO, STEVENS, THOMSON(2012))

Let n,qg € N and F a set of g elements(symbols). An hypercube H of order g,
dimension n and type j (0 <j < n—1), is an n—dimensional array g X --- X ¢
with " symbols, such that if whenever any j of the coordinates are fixed each of
the g elements of F appears g" ! in that subarray.

A Latin hypercube is hypercube of type n — 1.

Q If n =1 (Permutation)
Q Ifn=2

o j =0 (Square)

e j =1 (Latin square)
Q@ n=3

o j =0 (Cube)

e j =2 (Latin cube)

Remark
Any hypercube H of type j is also of types 0,1, ...,j — 1. J
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Notation

e Theset F={0,1,...,q—1}

e The q" cells: [0,0,...,0],[0,0,...,1],..,[g — 1, g — 1,...,qg — 1]
The hypercube is represented as a n-dimensional array H with

H[X17X27 ~-~7Xn] = Xn+1

C1 C2

0123 1032 2301 3210 0123 3210 3210 3210
1032 0123 3210 2301 1032 2301 2301 2301
2301 3210 0123 1032 2301 1032 1032 1032
3210 2301 1032 0123 3210 0123 0123 0123
(0) (¢D) 2 (3 (®)) ¢D) (2) 3
For instance:

c1(1,3,0)=2, cC1(0,0,1)=1, C2(1,1,2)=3, C2(3,0,3)=0
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Jj—Permutation polynomial

Definition

feFqy[xi,...,xp] and 0 < j < n—1is a j-permutation polynomial (or j-PP) if for
all choices of j variables x;, ..., x; (W.L.O.G x;,...,x; = x1,...,%), and for all
choices of points (c,..., ) € [, the equation

f(at, .., 3, Xj41,- -, Xn) = @

has ¢" /™! solutions in F7~/ for each o € F.

o fis(n—1)-PP < f is Local permutation polynomial
o fis 0—PP <= f is Permutation polynomial

Remark
Any j-PP is also k—PP for k =0,1,...,j—1 J
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Hypercube of type j and j—Permutation polynomial

Theorem

There is a bijective map between n—dimensional hypercubes H of order a prime
power q of type j (0 < j < n—1) and j-PP polynomials f € Fg[x1, ..., xn] such
that deg, (f) < q.

Proof.

Given H, identify the symbols to the elements of Fy = {c1,..., ¢4} and, then
interpolating. Conversely, given the polynomial f we construct the hypercube H
as follows: given any cell indexed by (i, ..., iq)

H(i, ... iq) = f(cy,...,c)

Cl+— X+Y+2Z, C2+—X+Y+278
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j-Permutation Polynomials

Polynomials of separated variables
Let f € Fg[xi,...,Xs] be a non constant and 0 < j < n—1.

Theorem
f is j-PP <= for all choices of j variables (Xiys -y X = X1,...,), and for all
choices of points (a, ..., a;) € F,

Z Xb(f(al,...,ij,Cj+1,...,C,,)):0

(G1,-n) EFG

for all additive character x, of Fq with b # 0.

Th
eorem f=g(x1,. ..y Xm) + h(Xmi1, .-y Xn)-
Q Ifgis j1-PP and his j>-PP. Then f is a j1 + j» + 1-PP.

Q@ IfF,=F, and f is j-PP = for any j1 + jo = j, with jj < m—1 and
Jo < n—m—1 either g is j1-PP or h is j>-PP.

@ j = 0 [NIEDERREITER(1970)]
@ j=n—1,fis LPP < g and hare LPP’s.
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j-Permutation Polynomials

Counting cubes and Latin hypercubes

Theorem

The number of PP’s in Fg[x1,. .., Xs] is ﬁ.

Proof.
Fqg={co,...,cq-1}, fori=0,...,q—1:

A;:{(a1,...,an)€Fg:f(al,...,a,,):c,-}

AU...UA1=F1 ANA=0(G#j) & |Al=q¢""

Remark (https://users.cecs.anu.edu.au/~bdm/data/)
The number of LPP’s for g=2,3,4,5:

o Fyl[xi,x]: 2,12,576,161280

o Folx1,x2,x3]:  2,24,55296,2781803520

o Fylx1,x2,x3,xa]:  2,48,36972288,52260618977280

v
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Isotopic j-Hypercubes

Definition (McKAy-WANLESS(2008))

Given a hypercube A = {(x1,...,xn+1)} and permutations (p1, ..., pnt1) € Zg“

then B = {(p1(x1), - - -, pnt1(Xxns1))} is also a hypercube, said to be isotopic to A.
This is an equivalence relation(isotopy classes).

Theorem
Q Let g(z) € Fylz] be PP. Then
fisaj-PP < g(f(x1,...,xn)) is a j-PP.
Q Let hi(x1),- .., hn(x,) be PP’s. Then
fis j-PP <> f(hi(x1),...,hn(xs)) is a j-PP

Problem

e Input: f.f € Fylxt, ..., xp] j-Permutation polynomials
e Output: g(z), h1(x1),. .., ha(xa) PP’s

f= g(f(hl(xl)7 L) hn(X”))
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Galois j-Hypercubes

Definition
Given f an j — PP

q—2,...,q—2
ki1 _k: kK, k
f= E Chky... kX1 X~ =+ Xp" = E Crx™,
k1=0,...,kn=0 k

then for all o € Galois(Fg/F,),
g="f"=> o(c)xk
k

is also a j — PP, said to be Galois to f.
This is an equivalence relation (Galois classes).

Problem

o How relating other equivalence classes of hypercubes to Galois classes?
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Reduced Latin hypercube

Definition (McKAy-WANLESS(2008))

o A Latin hypercube H[xy, ..., xn] = Xnt1 is reduced if, whenever n — 1 entries
of a tuple (x1,...,Xn, Xnr1) are 0, the other two entries are equal.

@ The total number of Latin hypercubes of order q and dimension n is
g'(q— 1"t

times the number of reduced Latin hypercubes.

0123 1032 2301 3210
1032 0123 3210 2301
2301 3210 0123 1032
3210 2301 1032 0123
H(i,j,0) H(i,j,1) H(i,j,2) H(i,j,3)
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Reduced Latin hypercube

Reduced local permutation polynomials
F,={0,u',v? ... 07209 =1} +—[0,1,2,...,g— 2,9 — 1]

Theorem
Let f € Fy[x1,...,xs] be a LPP:

q—2,...,q—2
f= D Gk X0 Xy
k1=0,...,ky=0
Q Iff is a reduced LPP, then for all o € Galois(Fq/F,), 7 =3, o(ck)xk is a

reduced LPP.

@ Ifis reduced LPP then: cyo. 9 =0
co.0=Lcn.0=1,...,¢0.1=1
CjO...O = 0, Coj___() = 0, ey COO...Oj = 0, V_j = 2, ey — 2

33 X3Y3 + e X3Y2 + 3 X2Y3 + 31 X3Y + e X?Y? + i3 XY3 + e X2Y +
C12XY2 + C11XY +X+Y
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The LPP’s algebraic variety

Given a LPP f € Fg[xy, ..., X

q—2,...,q—2
_ S Y i
f= E Citiy i X[ X5 o X7
i=0,...,i,=0

(CO...O, €0...015 - - -y Cg—2...q—2g—1; Cq72...q72q72) S ]Fg,v m = (q - 1)n

The LPP’s is an algebraic set defined by a polynomial ideal /.
I <Fq[Y1,..., Ym]

LPP's = Vin(l) = {c € F : g(c) =0,Yg € I}

Finding a system of generators T = {gi,..., g} of the ideal / ?‘

I = (g17"'agr)
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The Rabinowitsch trick

I =J(\FglY1,-.., Yol
SCFZ,Y1,...,Ymland JQFG[Z, Y1,..., Ym] and J = (SU{Z971 —1})
Then, he S

@ Choice n — 1 variables x; , ..., x; , (assuming without of generality
XipyoooyXip_qg = X1y 0 ,X,,,l)

Choice (a1,...,an-1) € ng

o Choice ¢, b€ Fq,c # b:

h="f(a,...,ap—1,b)f(a1,...,ap-1,¢)Z—1€S

(]

hi1 —1="f(ay,...,an_1,b)f(a1,...,an_1,c)9 1 —1€ T

o Y7 -Y,eTVj=1...m=(q—1)
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Reduced Latin squares of order 4

Reduced Latin squares of order 4

f=cnX?Y?+anX?Y + coXY?+cuXY + X + Y
Computing a Groebner basis of | generated by T with respect lexicografic order in
the variables ¢; ;

I=[(ccli*(q-1)+j1)**q-(cc[i*(q-1)+j]) for j in range(l,q-1) for i i
for i in range(1, len(K)):
for j in range(1, len(K)):
I.append ((K[i]-f (X=K[i],Y=K[j1))**(q-1)-1)
ideal(I).groebner_basis()

[c_11 + c_2172, c_12 + ¢c_21, c_21°3 + c_22,
c_21%c_22 + c_21, c_22"2 + c_22]

QO X+Y
Q X2Y2+ uX?Y + uXY? + PXY + X + Y
Q X2Y2 4+ 2 XY + PXY2 +uXY + X+ Y
Q X2Y2+ XY + XY+ XY + X+ Y
[FALCON-MORALES(2007), SATOA-INOUE-SUZUK-NABESHIMA-SAUTO(2011)]
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m-Orthogonal Latin hypercubes

Definition (LAYWINE, MULLEN(2008), ETHIER, MULLEN, PANARIO, STEVENS,
THOMSON(2012) )

Forn>2, aset of m (1 < m < n) hypercubes of order g and dimension n is said
to be m-orthogonal if when superimposed, each of the g™ order m-tuple occurs
qnfm.

Moreover, a set r > m hypercubes of dimension n is mutually orthogonal if given
any m hypercubes from the set, they are m—orthogonal.

01 21 0 2 31 0 2 31
2 3 01 1320 2 01 3
3 21011’2013]’3 102
10 3 2 310 2 13 20

Applications: Coding theory(MDS), finite geometries, ..
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Orthogonal hypercubes

Orthogonal system of polynomials

Definition (NIEDERREITER(1971))

A system of polynomials fi,...,f, € Fg[x1,...,xs], 1 < m < n, is said to be
orthogonal in F if the system of equations

A(X1, ey Xn) = 31,y Fn(X1, o0y Xn) = am
has q"~™ solutions in Fy for each (ai, ..., am) € Fy.

‘ m hypercubes are m-orthogonal <= the associated polynomials is an OS

If m = n this means that the OS f;,...,f, induces a permutation of Fg.

Theorem (NIEDERREITER(1971))

There is a bijective map between orthogonal systems in Fq consisting of
polynomials of degree < q in each variable and permutation polynomials in one
variable over IFgn of degree < q"
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Mutually Orthogonal Latin Squares(MOLS)

Definition
o Let M(q) be the size of the largest collection of MOLS of order q, then we
have M(q) < g — 1 H is Complete set of MOLS if #(H) = M(q)

e If g = p" is a power of prime p, then M(q) = q — 1

Theorem

O f(x,¥).8(x.y) isan OS <= af(x,y) + bg(x,y), cf(x,y) + dg(x,y) is an
OS, for a, b, c,d € Fq such that ad — bc # 0.

And {f(x,y) + ag(x,y),a € Fy} is a complete set of MOLS.

@ f(z),8(2), m(z), ho(z) are PP’s inFq[z] <= for all a,b,c,d € Fy s.t
ad — bc # 0 f(ah1(x) + bha(y)), g(chi(x) + dha(y)) is an OS.
And {f(x) + ah(y),a € F;} is complete set of MOLS.

Problem

Generalisation to LPP in Fg[x1, ..., Xa].

v
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