

An alternative approach to the Five Line Conjecture

Jelena Sedlar

University of Split, Croatia

(joint work with Riste Škrekovski)

5th Pythagorean conference,

Kalamata, Greece

1-6 june 2025.

Introduction

A **(proper) k -edge-coloring** of a graph $G = (V, E)$ is any mapping $\sigma: E \rightarrow \{1, \dots, k\}$ such that any two adjacent edges have distinct colors.

Introduction

A **(proper) k -edge-coloring** of a graph $G = (V, E)$ is any mapping $\sigma: E \rightarrow \{1, \dots, k\}$ such that any two adjacent edges have distinct colors.

A **cubic graph** G is a graph in which every vertex has degree 3.

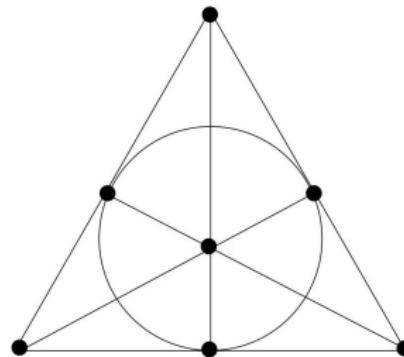
A **Fano plane edge-coloring** of a cubic graph G is any proper edge-coloring with:

- edge colors being points of the Fano plane;
- three colors meeting at any vertex of G belong to a same line of Fano plane.

Introduction

A **Fano plane edge-coloring** of a cubic graph G is any proper edge-coloring with:

- edge colors being points of the Fano plane;
- three colors meeting at any vertex of G belong to a same line of Fano plane.



Introduction

A **Fano plane edge-coloring** of a cubic graph G is any proper edge-coloring with:

- edge colors are points of the Fano plane;
- three colors meeting at any vertex of G belong to a same line of Fano plane.

A **k -line Fano plane coloring** of G is a coloring which uses only k -lines.

Introduction

A **Fano plane edge-coloring** of a cubic graph G is any proper edge-coloring with:

- edge colors are points of the Fano plane;
- three colors meeting at any vertex of G belong to a same line of Fano plane.

A **k -line Fano plane coloring** of G is a coloring which uses only k -lines.

It is known that:

- every bridgeless cubic graph has a 6-line coloring;

A **Fano plane edge-coloring** of a cubic graph G is any proper edge-coloring with:

- edge colors are points of the Fano plane;
- three colors meeting at any vertex of G belong to a same line of Fano plane.

A **k -line Fano plane coloring** of G is a coloring which uses only k -lines.

It is known that:

- every bridgeless cubic graph has a 6-line coloring;
- 4-line coloring is a theoretical minimum.

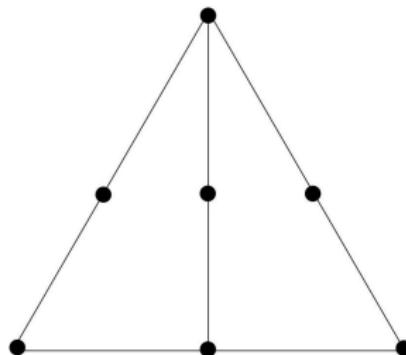
Four-line conjecture. Every bridgeless cubic graph has a four-line coloring.

Four-line conjecture. Every bridgeless cubic graph has a four-line coloring.

Five-line conjecture. Every bridgeless cubic graph has a five-line coloring.

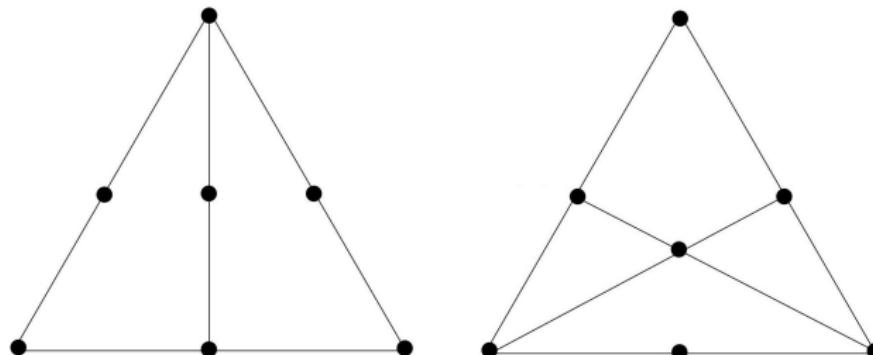
Four-line conjecture. Every bridgeless cubic graph has a four-line coloring.

Five-line conjecture. Every bridgeless cubic graph has a five-line coloring.



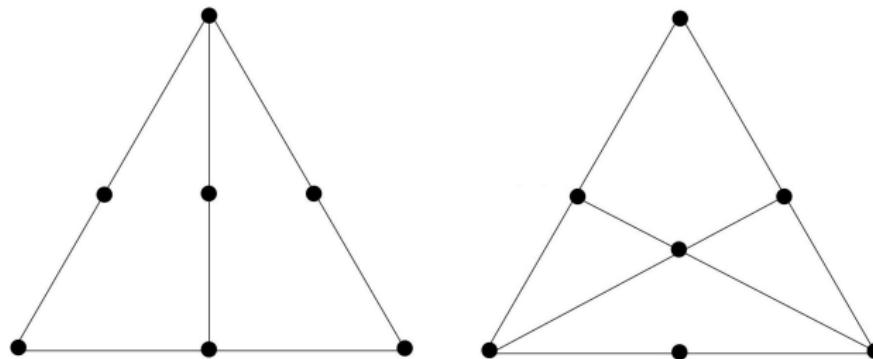
Four-line conjecture. Every bridgeless cubic graph has a four-line coloring.

Five-line conjecture. Every bridgeless cubic graph has a five-line coloring.



Four-line conjecture. Every bridgeless cubic graph has a four-line coloring.

Five-line conjecture. Every bridgeless cubic graph has a five-line coloring.



Remark. Five-line conjecture can be restated in terms of proper abelian colorings.

Introduction

A **(proper) abelian edge-coloring** (or **A -coloring**) of a cubic graph G is any proper edge-coloring with:

- edge colors being non-zero elements of a finite abelian group A ;
- three colors meeting at any vertex of G have zero sum.

A **(proper) abelian edge-coloring** (or **A -coloring**) of a cubic graph G is any proper edge-coloring with:

- edge colors being non-zero elements of a finite abelian group A ;
- three colors meeting at any vertex of G have zero sum.

It is known that every bridgeless cubic graph:

- has an A -coloring for A of order ≥ 12 ;

A **(proper) abelian edge-coloring** (or **A -coloring**) of a cubic graph G is any proper edge-coloring with:

- edge colors being non-zero elements of a finite abelian group A ;
- three colors meeting at any vertex of G have zero sum.

It is known that every bridgeless cubic graph:

- has an A -coloring for A of order ≥ 12 ;
- does not have an A -coloring for cyclic groups of order < 10 ;

A **(proper) abelian edge-coloring** (or ***A*-coloring**) of a cubic graph G is any proper edge-coloring with:

- edge colors being non-zero elements of a finite abelian group A ;
- three colors meeting at any vertex of G have zero sum.

It is known that every bridgeless cubic graph:

- has an A -coloring for A of order ≥ 12 ;
- does not have an A -coloring for cyclic groups of order < 10 ;
- the existence of a coloring by the remaining **four exceptional groups** $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} and \mathbb{Z}_{11} is an open problem;

A **(proper) abelian edge-coloring** (or **A -coloring**) of a cubic graph G is any proper edge-coloring with:

- edge colors being non-zero elements of a finite abelian group A ;
- three colors meeting at any vertex of G have zero sum.

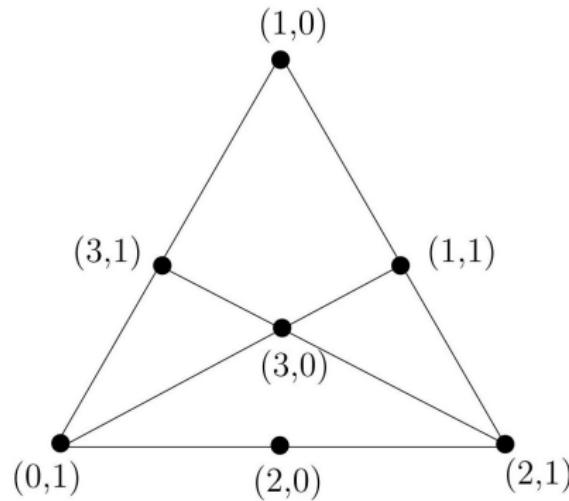
It is known that every bridgeless cubic graph:

- has an A -coloring for A of order ≥ 12 ;
- does not have an A -coloring for cyclic groups of order < 10 ;
- the existence of a coloring by the remaining **four exceptional groups** $\mathbb{Z}_4 \times \mathbb{Z}_2$, $\mathbb{Z}_3 \times \mathbb{Z}_3$, \mathbb{Z}_{10} and \mathbb{Z}_{11} is an open problem;
- the existence of $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring implies the existence of coloring by all three remaining exceptional groups.

Observation. Five-line Fano coloring is equivalent to a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring of a bridgeless cubic graph G .

Introduction

Observation. Five-line Fano coloring is equivalent to a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring of a bridgeless cubic graph G .



Main results

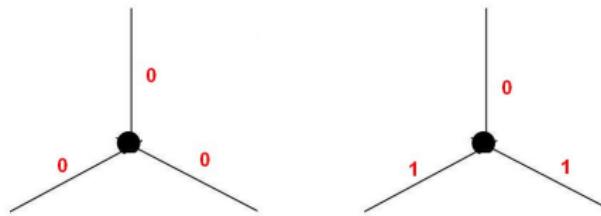
Main results

Lemma. The second coordinate of $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring induces a perfect matching and a 2-factor in G .

Main results

Lemma. The second coordinate of $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring induces a perfect matching and a 2-factor in G .

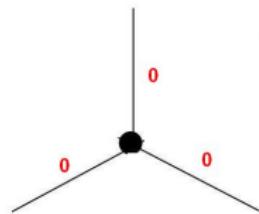
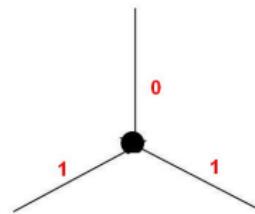
Second coordinate zero sums:



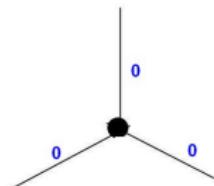
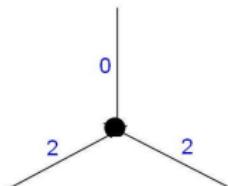
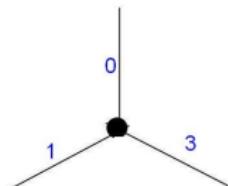
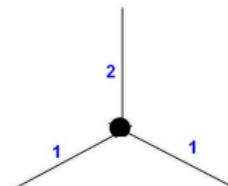
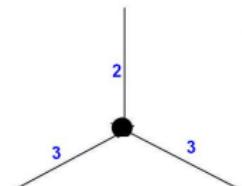
Main results

Lemma. The second coordinate of $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring induces a perfect matching and a 2-factor in G .

Second coordinate zero sums:



First coordinate zero sums:

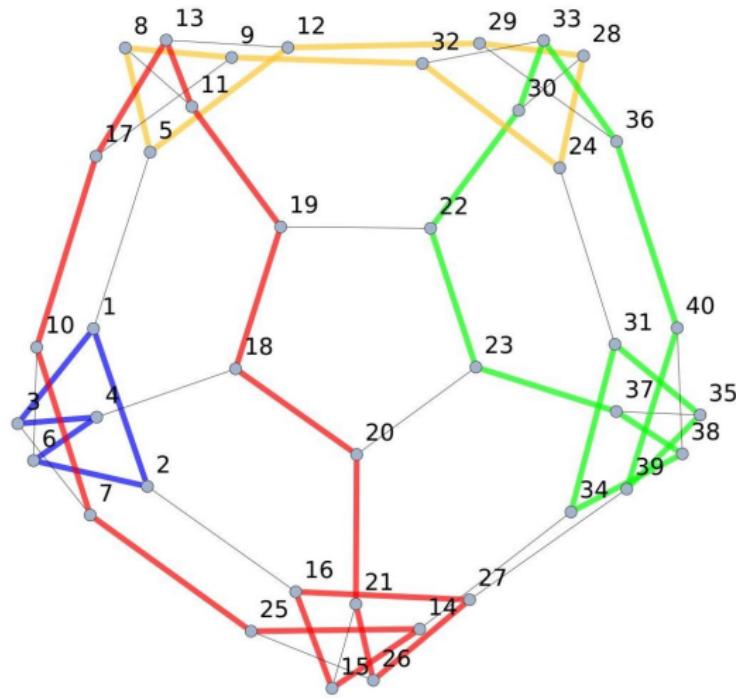


Main results

Question. What about the first coordinate?

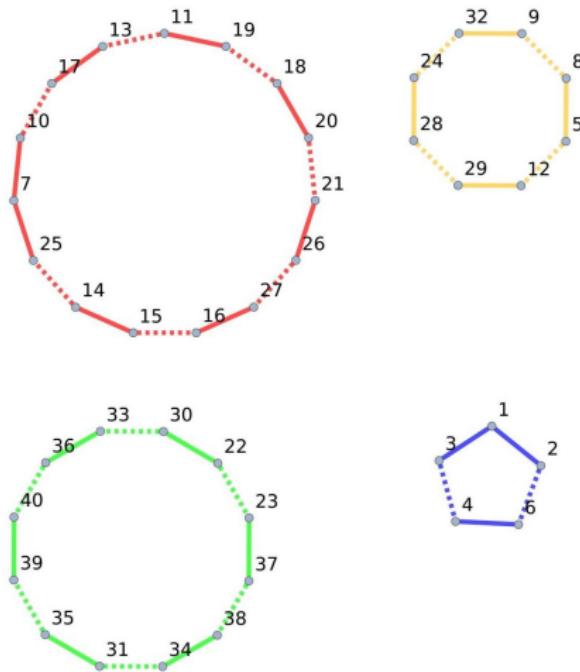
Main results

Question. What about the first coordinate?



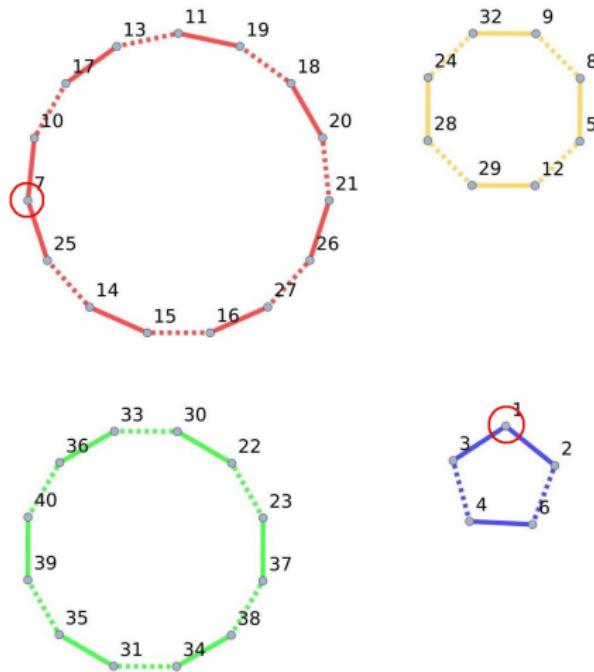
Main results

Question. What about the first coordinate?



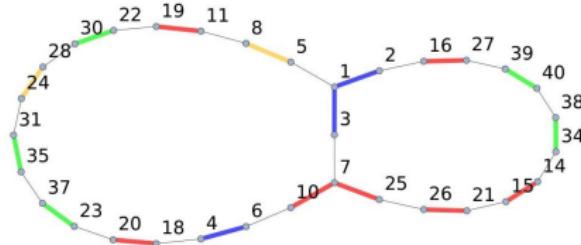
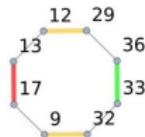
Main results

Question. What about the first coordinate?



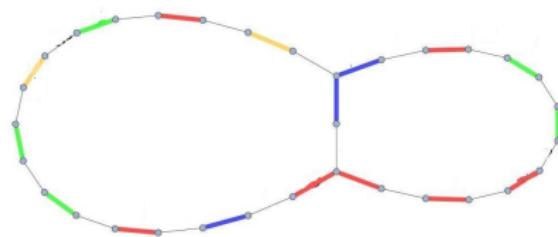
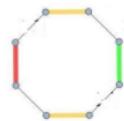
Main results

Question. What about the first coordinate?



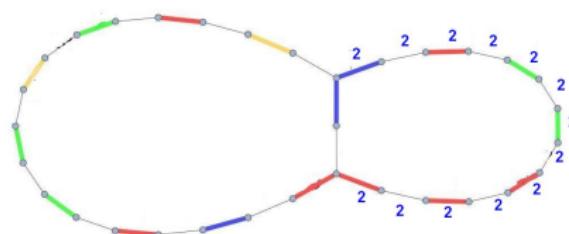
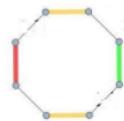
Main results

Question. What about the first coordinate?



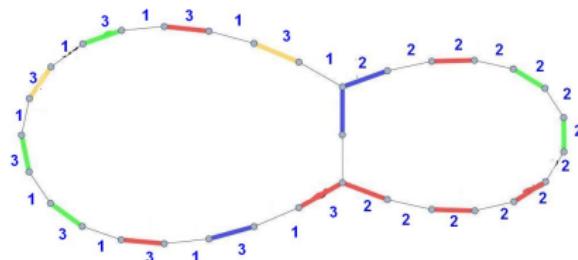
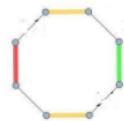
Main results

Question. What about the first coordinate?



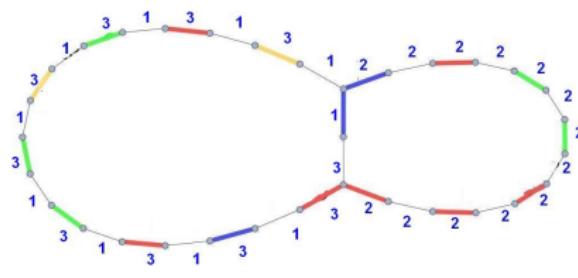
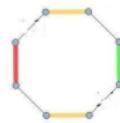
Main results

Question. What about the first coordinate?



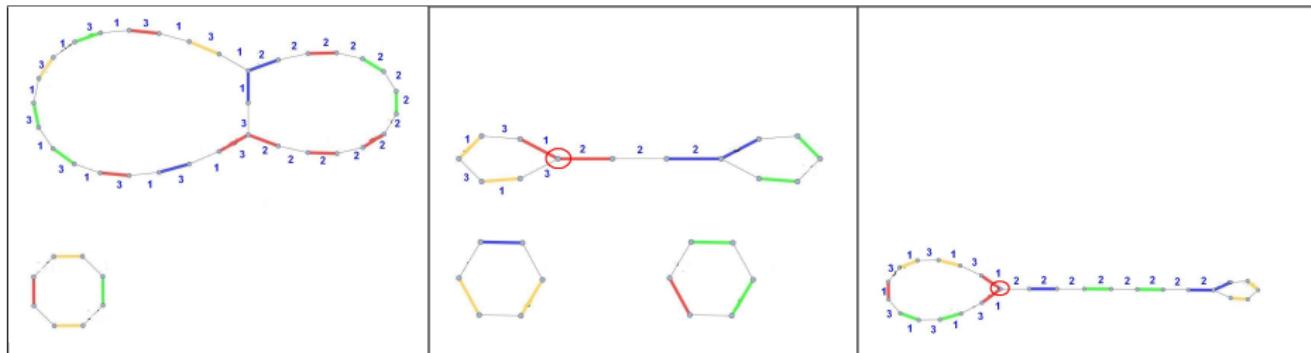
Main results

Question. What about the first coordinate?



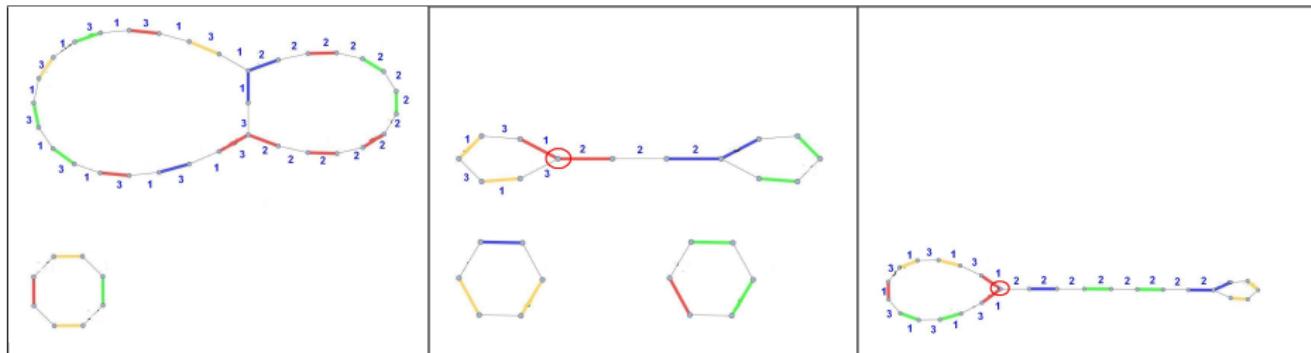
Main results

Question. What about the first coordinate?



Main results

Question. What about the first coordinate?



Theorem. A cubic graph G has a proper $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring if and only if there exists a 2-factor F in G and a matching M in F such that:

- $H = G - M$ has an F -matching
- whose F -complement is 3-even.

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

We give a **sufficient** condition under which:

- snarks have a first property;

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

We give **a sufficient** condition under which:

- snarks have a first property;
- snarks have a second property.

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

We give a **sufficient** condition under which:

- snarks have a first property;
- snarks have a second property.

Problem 1. In a snark G find a 2-factor F and a matching M in F so that the **first property** is satisfied.

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

We give a **sufficient** condition under which:

- snarks have a first property;
- snarks have a second property.

Problem 1. In a snark G find a 2-factor F and a matching M in F so that the **first property** is satisfied.

Problem 2. In a snark G find a 2-factor F and a matching M in F so that the **second property** is satisfied.

Main results

Corollary. Oddness two snarks have a $\mathbb{Z}_4 \times \mathbb{Z}_2$ -coloring.

We give a **sufficient** condition under which:

- snarks have a first property;
- snarks have a second property.

Problem 1. In a snark G find a 2-factor F and a matching M in F so that the **first property** is satisfied. **SOLVED!**

Problem 2. In a snark G find a 2-factor F and a matching M in F so that the **second property** is satisfied.

Conclusion

Conclusion

So... the Five line conjecture reduces to Problem 2.

Conclusion

So... the Five line conjecture reduces to Problem 2.

Thank you for the attention!