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Presentation plan

© Key definitions: decomposition, circulant, ...
@ Known results on decomposition of some circulants

© Main theorem followed by justification in selected cases
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Definition

A decomposition of a graph G is a collection {Hy, Ha, ..., H;} of
edge-disjoint subgraphs of G such that each edge of G belongs to
exactly one H;.
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Definition

A decomposition of a graph G is a collection {Hy, Ha, ..., H;} of
edge-disjoint subgraphs of G such that each edge of G belongs to
exactly one H;.

{S1,...,56} {G, G, G, G5, G5}

Figure: Decomposition of K7 into stars and into cycles
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Definition

For a positive integer n and a set S C {1,..., (5]} a circulant is a
graph G = (V, E) such that V =7, and E = {{u, v} : §(u,v) € S}
where 6(u, v) = min{£|u — v| (mod n)}.

We will denote it by C(n, S).
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Some well-known circulant graphs

a) S ={1} b) S = {2,5}

| ) S=1{1,2} d) S ={1,3}

Figure: Examples of circulants with their connecting sets
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Definition
For a cycle G, = (v1,. .., Vi) in a circulant C(n,{d\, ..., dk}) we define

the edge-length sequence as a sequence of integers (eq, ..

., €m) from the

set {—dk,...,—d1,d1,...,dx} where ¢ = v;1 1 — v; (mod n) for
i€{l,...,m—1} and ep, = v1 — v;, (mod n).

5 —1a
G = (0,1,2,5,4,3)
(1,1,3,-1,-1,-3)

6@ [ JK]
[
5 4
G = (0,1,4,7)
(1,3,3,1)
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Definition
For a cycle G, = (v1,. .., Vi) in a circulant C(n,{d\, ..., dk}) we define

the edge-length sequence as a sequence of integers (ey, ..., ey,) from the

set {—dk,...,—d1,d1,...,dx} where ¢ = v;1 1 — v; (mod n) for
i€{l,...,m—1} and ep, = v1 — v;, (mod n).

2 7 e:

3 6@ ®3
[ J
5

5 14 4
G = (0,1,2,5,4,3) G = (0,1,4,7)

(1,1,3,-1,-1,-3) (1,3,3,1)

Definition

We call a cycle C,, a reversing cycle if for its corresponding edge-length
sequence (ey, ..., €en) the following holds e; + ...+ e, =0 in Z.
Otherwise, we call C,, a winding cycle.
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Alspach’s conjecture (1981)

Let n be an odd integer, and let L = (/1,...,/;) be a list of integers.
There exists a decomposition {Cy, ..., C,} of K, if and only if

@ 3</;<nforeachie{l,...,t} and
e h+...4L=n(n-1)/2
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Let n be an odd integer, and let L = (/1,...,/;) be a list of integers.
There exists a decomposition {Cy, ..., C,} of K, if and only if

@ 3</;<nforeachie{l,...,t} and
e h+...4L=n(n-1)/2

Proven by Bryant, Horsley, and Pettersson in 2014.
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Alspach’s conjecture (1981)

Let n be an odd integer, and let L = (/1,...,/;) be a list of integers.
There exists a decomposition {Cy, ..., C,} of K, if and only if

@ 3</;<nforeachie{l,...,t} and
e h+...4L=n(n-1)/2

Proven by Bryant, Horsley, and Pettersson in 2014.

| They also solved the case where the order of the complete graph is even.
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Bryant and Martin’s results

Theorem (Bryant, Martin) 2009

Let n>7 and let L = (h,..., /) be a list of integers with 3 < /; <5 for
ie{l,...;t} and h + ...+ Ip = 3n. Then there exists a decomposition
{Cla AR Ct} of C(n? {13 273})
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Bryant and Martin’s results

Theorem (Bryant, Martin) 2009

Let n>7 and let L = (h,..., /) be a list of integers with 3 < /; <5 for
ie{l,...;t} and h + ...+ Ip = 3n. Then there exists a decomposition
{Cla coog Ct} of C(n? {13 273})

Theorem (Bryant, Martin) 2009

Let n > 5 and let /i,...,/; be a sequence of integers with 3 < [; < n for
i€{l,...,t}. There exists a decomposition {Cy,..., G} of
C(n,{1,2}) if and only if both of the following conditions hold
| Q@ h+...4+/=2nand
Q either
‘ ot:3andg§h,l2,l3§nor
o there exists an integer k € {1,...,t} such that lx > n—t+1.

.
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Cycle decomposition of C(n,{1,3})

Figure: Equivalent representations of C(8,{1,3})
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Cycle decomposition of C(n,{1,3})

Definition
Alist L= (h,..., ) of cycle lengths is admissible if the following
conditions are satisfied:

© if /i is even then 4 < [; < n and otherwise [Z] < /; <n

Q@ h+...+6=2n

\,

Definition
An admissible list L = (h,..., /) is ordered when

o if /; is odd and /; is even then i < j

‘ o if [; and /; are of the same parity and /; < /; then i <

For n = 17 an ordered admissible list could be L =(7,9,4,6,8).
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Cycle decomposition of C(n,{1,3}) - first observations

Reversing cycles in C(n, {1,3}) are of even length.

Conclusion: Odd cycles need to be of type winding.
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Cycle decomposition of C(n,{1,3}) - first observations

Reversing cycles in C(n,{1,3}) are of even length.

Conclusion: Odd cycles need to be of type winding.

If there exists a decomposition of C(n,{1,3}) into cycles of lengths from
the list L = (h,..., /), then the number of odd lengths in L must be:

@ even, since L + ...+ Iy =2n

@ at most 4

LN
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Main result

Theorem (Meszka, P.)

Let n > 7 be an integer and L = (h,..., /) be an ordered admissible
list. Let t’ denote the number of odd elements in L. There exists a
decomposition {Cy, ..., G} of the circulant C(n,{1,3}) if and only if
one of the following conditions is satisfied:
©@ t'=0and L#(4,...,4,n) when n=0 (mod 8) and t = 7 + 1, or
2n—4

Q@ t' =2, nisodd, t2n7%+2 and moreoverL;A(%“,n, s )
when n =5 (mod 6) and t = 3, or

| Q@ t' =4 and nis odd. )

12/34



DECOMPOSITION INTO ODD CYCLES
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The case of 4 odd cycles

Let's assume n =3 (mod 6) and L = (h, h, /s, ls) - ordered, admissible.

Let /; = £ + m;, where m; is an even integer for i € {1,2,3}.
Then Iy = n— (my + my + m3).
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The case of 4 odd cycles

Let's assume n =3 (mod 6) and L = (h, h, /s, ls) - ordered, admissible.
Let /; = £ + m;, where m; is an even integer for i € {1,2,3}.

Then Iy = n— (my + my + m3).

Example:

n=15 L=(57,9,9)

15 15 15
h=—+4+0  bh=—+4+2, bh=—+4, L, =9
1 3+,2 3+,3 3—|-,4
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The case of 4 odd cycles

Let's assume n =3 (mod 6) and L = (h, h, /s, ls) - ordered, admissible.

Let /; = £ + m;, where m; is an even integer for i € {1,2,3}.
Then Iy = n— (my + my + m3).

Example:

n=15 L=(5,7,9,9)

15 15 15
h=—+4+0  bh=—+4+2, bh=—+4, L, =9
1 3+ , b 3+ , I 3—|- , g

| Observation: my + mp + m3 < n%l

Otherwise, s < %51 and hh + b+ k + Iy < 2n.
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From the base case to all possible lengths

Step 1: Constructing the base case, L, = (5, 3, 5, n).
Example: n=15and L = (5,7,9,9)
CS5CS S S S
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From the base case to all possible lengths

Step 1: Constructing the base case, L, = (5, 3, 5, n).
Example: n=15and L = (5,7,9,9)
CS5CS S S S

Step 2: Interchanging colors between the Hamiltonian path and shorter
paths on proper segments.

LIS
| FAVEY . °
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0
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From the base case to all possible lengths

Step 1: Constructing the base case, L, = (5, 3, 5, n).
Example: n=15and L = (5,7,9,9)
CS5CS S S S

Step 2: Interchanging colors between the Hamiltonian path and shorter
paths on proper segments.

LIS
| FAVEY . °
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

Note: This strategy is possible if %(ml +my+m3)+3<n
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From the base case to all possible lengths

Step 1: Constructing the base case, L, = (5, 3, 5, n).
Example: n=15and L = (5,7,9,9)
CS5CS S S S

Step 2: Interchanging colors between the Hamiltonian path and shorter
paths on proper segments.

LIS
| FAVEY . °
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

Note: This strategy is possible if %(ml +my+m3)+3<n
And this holds by the previous observation (m; + my + m3 < ”T_l)
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DECOMPOSITION INTO EVEN CYCLES

16/34



Exception

There is no decomposition when n =0 (mod 8) and L = (4,...,4,n).

*—o 0 0 00 *—0o 000 0 °
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Exception

There is no decomposition when n =0 (mod 8) and L = (4,...,4,n).
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Exception

There is no decomposition when n =0 (mod 8) and L = (4,...,4,n)

® ® o O ® ® o O
‘ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Assumptions of the algorithm

@ Cycles are of type reversing.
@ The front of each cycle has an even index.

front tail
J(/ o0 0O \\Nb [ ] oo 6 & 06 0 °
0 1 2 3 4 5 6 0 1 2 3 4 5 6

@ Each cycle may omit at most one vertex in between.

18/34



Assumptions of the algorithm

@ Cycles are of type reversing.
@ The front of each cycle has an even index.

front tail
Jé/ o0 0O \\§b [ ] oo 6 & o6 0 °
0 1 2 3 4 5 6 0 1 2 3 4 5 6

@ Each cycle may omit at most one vertex in between.

Observation
A vertex can be a front vertex for only one cycle.
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Finding positions for fronts of cycles - method

Example: n=8and L = (4,6,6)
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Finding positions for fronts of cycles - method

Example: n=8and L = (4,6,6)

Problem solved for the following base cases:
@ uniform list L=(4,4,4,4,4)
@ two types of lengths differing by 2 L=(8,8,8,10,10)
o three different lengths and |L| =3 L =(4,8,10)

... for any other list we use recursion.
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Finding positions for fronts of cycles - example

6 Q2 — 10
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Decomposition - example

Decomposition of C(12,{1,3}) into {C4, Gg, Go, G}

front index ‘ 0 ‘
cycle length | 4 |

oogo\ogo\ooo
%9 1 o 1 2 3 4 5 6 7 8 9

4|10 |
68|

6
6

1.0.4-

1 0 1
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Decomposition - example

Decomposition of C(12,{1,3}) into {C4, Gg, Go, G}

front index ‘ ‘

0[4]10]
cycle length | 4 |

4
6] 8]

6
6
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Decomposition - example

Decomposition of C(12,{1,3}) into {C4, Gg, Go, G}

front index ‘ ‘
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cycle length | 4 |

4
6] 8]

6
6
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Decomposition - example

Decomposition of C(12,{1,3}) into {C4, Gg, Go, G}

front index ‘ ‘

0[4]10]
cycle length | 4 |

4
6] 8]

6
6

LTINS

10 1 0 1 2 3
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Decomposition - example
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front index ‘ ‘

0[4]10]
cycle length | 4 |

4
6] 8]

6
6

26/34



Decomposition - example

Decomposition of C(12,{1,3}) into {C4, Gg, Go, G}

front index ‘ ‘

0[4]10]
cycle length | 4 |

4
6] 8]

6
6
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MIXED DECOMPOSITION

t/:2,nisodd,t2nf%+2
and

L# ("%, n,2%5%) when n=5 (mod 6) and t =3
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Observation

A pair of even cycles may have at most one vertex in common.

LLONNCENLEN
® oo
P’ R s P

We distinguish the following subsets of the set of vertices:

@ P = P UP” - vertices that appear in both odd cycles,
v € P"iif (v —1) and (v + 1) are in the same even cycle

@ R - vertices that are both a front and a tail of an even cycle
@ S - verices that are only a front of an even cycle

We denote the sizes of these sets by lowercase letters, f.ex. |P'| = p’.
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A note on length measurement

- - -
-

® O 000 00 000 O O
X y

-9 0 0 0—0—0 @ © © o o
X y X y
Type of segment | P~ P' | PP~S|S-P | S-S
| Length differences ‘ 0/2 ‘ 3 ‘ 1 ‘ 0/2
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Necessary condition for L = (I, b, ..., )

O p+s> bk
@ By the handshaking lemma:

2(/1+/2)=2(n—r—p)+4p - r:n+p—(/1+/2)

t—2=r+s=n+p—(h+h)+s
2n—(/1—|—/2)+p’—|—5

h—h

Y

n—(h+h)+

ny + 3n
2
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Necessary condition for L = (I, b, ..., )

O p+s> bk
@ By the handshaking lemma:

2(/1+/2)=2(n—r—p)+4p - r:n+p—(/1+/2)

t—2=r+s=n+p—(h+h)+s
2n—(/1—|—/2)+p’—|—5

h—h

Y

n—(h+h)+

ny + 3n
2

‘ = t>n—23m 40

This necessary condition is also sufficient when h < n.
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Hamiltonian odd cycle - exception

one o — _ 2n—4
Exception: n =5 (mod 6), L = (™%, n, 24

Example: n=17, L =(7,17,10)

o O o O ®  J ® O o O
2 4 5

0 3
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Further research

@ Cycle decomposition of C(n, {1, k}), where k ¢ {2,3}

@ 2-factorization of circulant graphs
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Thank you for your attention!
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