

Akademia Górniczo-Hutnicza
im. Stanisława Staszica w Krakowie

AGH University of Science
and Technology

AGH

Further results on decomposition of low degree circulant graphs into cycles

Juliana Palmen

Joint work with Mariusz Meszka

05.06.2025

Presentation plan

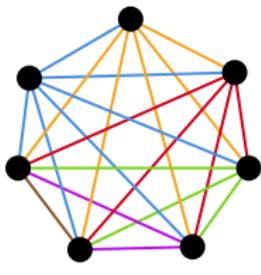
- ① Key definitions: decomposition, circulant, ...
- ② Known results on decomposition of some circulants
- ③ Main theorem followed by justification in selected cases

Definition

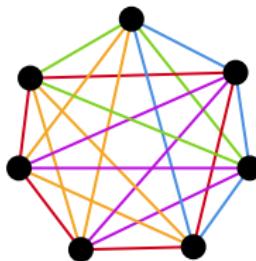
A *decomposition* of a graph G is a collection $\{H_1, H_2, \dots, H_t\}$ of edge-disjoint subgraphs of G such that each edge of G belongs to exactly one H_i .

Definition

A *decomposition* of a graph G is a collection $\{H_1, H_2, \dots, H_t\}$ of edge-disjoint subgraphs of G such that each edge of G belongs to exactly one H_i .



$\{S_1, \dots, S_6\}$



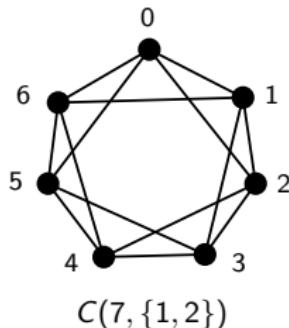
$\{C_3, C_4, C_4, C_5, C_5\}$

Figure: Decomposition of K_7 into stars and into cycles

Definition

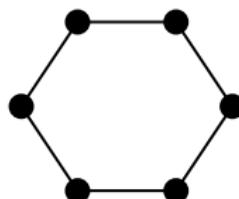
For a positive integer n and a set $S \subseteq \{1, \dots, \lfloor(\frac{n}{2})\rfloor\}$ a *circulant* is a graph $G = (V, E)$ such that $V = \mathbb{Z}_n$ and $E = \{\{u, v\} : \delta(u, v) \in S\}$ where $\delta(u, v) = \min\{\pm|u - v| \pmod n\}$.

We will denote it by $C(n, S)$.

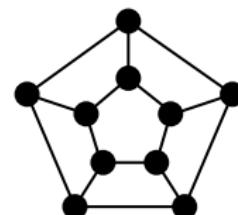


x	0	1	2	3	4	5	6
0	0	1	1	0	0	1	1
1	1	0	1	1	0	0	1
2	1	1	0	1	1	0	0
3	0	1	1	0	1	1	0
4	0	0	1	1	0	1	1
5	1	0	0	1	1	0	1
6	1	1	0	0	1	1	0

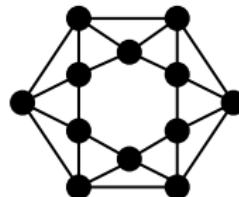
Some well-known circulant graphs



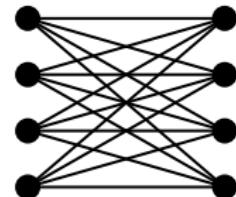
a) $S = \{1\}$



b) $S = \{2, 5\}$



c) $S = \{1, 2\}$

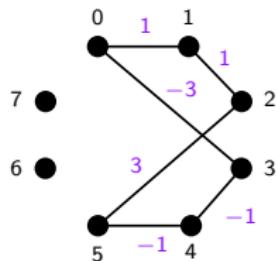


d) $S = \{1, 3\}$

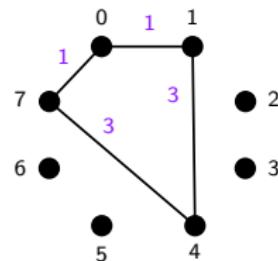
Figure: Examples of circulants with their connecting sets

Definition

For a cycle $C_m = (v_1, \dots, v_m)$ in a circulant $C(n, \{d_1, \dots, d_k\})$ we define the *edge-length sequence* as a sequence of integers (e_1, \dots, e_m) from the set $\{-d_k, \dots, -d_1, d_1, \dots, d_k\}$ where $e_i \equiv v_{i+1} - v_i \pmod{n}$ for $i \in \{1, \dots, m-1\}$ and $e_m \equiv v_1 - v_m \pmod{n}$.



$$C_6 = (0, 1, 2, 5, 4, 3) \\ (1, 1, 3, -1, -1, -3)$$



$$C_4 = (0, 1, 4, 7) \\ (1, 3, 3, 1)$$

Definition

For a cycle $C_m = (v_1, \dots, v_m)$ in a circulant $C(n, \{d_1, \dots, d_k\})$ we define the *edge-length sequence* as a sequence of integers (e_1, \dots, e_m) from the set $\{-d_k, \dots, -d_1, d_1, \dots, d_k\}$ where $e_i \equiv v_{i+1} - v_i \pmod{n}$ for $i \in \{1, \dots, m-1\}$ and $e_m \equiv v_1 - v_m \pmod{n}$.



Definition

We call a cycle C_m a *reversing cycle* if for its corresponding edge-length sequence (e_1, \dots, e_m) the following holds $e_1 + \dots + e_m = 0$ in \mathbb{Z} . Otherwise, we call C_m a *winding cycle*.

Alspach's conjecture (1981)

Conjecture

Let n be an odd integer, and let $L = (l_1, \dots, l_t)$ be a list of integers. There exists a decomposition $\{C_{l_1}, \dots, C_{l_t}\}$ of K_n if and only if

- $3 \leq l_i \leq n$ for each $i \in \{1, \dots, t\}$ and
- $l_1 + \dots + l_t = n(n-1)/2$

Alspach's conjecture (1981)

Conjecture

Let n be an odd integer, and let $L = (l_1, \dots, l_t)$ be a list of integers. There exists a decomposition $\{C_{l_1}, \dots, C_{l_t}\}$ of K_n if and only if

- $3 \leq l_i \leq n$ for each $i \in \{1, \dots, t\}$ and
- $l_1 + \dots + l_t = n(n-1)/2$

Proven by Bryant, Horsley, and Pettersson in 2014.

Alspach's conjecture (1981)

Conjecture

Let n be an odd integer, and let $L = (l_1, \dots, l_t)$ be a list of integers. There exists a decomposition $\{C_{l_1}, \dots, C_{l_t}\}$ of K_n if and only if

- $3 \leq l_i \leq n$ for each $i \in \{1, \dots, t\}$ and
- $l_1 + \dots + l_t = n(n-1)/2$

Proven by Bryant, Horsley, and Pettersson in 2014.

They also solved the case where the order of the complete graph is even.

Bryant and Martin's results

Theorem (Bryant, Martin) 2009

Let $n \geq 7$ and let $L = (l_1, \dots, l_t)$ be a list of integers with $3 \leq l_i \leq 5$ for $i \in \{1, \dots, t\}$ and $l_1 + \dots + l_t = 3n$. Then there exists a decomposition $\{C_1, \dots, C_t\}$ of $C(n, \{1, 2, 3\})$.

Bryant and Martin's results

Theorem (Bryant, Martin) 2009

Let $n \geq 7$ and let $L = (l_1, \dots, l_t)$ be a list of integers with $3 \leq l_i \leq 5$ for $i \in \{1, \dots, t\}$ and $l_1 + \dots + l_t = 3n$. Then there exists a decomposition $\{C_1, \dots, C_t\}$ of $C(n, \{1, 2, 3\})$.

Theorem (Bryant, Martin) 2009

Let $n \geq 5$ and let l_1, \dots, l_t be a sequence of integers with $3 \leq l_i \leq n$ for $i \in \{1, \dots, t\}$. There exists a decomposition $\{C_1, \dots, C_t\}$ of $C(n, \{1, 2\})$ if and only if both of the following conditions hold

- ① $l_1 + \dots + l_t = 2n$ and
- ② either
 - $t = 3$ and $\frac{n}{2} \leq l_1, l_2, l_3 \leq n$ or
 - there exists an integer $k \in \{1, \dots, t\}$ such that $l_k \geq n - t + 1$.

Cycle decomposition of $C(n, \{1, 3\})$

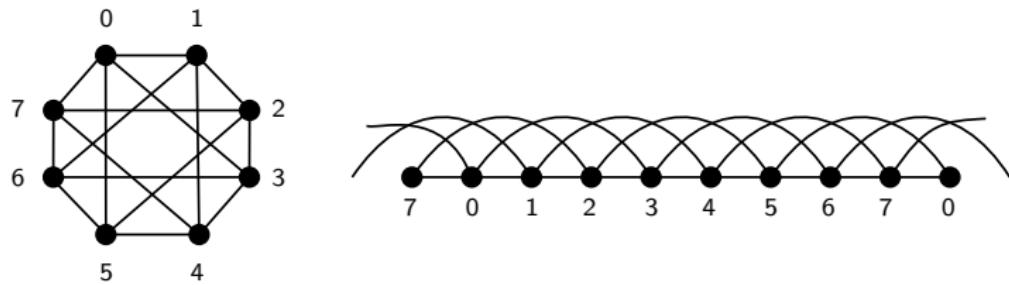


Figure: Equivalent representations of $C(8, \{1, 3\})$

Cycle decomposition of $C(n, \{1, 3\})$

Definition

A list $L = (l_1, \dots, l_t)$ of cycle lengths is *admissible* if the following conditions are satisfied:

- ① if l_i is even then $4 \leq l_i \leq n$ and otherwise $\lceil \frac{n}{3} \rceil \leq l_i \leq n$
- ② $l_1 + \dots + l_t = 2n$

Definition

An admissible list $L = (l_1, \dots, l_t)$ is *ordered* when

- if l_i is odd and l_j is even then $i < j$
- if l_i and l_j are of the same parity and $l_i < l_j$ then $i < j$

For $n = 17$ an ordered admissible list could be $L = (7, 9, 4, 6, 8)$.

Cycle decomposition of $C(n, \{1, 3\})$ - first observations

Lemma

Reversing cycles in $C(n, \{1, 3\})$ are of even length.

Conclusion: Odd cycles need to be of type winding.

Cycle decomposition of $C(n, \{1, 3\})$ - first observations

Lemma

Reversing cycles in $C(n, \{1, 3\})$ are of even length.

Conclusion: Odd cycles need to be of type winding.

Lemma

If there exists a decomposition of $C(n, \{1, 3\})$ into cycles of lengths from the list $L = (l_1, \dots, l_t)$, then the number of odd lengths in L must be:

- even, since $l_1 + \dots + l_t = 2n$
- at most 4

Main result

Theorem (Meszka, P.)

Let $n \geq 7$ be an integer and $L = (l_1, \dots, l_t)$ be an ordered admissible list. Let t' denote the number of odd elements in L . There exists a decomposition $\{C_1, \dots, C_t\}$ of the circulant $C(n, \{1, 3\})$ if and only if one of the following conditions is satisfied:

- ① $t' = 0$ and $L \neq (4, \dots, 4, n)$ when $n \equiv 0 \pmod{8}$ and $t = \frac{n}{4} + 1$, or
- ② $t' = 2$, n is odd, $t \geq n - \frac{l_2 + 3l_1}{2} + 2$ and moreover $L \neq (\frac{n+4}{3}, n, \frac{2n-4}{3})$ when $n \equiv 5 \pmod{6}$ and $t = 3$, or
- ③ $t' = 4$ and n is odd.

DECOMPOSITION INTO ODD CYCLES

The case of 4 odd cycles

Let's assume $n \equiv 3 \pmod{6}$ and $L = (l_1, l_2, l_3, l_4)$ - ordered, admissible.

Let $l_i = \frac{n}{3} + m_i$, where m_i is an even integer for $i \in \{1, 2, 3\}$.
Then $l_4 = n - (m_1 + m_2 + m_3)$.

The case of 4 odd cycles

Let's assume $n \equiv 3 \pmod{6}$ and $L = (l_1, l_2, l_3, l_4)$ - ordered, admissible.

Let $l_i = \frac{n}{3} + m_i$, where m_i is an even integer for $i \in \{1, 2, 3\}$.
Then $l_4 = n - (m_1 + m_2 + m_3)$.

Example:

$$n = 15, \quad L = (5, 7, 9, 9)$$

$$l_1 = \frac{15}{3} + 0, \quad l_2 = \frac{15}{3} + 2, \quad l_3 = \frac{15}{3} + 4, \quad l_4 = 9$$

The case of 4 odd cycles

Let's assume $n \equiv 3 \pmod{6}$ and $L = (l_1, l_2, l_3, l_4)$ - ordered, admissible.

Let $l_i = \frac{n}{3} + m_i$, where m_i is an even integer for $i \in \{1, 2, 3\}$.
Then $l_4 = n - (m_1 + m_2 + m_3)$.

Example:

$$n = 15, \quad L = (5, 7, 9, 9)$$

$$l_1 = \frac{15}{3} + 0, \quad l_2 = \frac{15}{3} + 2, \quad l_3 = \frac{15}{3} + 4, \quad l_4 = 9$$

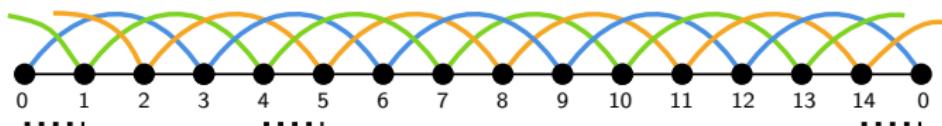
Observation: $m_1 + m_2 + m_3 \leq \frac{n-1}{2}$.

Otherwise, $l_4 \leq \frac{n-1}{2}$ and $l_1 + l_2 + l_3 + l_4 < 2n$.

From the base case to all possible lengths

Step 1: Constructing the base case, $L_b = \left(\frac{n}{3}, \frac{n}{3}, \frac{n}{3}, n\right)$.

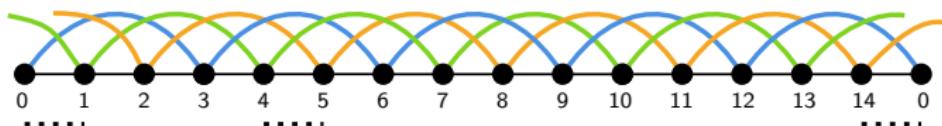
Example: $n = 15$ and $L = (5, 7, 9, 9)$



From the base case to all possible lengths

Step 1: Constructing the base case, $L_b = (\frac{n}{3}, \frac{n}{3}, \frac{n}{3}, n)$.

Example: $n = 15$ and $L = (5, 7, 9, 9)$

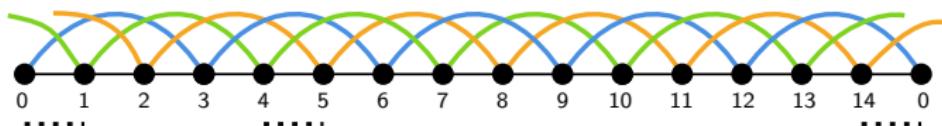


Step 2: Interchanging colors between the Hamiltonian path and shorter paths on proper segments.

From the base case to all possible lengths

Step 1: Constructing the base case, $L_b = \left(\frac{n}{3}, \frac{n}{3}, \frac{n}{3}, n\right)$.

Example: $n = 15$ and $L = (5, 7, 9, 9)$



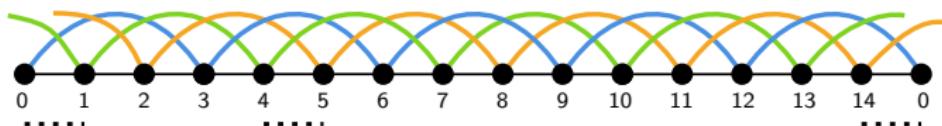
Step 2: Interchanging colors between the Hamiltonian path and shorter paths on proper segments.

Note: This strategy is possible if $\frac{3}{2}(m_1 + m_2 + m_3) + 3 \leq n$.

From the base case to all possible lengths

Step 1: Constructing the base case, $L_b = \left(\frac{n}{3}, \frac{n}{3}, \frac{n}{3}, n\right)$.

Example: $n = 15$ and $L = (5, 7, 9, 9)$



Step 2: Interchanging colors between the Hamiltonian path and shorter paths on proper segments.

Note: This strategy is possible if $\frac{3}{2}(m_1 + m_2 + m_3) + 3 \leq n$.
And this holds by the previous observation $(m_1 + m_2 + m_3 \leq \frac{n-1}{2})$.

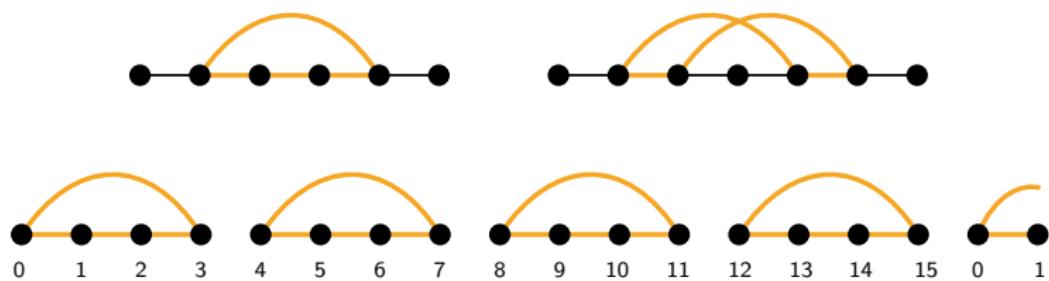
DECOMPOSITION INTO EVEN CYCLES

Exception

There is no decomposition when $n \equiv 0 \pmod{8}$ and $L = (4, \dots, 4, n)$.

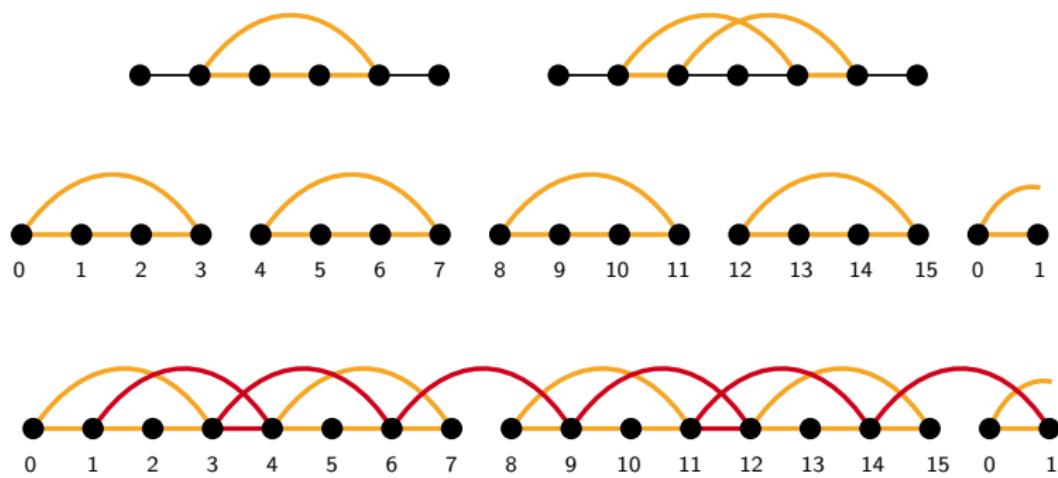
Exception

There is no decomposition when $n \equiv 0 \pmod{8}$ and $L = (4, \dots, 4, n)$.



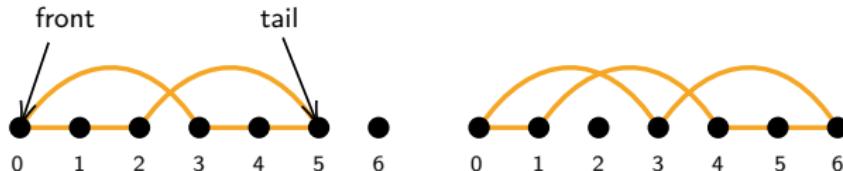
Exception

There is no decomposition when $n \equiv 0 \pmod{8}$ and $L = (4, \dots, 4, n)$.



Assumptions of the algorithm

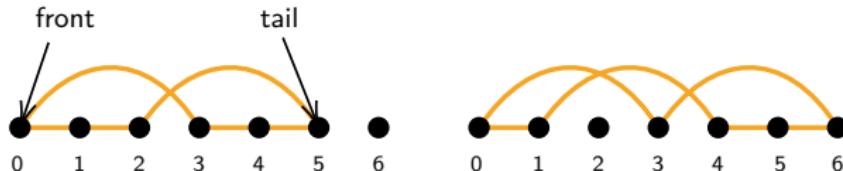
- ① Cycles are of type reversing.
- ② The front of each cycle has an even index.



- ③ Each cycle may omit at most one vertex in between.

Assumptions of the algorithm

- ① Cycles are of type reversing.
- ② The front of each cycle has an even index.



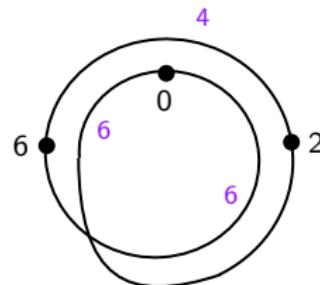
- ③ Each cycle may omit at most one vertex in between.

Observation

A vertex can be a front vertex for only one cycle.

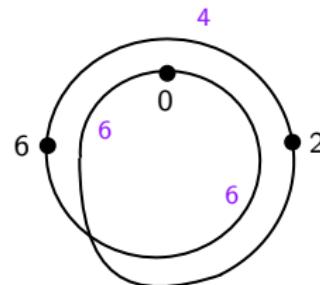
Finding positions for fronts of cycles - method

Example: $n = 8$ and $L = (4, 6, 6)$



Finding positions for fronts of cycles - method

Example: $n = 8$ and $L = (4, 6, 6)$



Problem solved for the following base cases:

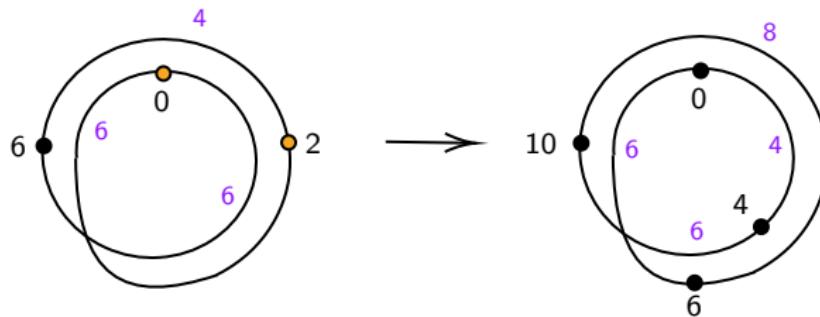
- uniform list $L = (4, 4, 4, 4, 4)$
- two types of lengths differing by 2 $L = (8, 8, 8, 10, 10)$
- three different lengths and $|L| = 3$ $L = (4, 8, 10)$

... for any other list we use recursion.

Finding positions for fronts of cycles - example

$$n = 12 \quad L = (4, 6, 6, 8)$$

$$n' = 8 \quad L' = (4, 6, 6)$$



Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

front index	0	4	10	6
cycle length	4	6	8	6

Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

front index	0	4	10	6
cycle length	4	6	8	6

Decomposition - example

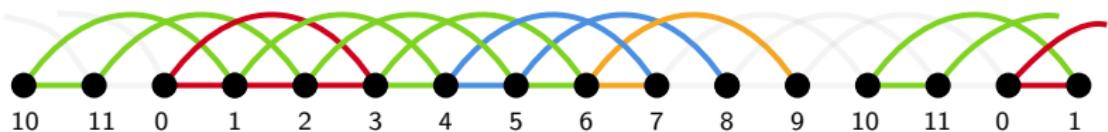
Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

front index	0	4	10	6
cycle length	4	6	8	6

Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

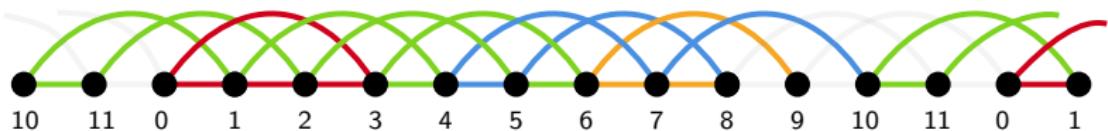
front index	0	4	10	6
cycle length	4	6	8	6



Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

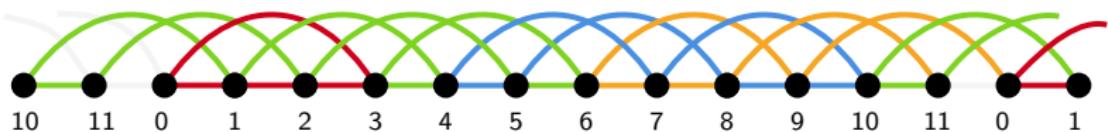
front index	0	4	10	6
cycle length	4	6	8	6



Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

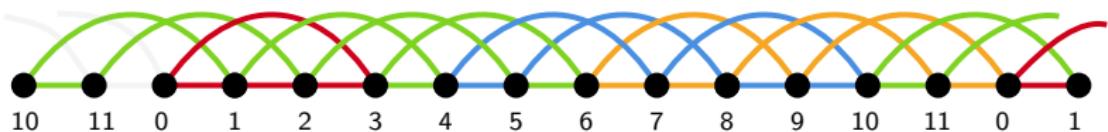
front index	0	4	10	6
cycle length	4	6	8	6



Decomposition - example

Decomposition of $C(12, \{1, 3\})$ into $\{C_4, C_6, C_6, C_8\}$.

front index	0	4	10	6
cycle length	4	6	8	6



MIXED DECOMPOSITION

$$t' = 2, \text{ } n \text{ is odd, } t \geq n - \frac{l_2 + 3l_1}{2} + 2$$

and

$$L \neq \left(\frac{n+4}{3}, n, \frac{2n-4}{3} \right) \text{ when } n \equiv 5 \pmod{6} \text{ and } t = 3$$

Observation

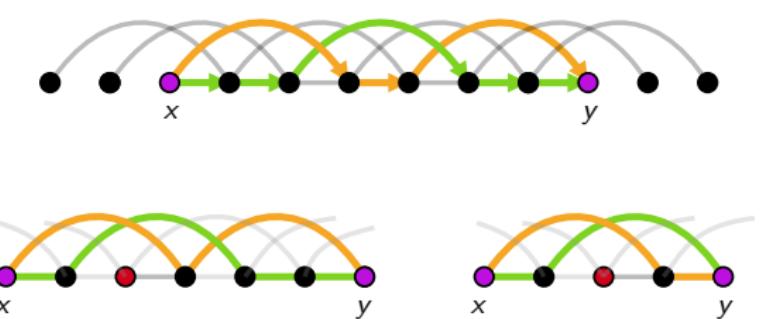
A pair of even cycles may have at most one vertex in common.

We distinguish the following subsets of the set of vertices:

- $P = P' \cup P''$ - vertices that appear in both odd cycles,
 $v \in P'$ iff $(v - 1)$ and $(v + 1)$ are in the same even cycle
- R - vertices that are both a front and a tail of an even cycle
- S - vertices that are only a front of an even cycle

We denote the sizes of these sets by lowercase letters, f.ex. $|P'| = p'$.

A note on length measurement



Type of segment	$P' - P'$	$P' - S$	$S - P'$	$S - S$
Length differences	0 / 2	3	1	0 / 2

Necessary condition for $L = (l_1, l_2, \dots, l_t)$

① $p' + s \geq \frac{l_2 - l_1}{2}$

② By the handshaking lemma:

$$2(l_1 + l_2) = 2(n - r - p) + 4p \implies r = n + p - (l_1 + l_2)$$

$$\begin{aligned} t - 2 &= r + s = n + p - (l_1 + l_2) + s \\ &\geq n - (l_1 + l_2) + p' + s \\ &\geq n - (l_1 + l_2) + \frac{l_2 - l_1}{2} \\ &= n - \frac{n_2 + 3n_1}{2} \end{aligned}$$

Necessary condition for $L = (l_1, l_2, \dots, l_t)$

① $p' + s \geq \frac{l_2 - l_1}{2}$

② By the handshaking lemma:

$$2(l_1 + l_2) = 2(n - r - p) + 4p \implies r = n + p - (l_1 + l_2)$$

$$\begin{aligned} t - 2 &= r + s = n + p - (l_1 + l_2) + s \\ &\geq n - (l_1 + l_2) + p' + s \\ &\geq n - (l_1 + l_2) + \frac{l_2 - l_1}{2} \\ &= n - \frac{n_2 + 3n_1}{2} \\ \implies t &\geq n - \frac{n_2 + 3n_1}{2} + 2 \end{aligned}$$

Remark

This necessary condition is also sufficient when $l_2 < n$.

Hamiltonian odd cycle - exception

Exception: $n \equiv 5 \pmod{6}$, $L = \left(\frac{n+4}{3}, n, \frac{2n-4}{3}\right)$

Example: $n = 17$, $L = (7, 17, 10)$



Further research

- ➊ Cycle decomposition of $C(n, \{1, k\})$, where $k \notin \{2, 3\}$
- ➋ 2-factorization of circulant graphs

Thank you for your attention!