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Presentation plan

1 Key definitions: decomposition, circulant, . . .

2 Known results on decomposition of some circulants

3 Main theorem followed by justification in selected cases
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Definition
A decomposition of a graph G is a collection {H1, H2, . . . , Ht} of
edge-disjoint subgraphs of G such that each edge of G belongs to
exactly one Hi .

{S1, . . . , S6} {C3, C4, C4, C5, C5}

Figure: Decomposition of K7 into stars and into cycles
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Definition
For a positive integer n and a set S ⊆ {1, . . . , ⌊( n

2 ⌋} a circulant is a
graph G = (V , E ) such that V = Zn and E = {{u, v} : δ(u, v) ∈ S}
where δ(u, v) = min{±|u − v | (mod n)}.
We will denote it by C(n, S).
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5

6

C(7, {1, 2})

x 0 1 2 3 4 5 6
0 0 1 1 0 0 1 1
1 1 0 1 1 0 0 1
2 1 1 0 1 1 0 0
3 0 1 1 0 1 1 0
4 0 0 1 1 0 1 1
5 1 0 0 1 1 0 1
6 1 1 0 0 1 1 0
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Some well-known circulant graphs

a) S = {1} b) S = {2, 5}

c) S = {1, 2} d) S = {1, 3}

Figure: Examples of circulants with their connecting sets
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Definition
For a cycle Cm = (v1, . . . , vm) in a circulant C(n, {d1, . . . , dk}) we define
the edge-length sequence as a sequence of integers (e1, . . . , em) from the
set {−dk , . . . , −d1, d1, . . . , dk} where ei ≡ vi+1 − vi (mod n) for
i ∈ {1, . . . , m − 1} and em ≡ v1 − vm (mod n).
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C6 = (0, 1, 2, 5, 4, 3) C4 = (0, 1, 4, 7)
(1, 1, 3, −1, −1, −3) (1, 3, 3, 1)
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Definition
We call a cycle Cm a reversing cycle if for its corresponding edge-length
sequence (e1, . . . , em) the following holds e1 + . . . + em = 0 in Z.
Otherwise, we call Cm a winding cycle.
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Alspach’s conjecture (1981)

Conjecture
Let n be an odd integer, and let L = (l1, . . . , lt) be a list of integers.
There exists a decomposition {Cl1 , . . . , Clt } of Kn if and only if

3 ≤ li ≤ n for each i ∈ {1, . . . , t} and
l1 + . . . + lt = n(n − 1)/2

Proven by Bryant, Horsley, and Pettersson in 2014.

They also solved the case where the order of the complete graph is even.
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Bryant and Martin’s results

Theorem (Bryant, Martin) 2009
Let n ≥ 7 and let L = (l1, . . . , lt) be a list of integers with 3 ≤ li ≤ 5 for
i ∈ {1, . . . , t} and l1 + . . . + lt = 3n. Then there exists a decomposition
{C1, . . . , Ct} of C(n, {1, 2, 3}).

Theorem (Bryant, Martin) 2009
Let n ≥ 5 and let l1, . . . , lt be a sequence of integers with 3 ≤ li ≤ n for
i ∈ {1, . . . , t}. There exists a decomposition {C1, . . . , Ct} of
C(n, {1, 2}) if and only if both of the following conditions hold

1 l1 + . . . + lt = 2n and
2 either

t = 3 and n
2 ≤ l1, l2, l3 ≤ n or

there exists an integer k ∈ {1, . . . , t} such that lk ≥ n − t + 1.
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Cycle decomposition of C(n, {1, 3})
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0 1 2 3 4 5 6 7 07

Figure: Equivalent representations of C(8, {1, 3})
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Cycle decomposition of C(n, {1, 3})

Definition
A list L = (l1, . . . , lt) of cycle lengths is admissible if the following
conditions are satisfied:

1 if li is even then 4 ≤ li ≤ n and otherwise ⌈ n
3 ⌉ ≤ li ≤ n

2 l1 + . . . + lt = 2n

Definition
An admissible list L = (l1, . . . , lt) is ordered when

if li is odd and lj is even then i < j
if li and lj are of the same parity and li < lj then i < j

For n = 17 an ordered admissible list could be L = (7, 9, 4, 6, 8).
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Cycle decomposition of C(n, {1, 3}) - first observations

Lemma
Reversing cycles in C(n, {1, 3}) are of even length.

Conclusion: Odd cycles need to be of type winding.

Lemma
If there exists a decomposition of C(n, {1, 3}) into cycles of lengths from
the list L = (l1, . . . , lt), then the number of odd lengths in L must be:

even, since l1 + . . . + lt = 2n
at most 4

v
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Main result

Theorem (Meszka, P.)
Let n ≥ 7 be an integer and L = (l1, . . . , lt) be an ordered admissible
list. Let t ′ denote the number of odd elements in L. There exists a
decomposition {C1, . . . , Ct} of the circulant C(n, {1, 3}) if and only if
one of the following conditions is satisfied:

1 t ′ = 0 and L ̸= (4, . . . , 4, n) when n ≡ 0 (mod 8) and t = n
4 + 1, or

2 t ′ = 2, n is odd, t ≥ n − l2+3l1
2 + 2 and moreover L ̸= ( n+4

3 , n, 2n−4
3 )

when n ≡ 5 (mod 6) and t = 3, or
3 t ′ = 4 and n is odd.
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DECOMPOSITION INTO ODD CYCLES
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The case of 4 odd cycles

Let’s assume n ≡ 3 (mod 6) and L = (l1, l2, l3, l4) - ordered, admissible.

Let li = n
3 + mi , where mi is an even integer for i ∈ {1, 2, 3}.

Then l4 = n − (m1 + m2 + m3).

Example:

n = 15, L = (5, 7, 9, 9)

l1 = 15
3 + 0, l2 = 15

3 + 2, l3 = 15
3 + 4, l4 = 9

Observation: m1 + m2 + m3 ≤ n−1
2 .

Otherwise, l4 ≤ n−1
2 and l1 + l2 + l3 + l4 < 2n.
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From the base case to all possible lengths

Step 1: Constructing the base case, Lb = ( n
3 , n

3 , n
3 , n).

Example: n = 15 and L = (5, 7, 9, 9)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

Step 2: Interchanging colors between the Hamiltonian path and shorter
paths on proper segments.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

Note: This strategy is possible if 3
2 (m1 + m2 + m3) + 3 ≤ n.

And this holds by the previous observation (m1 + m2 + m3 ≤ n−1
2 ).
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DECOMPOSITION INTO EVEN CYCLES
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Exception

There is no decomposition when n ≡ 0 (mod 8) and L = (4, . . . , 4, n).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1
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Assumptions of the algorithm

1 Cycles are of type reversing.
2 The front of each cycle has an even index.

0 1 2 3 4 5 6 0 1 2 3 4 5 6

front tail

3 Each cycle may omit at most one vertex in between.

Observation
A vertex can be a front vertex for only one cycle.
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Finding positions for fronts of cycles - method

Example: n = 8 and L = (4, 6, 6)

0
6 2

6

6

4

Problem solved for the following base cases:
uniform list L = (4, 4, 4, 4, 4)
two types of lengths differing by 2 L = (8, 8, 8, 10, 10)
three different lengths and |L| = 3 L = (4, 8, 10)

. . . for any other list we use recursion.
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Finding positions for fronts of cycles - example

n = 12 L = (4, 6, 6, 8)

n′ = 8 L′ = (4, 6, 6)

0
6 2

0
10

6
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4

4

6

8

6
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Decomposition - example

Decomposition of C(12, {1, 3}) into {C4, C6, C6, C8}.

front index 0 4 10 6
cycle length 4 6 8 6

0 1 2 3 4 5 6 7 8 9 10 11 0 110 11
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MIXED DECOMPOSITION

t ′ = 2, n is odd, t ≥ n − l2+3l1
2 + 2

and

L ̸= ( n+4
3 , n, 2n−4

3 ) when n ≡ 5 (mod 6) and t = 3
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Observation
A pair of even cycles may have at most one vertex in common.

P ′ R S P ′′

We distinguish the following subsets of the set of vertices:
P = P ′ ∪ P ′′ - vertices that appear in both odd cycles,
v ∈ P ′ iif (v − 1) and (v + 1) are in the same even cycle
R - vertices that are both a front and a tail of an even cycle
S - verices that are only a front of an even cycle

We denote the sizes of these sets by lowercase letters, f.ex. |P ′| = p′.
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A note on length measurement

x y

x xy y

Type of segment P ′ − P ′ P ′ − S S − P ′ S − S
Length differences 0 / 2 3 1 0 / 2
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Necessary condition for L = (l1, l2, . . . , lt)
1 p′ + s ≥ l2−l1

2
2 By the handshaking lemma:

2(l1 + l2) = 2(n − r − p) + 4p =⇒ r = n + p − (l1 + l2)

t − 2 = r + s = n + p − (l1 + l2) + s
≥ n − (l1 + l2) + p′ + s

≥ n − (l1 + l2) + l2 − l1
2

= n − n2 + 3n1
2

=⇒ t ≥ n − n2+3n1
2 + 2

Remark
This necessary condition is also sufficient when l2 < n.
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Hamiltonian odd cycle - exception

Exception: n ≡ 5 (mod 6), L = ( n+4
3 , n, 2n−4

3 )

Example: n = 17, L = (7, 17, 10)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0
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Further research

1 Cycle decomposition of C(n, {1, k}), where k /∈ {2, 3}
2 2-factorization of circulant graphs
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Thank you for your attention!
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