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We integrate classical Galois theory with machine learning to classify Galois groups of irreducible degree-7
polynomials.

Building on Resolvent polynomials, we identify Galois groups through factorization patterns.
Explicitly construct Symbolic formulas for the Resolvent polynomials.

We build a database of degree-7 polynomials from projective space, filtered by height, and tested for
irreducibility to identify patterns.

We focus on degree 7 as a concrete example, aiming to generalize to degree n.



Galois Theory

Let f(x) be a degree n = deg f irreducible polynomial in Q[x]
F(X) = X"+ an_1x" T+ + a

in a splitting field E;.

Then, E;/Q is Galois because it is a normal extension and separable. The group Gal(E¢/Q) is called the Galois
group of f(x) over Q and denoted by Galg(f).

The elements of Galg(f) permute roots o, ..., ap of f(x). Thus, the Galois group of the polynomial has an
isomorphic copy embedded in Sy, determined up to conjugacy by f.

Using GAP, we can compute all transitive subgroups of Sy, for a given n.
For our case degree 7, these are seven transitive subgroups of S7:

C7,D7,C7 x C3,C7 x G, PSL(3,2), A7, S7



Lattice of Transitive Subgroups of S;
Some Inclusions:
C7 cD; C C7 X C3

C; C Gy % C3 C PSL(3,2)
C Az, C7><IC3CC7><105

Node Labels:
> 1: G
Dy
1 C7 x C3
1 C7 x Cg
: PSL(3,2)
A7
. S7
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Lattice of Transitive Subgroups of S .



Resolvent Polynomials

Consider the polynomial

fx) = x"+ap_1x"" T+ 4+ a €Qx] (1)
where its roots a4, . . ., ap are considered variables. Then S, acts on Q[ay, . . ., an] by permuting the variables.
Sn X Qlat,...,an] = Qaq, ..., an] )
(U’ F(CM1 s ,Cln)) - F(G(a1 )7 sy U(Cl{n) = F7
For any G C S a polynomial F(ay, ..., an) is called symmetric under G if F = F° for all o € G. Let H denote

the stabilizer of Fin G
H={ceG|F=F°}.



Resolvent Polynomials

The resolvent polynomial of f(x) with respect to F , denoted by Rg(f, F), is defined as

Ra(f,F)= [] (x—F(a1,...,an).

oc€G/H

The product is over coset representatives of G/H, and the degree of the resolvent is k = |G|/|H|.
The resolvent’s factorization over Q reveals information about the Galois group Gal(f), as its irreducible factors
correspond to the orbits of Gal(f) acting on G/H.



Resolvent Polynomials: Symbolic Computation

Let H be the stabilizer of F. Denote by k = |G|/|H| the index of Hin G. The roots 0, = F(ag(1),- - Xs(n)) Ar€
functions of the roots «;. Use Vieta’s formulas for the elementary symmetric sums of f(x):

S{=ay+---+oan=—ap1,

So = E Qo = an—_p,
i<j

Define the power sums

pm= > 07=> [F(asq) - dom)]"

c€G/H o

Expand F(cy (1), - - - aq(m)™, SUM Over coset representatives, and express the result in terms of s, ..., sp
using symmetric polynomial identities.



Resolvent Polynomials: Symbolic Computation

Apply Newton’s Identities: Relate pm to e; via Newton’s identities:
e =p1,
1
e2 = (e1p1 — p2),

]
& = 5 (€2p1 — €1p2 +p3),

-1
6 = } (Z(—1)Hejipi+ (—1)j1pj> .

i=1

Solve recursively to obtain ey, ..., .
Construct the Resolvent: Form the polynomial using the computed e;.
With eq, eo, . .., e computed, the resolvent is
RG(f, F) = Xk — e1xk_1 + egxk_z — 4 (—1)kek.

This polynomial has degree k, and its coefficients are fully symbolic in the coefficients of f(x).



The Quadratic Resolvent

The quadratic resolvent, which checks if the Galois group of our polynomial lies in the alternating group Az

Definition
Let
>» G=&
> H=A;

> F =+VA, where A = [Ticj(ei— oa,-)2 is the discriminant.

The quadratic resolvent is:
Ri(x) = Rs,(f,F1)= ] (x—F7).
oeSy7 /A7

Since |S57|/|A7| = % = 2, this is a quadratic polynomial. The discriminant A is symmetric, but v/A changes
under permutations:

> Ifo € A7 (even), F? = VA

> Ifo ¢ A7 (0dd), Ff = —V/A.
Thus:

Ri(x) = (x — VA)(x — (—VA)) = x2 — A.



The 30-ic Resolvent

The 30-ic resolvent, which tests if the Galois group is contained in PSL(3, 2), a group of order 168.

Definition
Let
> G=5;

> H=PSL(3,2)

> Fo = agaqoy + agapas + asagag + agauar + azasaq + agagas + agaras, invariant under PSL(3, 2).
The 30-ic resolvent is:
Ra(x) = R, (f, F2) = I[I &=F).
o€S;/PSL(3,2)

ke _IS7l 5040 _
Degree:k= m = I = 30.

Factorization
The factorization of Ry(x) depends on Gal(f):

> |f Gal(f) C PSL(3,2), R2(x) splits into factors of degrees 1, 7, 8, and 14, reflecting orbits of PSL(3,2) on
S7/PSL(3, 2).

> If Gal(f) = S7, Ro(x) is irreducible, as S; acts transitively on the 30 cosets.



The 120-ic Resolvent

The 120-ic resolvent, a degree 120 polynomial, tests if the Galois group lies in C; x Cg.

Definition
Let
> G=5
> H=C7; % Cg

> F3 = ogaq(as + a7) + agas(as + ag) + asag(az + a7) + asas(az + ag) + asaq (a7 + ag) + ajaz(og +
as) + azaz(as + ag),

The resolvent is:
Rs(x) = Rs,(,Fs)=  [] (x—F5).
o€57/(C7%Cp)

1S = 5040 _ 120

Degree: k=|c7>406| =5

Factorization
Factorization of Rz(x):

> |If Gal(f) C C7 x Cg, Rz(x) splits into factors of degrees 1, 7, 14, 21, 21, and 42.
> |If Gal(f) = S7, Rs(x) is irreducible



Resolvent Factorization Patterns

The factorization of Ry, Rz, Rs over Q determines Gal(f):

G [=> R, R
S 2 30 120
A; 1,1 15,15 120

PSL(3,2) | 1,1 | 1,7,8,14 8,56, 56

CrxCs | 2 2,14,14 1,7,14,21,21,42

CrxCy | 1,1 1,7,7,7,7 1,7,7,7,7,21,21,21, 21
Dy 2 2,14,14 1,7,7,7,7,7,7,14,14,14,14, 14
C; 1,1 11,72,72,72,7 | 1,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7

Table: Factorization degrees of resolvents for each transitive subgroup of S7.



Resolvent Polynomials of Septics

Let f(x) be an irreducile septic given by
f(x) = x7 + agx® + asx® + agx* + asx® + apx® + a1 x + ay,
with roots (s, ..., a7). Denote by G = S7 and
F=ai+ax+as

Determine Resg, (f, F)(x).
The stabilizeris H = S3 x Sy, where Sz permutes {1, 2,3} and S; permutes {4,5,6,7}. Thus,
|[H =341 =6-24 = 144, and

k:%:%:(;).

Hence,

R(f,F)= [ &x-F°)

1<i<j<k<7



Symbolic computation Resolvent Polynomials of Septics
The symmetric sums:

§S1=—a8, S2=a5 S3=—4a, S4=4a3, S5=—dad, S=4a,
Compute power sums
pm= > (aj+aj+ax)"
i<j<k
Hence, we have:
P = 1551 = —15ag,
p2 = 15(s? — 2s5) 4 10sp = 1582 — 30a5 + 10as = 1585 — 20as,
ps = 15(s3 — 35185 + 353) + 45(s152 — 383) + S3
= —1583 + 45agas — 45a, — 45agas + 13584 — a4 = —158% + 89ay,

S7 = —4Qp.

P4 = 15(s — 4825, + 282 + 45153 — 454) + 60(525 — 255 — 5153 + S4) + 1555 + 454

= 153} — 80a2as + 2042 + 56asa, — 56as,

s = 15(8° — 5835, + 55253 + 55152 — 55553 — 55154 + 555) + 75(535, — 25155 — 5253
1 1 1 5 1 5 — S

+ 82 4 5154 — S5) + 105155 4 45(s283 — 25184 + S283) + 585
= 1582 + 12583as — 75a2a4 — 50252 + 178asa3 — 56ap,

pas = —35a3 4 175a8(—apay + asax — asas) + - - -



Symbolic computation Resolvent Polynomials of Septics
Using Newton’s identities we have

e = —15a6,
€ = 10582 4 10as,

89
€3 == —45583 4 150agas + 5
80 596
e4 = 1365a3 — 980a2as — ?ag -3 %+ S a,
2972 356
es = —4095a3 + 3675a3as + 200a2a, — 9003522 — 56asa4 — 5%+ -,

e = 1228528 — 141754¢as — 910a3ay + 57758322 + 672asasa4 + 80a2 + 1660a2as

— 672asa3 — 252aga» + @&H y

€35 = —843124185927587655a3° -+ 2581639930256873850a3° a5 + 5237060773262740053432 a4
— 90057071717680186500a3' a2 — 3057764699596385747 a3 asa, — 27470717176801860000042° 23
— 12002457790809461370a3" a3 + 4011409893325719832a2° as as + 1235966677377682877a28a2ay
+ 164795556983691051a2 aay + 129853223595180453623a, — 2963846288730429167 28 asap
— 32859111396738207643 a2a; — 328591113967382076a3° a3 a, + 49288667095107311442°
— 98577334190214622842" asa; + 328591113967382076a28 2y — 16429555698369103882 asay — &3.



Resolvent Polynomials of Septics

For irreducible f of degree 7, the following table is used to determine candidates for Gal(f) given the factorization
of a linear resolvent, which in turn determines the orbit-length partition of r-sets under Gal(f):

G 3-sets

S; 35

A; 35
L(3,2) 7,28
C7>406 14,21
C7xC3 7,7,21

Dy 7,7,7,7,14

Cy 7,7,7,7,7




Database of the irreducible polynomials

We build a database of irreducible polynomials f € Q[x] of degree deg f = n. The data is organized in a Python
dictionary. Each polynomial f(x) = 3", a;x’ is represented by its corresponding binary form
f(x,y) = 3o aix'y"=. In this way, each polynomial is identified with a point in the projective space P",
represented by the integer coordinates

p=I[an: --:a] P,

where ged(ag, ..., an) = 1.

Since f(x) is irreducible over Q and has degree n, we must have an # 0 and ap # 0. Moreover, its discriminant
Ay is nonzero.

Next, we generate a dataset of these polynomials with a bounded height h. Let denote by P} the set of points
corresponding to these polynomials, i.e.,

Pl:={p=1an:---:a] €P"|apan #0,As #0}.
To guarantee that each entry in the database is unique, we index the Python dictionary by the tuple (ao, .. ., an).

This approach ensures that polynomials are not recorded more than once in the Python dictionary.
For fixed h and n, the cardinality of 7P/ is bounded by

[Pl < 4P (2h+1)"2.



Database of the irreducible septics

For the case of degree d > 7 and a given height h, we construct these sets using SageMath as illustrated below:

PP = ProjectiveSpace(d, QQ)
rational.points = PP.rational.points(h)
After generating the points, the data is normalized by clearing denominators so that all coordinates become
integers. We then retain only those polynomials that are irreducible over Q. For each point p € P", we compute
the following:
(307 ey an) : [H(f)a [50, ) 6!77 Af]7 S|97 GaIO( )]

Here, H(f) denotes the height of f(x), [£o, . - ., &n] are the generators of the ring of invariants for binary forms of
degree n, the discriminant Ay, sig is the signature, and Galg(f) indicates the GAP identifier of the Galois group.



Database of the irreducible septics

We create a database of all rational points p € P7 with projective height h < 4 such that

f(x) = arx” + agx® + asx® + agx* + azx® + apx® + a;x + ay

Table: Counts for Groups with Height < 4

Galois Group Count
S; 584,324
A7 138
PSL(3,2) 136
D, 18
C7 X Cs 4
C7 X C3 0
C; 0
Dominance of S7; absence of C; x C3 and C; at low heights.



Database of the irreducible septics

» No polynomials with Galois groups C; or F»¢ found for height < 4.
> Searched Jurgen-Kliner database and found one C; polynomial at height 28:

f(x) = x4+ x5 —12x® — 7x* 4 28x% + 14x% — 9x + 1.

To solve this problem we construct explicit septic polynomials via the framework of constructive Galois theory.
Our approach marries geometric insights from branched coverings and Hurwitz spaces with an algebraic
construction using cyclotomic fields.



Constructing C; Polynomials

Table: Irreducible degree-7 polynomials with Galois group Cy.

Coefficients Height P Galois
(1,1,—12,-7,28,14,-9,1) 28 29 Cy
(1,1,—18,—-35,38,104,7, —49) 104 43 C;
(1,1,-30, 3,254, —246, —245,137) 254 71 Cy
(1,1,—48,37,312,-12, —49, —1) 312 113 Cy
(1,1,—54,—-31,558,—-32, —1713,1121) 1713 127 Cy
(1,1,—84,—217,1348,3988, —1433, —1163) 3988 197 Cr
(1,1,—90,69, 1306, 124, —5249, —4663) 5249 211 Cy
(1,1,—102, —195, 1850, 978, —8933,5183) 8933 239 Cr
(1,1,—120,—711,—-784,1956, 2863, —343) 2863 281 Cr
(1,1,—144,399,2416,—10808, 10831, —1237) 10831 337 C;
(1,1,—162,—201,7822,12322, —107717,—193369) | 193369 | 379 Cy
(1,1,—180,—103,6180, 11596, —25209, —49213) 49213 | 421 Cy
(1,1,—192,275,3952,4136, —81, —863) 4136 449 Cy
(1,1,—198,—-907, 4302, 20582, —18973, —56911) 56911 463 Cy
(1,1,—210,1423, —1410, —8538, 9203, 19427) 19427 491 Cy
(1,1,—234,335, 13254, —42874, —55309, 71879) 71879 547 Cy
(1,1,—264,—151,13288, 18556, —69425, 34621) 69425 | 617 Cr




Machine Learning for Galois Group Classification

> Dataset: 584,724 degree-7 polynomials.

»> Random Forest classifier using polynomial coefficients.

» Imbalanced data led to near 100% accuracy but poor performance on minority classes.
> Improve Dataset by excluding S7, and computing the invariants &g, . . ., &.

» Accuracy improved to 91% (from 54%); strong performance.



Challenges for Higher Degrees

Degree 7 is Implemented in SageMath, but challenges arise for n > 10.

Determining the set of resolvents that uniquely identify Galois groups for any degree n.
Finding polynomial classes for each transitive subgroup of Sp.

Computing invariants becomes computationally intensive for n > 10

Study degrees < 16 to train machine learning models for higher-degree patterns.

vVvyVvyYVvyy



Thank You for Your Attention!
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