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▶ We integrate classical Galois theory with machine learning to classify Galois groups of irreducible degree-7
polynomials.

▶ Building on Resolvent polynomials, we identify Galois groups through factorization patterns.
▶ Explicitly construct Symbolic formulas for the Resolvent polynomials.
▶ We build a database of degree-7 polynomials from projective space, filtered by height, and tested for

irreducibility to identify patterns.
▶ We focus on degree 7 as a concrete example, aiming to generalize to degree n.



Galois Theory

Let f (x) be a degree n = deg f irreducible polynomial in Q[x ]

f (x) = xn + an−1xn−1 + · · ·+ a0

in a splitting field Ef .
Then, Ef /Q is Galois because it is a normal extension and separable. The group Gal(Ef /Q) is called the Galois
group of f (x) over Q and denoted by GalQ(f ).
The elements of GalQ(f ) permute roots α1, . . . , αn of f (x). Thus, the Galois group of the polynomial has an
isomorphic copy embedded in Sn, determined up to conjugacy by f .

Using GAP, we can compute all transitive subgroups of Sn for a given n.
For our case degree 7, these are seven transitive subgroups of S7:

C7,D7,C7 ⋊ C3,C7 ⋊ C6,PSL(3, 2),A7,S7



Lattice of Transitive Subgroups of S7

Lattice of Transitive Subgroups of S7 .

Some Inclusions:

C7 ⊂ D7 ⊂ C7 ⋊ C3

C7 ⊂ C7 ⋊ C3 ⊂ PSL(3, 2)

⊂ A7, C7 ⋊ C3 ⊂ C7 ⋊ C6

Node Labels:
▶ 1: C7

▶ 2: D7

▶ 3: C7 ⋊ C3

▶ 4: C7 ⋊ C6

▶ 5: PSL(3, 2)
▶ 6: A7

▶ 7: S7



Resolvent Polynomials

Consider the polynomial
f (x) = xn + an−1xn−1 + · · ·+ a0 ∈ Q[x ] (1)

where its roots α1, . . . , αn are considered variables. Then Sn acts on Q[α1, . . . , αn] by permuting the variables.

Sn × Q[α1, . . . , αn] → Q[α1, . . . , αn]

(σ,F (α1, . . . , αn)) → F (σ(α1), . . . , σ(αn) =: Fσ (2)

For any G ⊆ Sn a polynomial F (α1, . . . , αn) is called symmetric under G if F = Fσ for all σ ∈ G. Let H denote
the stabilizer of F in G

H = {σ ∈ G | F = Fσ}.



Resolvent Polynomials

The resolvent polynomial of f (x) with respect to F , denoted by RG(f ,F ), is defined as

RG(f ,F ) =
∏

σ∈G/H

(x − Fσ(α1, . . . , αn)) .

The product is over coset representatives of G/H, and the degree of the resolvent is k = |G|/|H|.
The resolvent’s factorization over Q reveals information about the Galois group Gal(f ), as its irreducible factors
correspond to the orbits of Gal(f ) acting on G/H.



Resolvent Polynomials: Symbolic Computation

Let H be the stabilizer of F . Denote by k = |G|/|H| the index of H in G. The roots θσ = F (ασ(1), . . . , xσ(n)) are
functions of the roots αi . Use Vieta’s formulas for the elementary symmetric sums of f (x):

s1 = α1 + · · ·+ αn = −an−1,

s2 =
∑
i<j

αiαj = an−2,

...

sn = α1 · · ·αn = (−1)na0.

Define the power sums
pm =

∑
σ∈G/H

θm
σ =

∑
σ

[F (ασ(1), . . . , ασ(n))]
m.

Expand F (ασ(1), . . . , ασ(n))
m, sum over coset representatives, and express the result in terms of s1, . . . , sn

using symmetric polynomial identities.



Resolvent Polynomials: Symbolic Computation

Apply Newton’s Identities: Relate pm to ej via Newton’s identities:

e1 = p1,

e2 =
1
2
(e1p1 − p2),

e3 =
1
3
(e2p1 − e1p2 + p3) ,

...

ej =
1
j

 j−1∑
i=1

(−1)i−1ej−i pi + (−1)j−1pj

 .

Solve recursively to obtain e1, . . . , ek .
Construct the Resolvent: Form the polynomial using the computed ej .
With e1, e2, . . . , ek computed, the resolvent is

RG(f ,F ) = xk − e1xk−1 + e2xk−2 − · · ·+ (−1)k ek .

This polynomial has degree k , and its coefficients are fully symbolic in the coefficients of f (x).



The Quadratic Resolvent

The quadratic resolvent, which checks if the Galois group of our polynomial lies in the alternating group A7

Definition
Let
▶ G = S7

▶ H = A7

▶ F1 =
√
∆, where ∆ =

∏
i<j (αi − αj )

2 is the discriminant.

The quadratic resolvent is:
R1(x) = RS7 (f ,F1) =

∏
σ∈S7/A7

(x − Fσ
1 ).

Since |S7|/|A7| = 5040
2520 = 2, this is a quadratic polynomial. The discriminant ∆ is symmetric, but

√
∆ changes

under permutations:
▶ If σ ∈ A7 (even), Fσ

1 =
√
∆.

▶ If σ /∈ A7 (odd), Fσ
1 = −

√
∆.

Thus:
R1(x) = (x −

√
∆)(x − (−

√
∆)) = x2 −∆.



The 30-ic Resolvent

The 30-ic resolvent, which tests if the Galois group is contained in PSL(3, 2), a group of order 168.

Definition
Let
▶ G = S7

▶ H = PSL(3, 2)
▶ F2 = α3α1α4 + α4α2α5 + α5α3α6 + α6α4α7 + α7α5α1 + α1α6α2 + α2α7α3, invariant under PSL(3, 2).

The 30-ic resolvent is:
R2(x) = RS7 (f ,F2) =

∏
σ∈S7/PSL(3,2)

(x − Fσ
2 ).

Degree:k= |S7|
|PSL(3,2)| = 5040

168 = 30.

Factorization
The factorization of R2(x) depends on Gal(f ):
▶ If Gal(f ) ⊆ PSL(3, 2), R2(x) splits into factors of degrees 1, 7, 8, and 14, reflecting orbits of PSL(3, 2) on

S7/PSL(3, 2).
▶ If Gal(f ) = S7, R2(x) is irreducible, as S7 acts transitively on the 30 cosets.



The 120-ic Resolvent

The 120-ic resolvent, a degree 120 polynomial, tests if the Galois group lies in C7 ⋊ C6.

Definition
Let
▶ G = S7

▶ H = C7 ⋊ C6

▶ F3 = α3α1(α4 + α7) + α2α5(α4 + α3) + α5α6(α3 + α7) + α4α6(α7 + α3) + α5α1(α7 + α6) + α1α2(α6 +
α4) + α2α7(α3 + α6),

The resolvent is:
R3(x) = RS7 (f ,F3) =

∏
σ∈S7/(C7⋊C6)

(x − Fσ
3 ).

Degree: k= |S7|
|C7⋊C6|

= 5040
42 = 120.

Factorization
Factorization of R3(x):
▶ If Gal(f ) ⊆ C7 ⋊ C6, R3(x) splits into factors of degrees 1, 7, 14, 21, 21, and 42.
▶ If Gal(f ) = S7, R3(x) is irreducible



Resolvent Factorization Patterns

The factorization of R1,R2,R3 over Q determines Gal(f ):

G R1 R2 R3
S7 2 30 120
A7 1, 1 15, 15 120

PSL(3, 2) 1, 1 1, 7, 8, 14 8, 56, 56
C7 ⋊ C6 2 2, 14, 14 1, 7, 14, 21, 21, 42
C7 ⋊ C3 1, 1 1, 7, 7, 7, 7 1, 7, 7, 7, 7, 21, 21, 21, 21

D7 2 2, 14, 14 1, 7, 7, 7, 7, 7, 7, 14, 14, 14, 14, 14
C7 1, 1 1, 7, 7, 7, 7 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7

Table: Factorization degrees of resolvents for each transitive subgroup of S7.



Resolvent Polynomials of Septics

Let f (x) be an irreducile septic given by

f (x) = x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0,

with roots (α1, . . . , α7). Denote by G = S7 and

F = α1 + α2 + α3

Determine ResS7 (f ,F )(x).
The stabilizer is H = S3 × S4, where S3 permutes {1, 2, 3} and S4 permutes {4, 5, 6, 7}. Thus,
|H| = 3! · 4! = 6 · 24 = 144, and

k =
5040
144

= 35 =
(7

3

)
.

Hence,
R(f ,F ) =

∏
1≤i<j<k≤7

(x − Fσ)



Symbolic computation Resolvent Polynomials of Septics
The symmetric sums:

s1 = −a6, s2 = a5, s3 = −a4, s4 = a3, s5 = −a2, s6 = a1, s7 = −a0.

Compute power sums
pm =

∑
i<j<k

(αi + αj + αk )
m.

Hence, we have:

p1 = 15s1 = −15a6,

p2 = 15(s2
1 − 2s2) + 10s2 = 15a2

6 − 30a5 + 10a5 = 15a2
6 − 20a5,

p3 = 15(s3
1 − 3s1s2 + 3s3) + 45(s1s2 − 3s3) + s3

= −15a3
6 + 45a6a5 − 45a4 − 45a6a5 + 135a4 − a4 = −15a3

6 + 89a4,

p4 = 15(s4
1 − 4s2

1s2 + 2s2
2 + 4s1s3 − 4s4) + 60(s2

1s2 − 2s2
2 − s1s3 + s4) + 15s2

2 + 4s4

= 15a4
6 − 80a2

6a5 + 20a2
5 + 56a6a4 − 56a3,

p5 = 15(s5
1 − 5s3

1s2 + 5s2
1s3 + 5s1s2

2 − 5s2s3 − 5s1s4 + 5s5) + 75(s3
1s2 − 2s1s2

2 − s2
1s3

+ s2
3 + s1s4 − s5) + 10s1s2

2 + 45(s2
1s3 − 2s1s4 + s2s3) + 5s5

= −15a5
6 + 125a3

6a5 − 75a2
6a4 − 50a6a2

5 + 178a6a3 − 56a2,

...

p35 = −35a5
0 + 175a4

0(−a6a1 + a5a2 − a4a3) + · · ·



Symbolic computation Resolvent Polynomials of Septics
Using Newton’s identities we have

e1 = −15a6,

e2 = 105a2
6 + 10a5,

e3 == −455a3
6 + 150a6a5 +

89
3

a4,

e4 = 1365a4
6 − 980a2

6a5 −
80
3

a2
5 −

596
3

a6a4 +
56
3

a3,

e5 = −4095a5
6 + 3675a3

6a5 + 200a2
6a4 − 900a6a2

5 − 56a5a4 −
2972

5
a6a3 +

356
5

a2,

e6 = 12285a6
6 − 14175a4

6a5 − 910a3
6a4 + 5775a2

6a2
5 + 672a6a5a4 + 80a3

5 + 1660a2
6a3

− 672a5a3 − 252a6a2 +
1068

5
a1,

e35 = −843124185927587655a35
6 + 2581639930256873850a33

6 a5 + 5237060773262740053a32
6 a4

− 90057071717680186500a31
6 a2

5 − 3057764699596385747a30
6 a5a4 − 274707171768018600000a29

6 a3
5

− 12002457790809461370a31
6 a3 + 4011409893325719832a29

6 a5a3 + 1235966677377682877a28
6 a2

5a4

+ 164795556983691051a27
6 a3

5a4 + 1298532235951804536a30
6 a2 − 2963846288730429167a28

6 a5a2

− 328591113967382076a27
6 a2

5a3 − 328591113967382076a26
6 a3

5a2 + 492886670951073114a29
6 a1

− 985773341902146228a27
6 a5a1 + 328591113967382076a28

6 a0 − 164295556983691038a26
6 a5a0 − a5

0.



Resolvent Polynomials of Septics

For irreducible f of degree 7, the following table is used to determine candidates for Gal(f ) given the factorization
of a linear resolvent, which in turn determines the orbit-length partition of r -sets under Gal(f ):

G 3-sets
S7 35
A7 35

L(3, 2) 7, 28
C7⋊C6 14, 21
C7⋊C3 7, 7, 21

D7 7, 7, 7, 7, 14
C7 7, 7, 7, 7, 7



Database of the irreducible polynomials

We build a database of irreducible polynomials f ∈ Q[x ] of degree deg f = n. The data is organized in a Python
dictionary. Each polynomial f (x) =

∑n
i=0 ai x i is represented by its corresponding binary form

f (x , y) =
∑n

i=0 ai x i yn−i . In this way, each polynomial is identified with a point in the projective space Pn,
represented by the integer coordinates

p = [an : · · · : a0] ∈ Pn,

where gcd(a0, . . . , an) = 1.
Since f (x) is irreducible over Q and has degree n, we must have an ̸= 0 and a0 ̸= 0. Moreover, its discriminant
∆f is nonzero.
Next, we generate a dataset of these polynomials with a bounded height h. Let denote by Pn

h the set of points
corresponding to these polynomials, i.e.,

Pn
h := {p = [an : · · · : a0] ∈ Pn | a0an ̸= 0,∆f ̸= 0}.

To guarantee that each entry in the database is unique, we index the Python dictionary by the tuple (a0, . . . , an).
This approach ensures that polynomials are not recorded more than once in the Python dictionary.
For fixed h and n, the cardinality of Pn

h is bounded by

|Pn
h | ≤ 4h2(2h + 1)n−2.



Database of the irreducible septics

For the case of degree d ≥ 7 and a given height h, we construct these sets using SageMath as illustrated below:

PP = ProjectiveSpace(d ,QQ)

rational.points = PP.rational.points(h)

After generating the points, the data is normalized by clearing denominators so that all coordinates become
integers. We then retain only those polynomials that are irreducible over Q. For each point p ∈ Pn, we compute
the following:

(a0, . . . , an) : [H(f ), [ξ0, . . . , ξn,∆f ], sig,GalQ(f )].

Here, H(f ) denotes the height of f (x), [ξ0, . . . , ξn] are the generators of the ring of invariants for binary forms of
degree n, the discriminant ∆f , sig is the signature, and GalQ(f ) indicates the GAP identifier of the Galois group.



Database of the irreducible septics

We create a database of all rational points p ∈ P7 with projective height h ≤ 4 such that

f (x) = a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0

Table: Counts for Groups with Height ≤ 4

Galois Group Count
S7 584,324
A7 138

PSL(3, 2) 136
D7 18

C7 ⋊ C6 4
C7 ⋊ C3 0

C7 0

Dominance of S7; absence of C7⋊C3 and C7 at low heights.



Database of the irreducible septics

▶ No polynomials with Galois groups C7 or F21 found for height ≤ 4.
▶ Searched Jürgen-Klüner database and found one C7 polynomial at height 28:

f (x) = x7 + x6 − 12x5 − 7x4 + 28x3 + 14x2 − 9x + 1.

To solve this problem we construct explicit septic polynomials via the framework of constructive Galois theory.
Our approach marries geometric insights from branched coverings and Hurwitz spaces with an algebraic
construction using cyclotomic fields.



Constructing C7 Polynomials

Table: Irreducible degree-7 polynomials with Galois group C7.

Coefficients Height p Galois
(1, 1,−12,−7, 28, 14,−9, 1) 28 29 C7

(1, 1,−18,−35, 38, 104, 7,−49) 104 43 C7
(1, 1,−30, 3, 254,−246,−245, 137) 254 71 C7
(1, 1,−48, 37, 312,−12,−49,−1) 312 113 C7

(1, 1,−54,−31, 558,−32,−1713, 1121) 1713 127 C7
(1, 1,−84,−217, 1348, 3988,−1433,−1163) 3988 197 C7
(1, 1,−90, 69, 1306, 124,−5249,−4663) 5249 211 C7

(1, 1,−102,−195, 1850, 978,−8933, 5183) 8933 239 C7
(1, 1,−120,−711,−784, 1956, 2863,−343) 2863 281 C7

(1, 1,−144, 399, 2416,−10808, 10831,−1237) 10831 337 C7
(1, 1,−162,−201, 7822, 12322,−107717,−193369) 193369 379 C7
(1, 1,−180,−103, 6180, 11596,−25209,−49213) 49213 421 C7

(1, 1,−192, 275, 3952, 4136,−81,−863) 4136 449 C7
(1, 1,−198,−907, 4302, 20582,−18973,−56911) 56911 463 C7
(1, 1,−210, 1423,−1410,−8538, 9203, 19427) 19427 491 C7

(1, 1,−234, 335, 13254,−42874,−55309, 71879) 71879 547 C7
(1, 1,−264,−151, 13288, 18556,−69425, 34621) 69425 617 C7



Machine Learning for Galois Group Classification

▶ Dataset: 584,724 degree-7 polynomials.
▶ Random Forest classifier using polynomial coefficients.
▶ Imbalanced data led to near 100% accuracy but poor performance on minority classes.
▶ Improve Dataset by excluding S7, and computing the invariants ξ0, . . . , ξ4.
▶ Accuracy improved to 91% (from 54%); strong performance.



Challenges for Higher Degrees

▶ Degree 7 is Implemented in SageMath, but challenges arise for n > 10.
▶ Determining the set of resolvents that uniquely identify Galois groups for any degree n.
▶ Finding polynomial classes for each transitive subgroup of Sn.
▶ Computing invariants becomes computationally intensive for n > 10
▶ Study degrees ≤ 16 to train machine learning models for higher-degree patterns.



Thank You for Your Attention!



References

Foulkes, H. O. (1930). The resolvents of an equation of the seventh degree. Quart. J. of Math., 2, 9–19.

Soicher, L., & McKay, J. (1985). Computing Galois groups over the rationals. Journal of Number Theory,
20(3), 273–281.

Cohen, H. (1993). A Course in Computational Algebraic Number Theory. Springer-Verlag.


