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Geometry with projective lines over F2

Consider the vector space Fn
2. Set [n] = {1, . . . , n}.

the points of PG(n − 1, 2) ≡ the non-empty subsets of [n],

e.g. (1, 1, 1, 1, 0, 0, 0) ≡ {1, 2, 3, 4} for n = 7

the third point on the line containing X and Y is X△Y ,

e.g. (1, 1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1, 1) = (0, 0, 1, 1, 0, 1, 1)

{1, 2, 3, 4}△{1, 2, 6, 7} = {3, 4, 6, 7}

the set of all t-element subsets of [n] contains lines of PG(n − 1, 2)
⇐⇒ t = 2m and n ≥ 3m
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Geometry with projective lines over F2

M. Pankov, K.P., M. Żynel, Point-line geometries related to binary
equidistant codes, J. Comb. Theory Ser. A, 210 (2025), 1-30.

For n ≥ 3m we introduce the point-line geometry:

points are 2m-element subsets of the set [n],

lines are the lines of PG(n − 1, 2) formed by these subsets,

two distinct points X and Y are collinear iff |X ∩ Y | = m.

m m m

X

Y
X∆Y

Denote this geometry by Pm([n])
or simply by Pm(n).

Maximal singular subspaces of Pm(n) correspond to maximal equidistant
binary linear codes of length n and Hamming weight 2m.
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Geometry Pm(n) – examples

n = 3, m = 1

A line of size 3
23

13
12

n = 4, m = 1

The Pasch configuration 34

24

23

13

12

14
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Geometry Pm(n) – examples

n = 6, m = 2

The Cremona-Richmond
configuration = GQ(2, 2)

15 36

14

12
46

25

13
35

24

16

34
45

56

23

26

n = 2k − 1, m = 2k−2

Every maximal singular subspace of Pm(n) is a projective space
PG(k − 1, 2) corresponding to a binary simplex code of dimension k.

Krzysztof Petelczyc Geometry of binary simplex codes 5th Pythagorean Conference 5 / 24



Geometry Pm(n) – examples

n = 6, m = 2

The Cremona-Richmond
configuration = GQ(2, 2)

15 36

14

12
46

25

13
35

24

16

34
45

56

23

26

n = 2k − 1, m = 2k−2

Every maximal singular subspace of Pm(n) is a projective space
PG(k − 1, 2) corresponding to a binary simplex code of dimension k.

Krzysztof Petelczyc Geometry of binary simplex codes 5th Pythagorean Conference 5 / 24



The collinearity graph of Pm(n)

The collinearity graph of Pm(n) is a simple graph whose vetrices are
the points of Pm(n) and two vertices are adjacent only if they
determine a line.

A subgraph of the collinearity graph is called a clique if it is a
complete graph itself.

A clique which is not contained in any other clique is called a
maximal clique.

If n ≥ 3m + 1 and m ̸= 2, then the collinearity graph of Pm(n) contains
maximal cliques different from maximal singular subspaces.
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Maximal cliques vs symmetric block designs

From now on, for a certain integer k ≥ 2, we assume that

m = 2k−2 and n = 4m − 1 = 2k − 1.

Then every maximal singular subspace of Pm(n)

corresponds to a binary simplex code of dimension k ,

is a maximal clique of the collinearity graph of Pm(n),

is isomorphic to PG(k − 1, 2) and contains 2k − 1 = n elements.

If C is a maximal clique of Pm(n) and |C| = n then C determines a
symmetric (n, 2m,m)-design whose

points are elements of [n],

blocks are points of C.
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Hyperplane complements in PG(k − 1, 2)

A hyperplane H of PG(k − 1, 2) contains 2k−1 − 1 points.

Its complement Hc contains 2k − 1− (2k−1 − 1) = 2k−1 = 2m points.

If H1 ̸= H2 the intersection Hc
1 ∩ Hc

2 consists of 2k−2 = m points.

The design of points and hyperplane complements of PG(k − 1, 2) is a
symmetric (n, 2m,m)-design.

There is the unique hyperplane H3 ̸= H1,H2 such that H1 ∩ H2 ⊂ H3, so

H1 ∪ H2 ∪ H3 contains all points of PG(k − 1, 2),

Hc
1△Hc

2 = H1△H2 = Hc
3 .

The design of points and hyperplane complements of PG(k − 1, 2) is
isomorphic to the design corresponding to a maximal singular subspace of
Pm(n).
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Maximal centered cliques

We say that a maximal clique C is centered if there is O ∈ C such that for
every C ∈ C \ {O} the line joining C and O is contained in C.
The point O is said to be a center point of C.

take O ⊂ [n], |O| = 2m, and [n] \ O = Oc , |Oc | = 2m − 1

consider the geometry Pm
2

(Oc)

take any maximal clique X of Pm
2

(Oc) such that |X | = 2m − 1

[n]

O Oc χ
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[n]

O OcO’ χ
Y
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Maximal centered cliques

We say that a maximal clique C is centered if there is O ∈ C such that for
every C ∈ C \ {O} the line joining C and O is contained in C.
The point O is said to be a center point of C.

take O ⊂ [n], |O| = 2m, and [n] \ O = Oc , |Oc | = 2m − 1

consider the geometry Pm
2

(Oc)

take any maximal clique X of Pm
2

(Oc) such that |X | = 2m − 1

take O ′ ⊂ O, |O ′| = 2m − 1 and consider the geometry Pm
2

(O ′)

take any maximal clique Y of Pm
2

(O ′) such that |Y| = 2m − 1

take a bijection δ : X → Y
[n]

O OcO’ χ
Y

δ
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Maximal centered cliques

The result of the construction

The set{
O
}

∪
{
X ∪ δ(X ) : X ∈ X

}
∪

{
X ∪

(
O \ δ(X )

)
: X ∈ X

}
is a maximal centered clique of the collinearity graph of Pm(n) consisting
of n = 4m − 1 elements. We denote this clique by X#δY.

. . . and in the opposite direction

Let C be a centered maximal n-element clique of the collinearity graph of
Pm(n) and let O be a center point of C.

There is the unique maximal (2m − 1)-element clique X of Pm
2

(Oc),

for every O ′ ⊂ O, |O ′| = 2m − 1 there is the unique maximal

(2m − 1)-element clique Y of Pm
2

(O ′)

such that X#δY for a certain bijection from X to Y.
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Maximal centered cliques of P4(15)

Let k = 4, so m = 24−2 = 4, n = 24 − 1 = 15.

Pm
2

(2m − 1) = P2(7) is a rank 3 polar space

every maximal clique of P2(7) is a Fano plane

if X#δY is a centered maximal clique of P4(15), then X ,Y are Fano
planes

Let F1, F2 be Fano planes.

Bijections δ, δ′ : F1 → F2 are said to be equivalent if there are
automorphisms gi : Fi → Fi , i = 1, 2, such that

δ′ = g2δg1.

The index ind(δ) is the number of lines which go to lines under δ.
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Bijections between Fano planes – the classification

P123

P1

P2P3
P23

P12P13

Figure: The case when δ is of index 3

P123

P1

P2P3
P23

P12P13

Figure: The case when δ is of index 1

Proposition

Two bijections between F1 and F2 are equivalent if and only if they are of
the same index. There are precisely four classes of equivalence and the
corresponding values of the index are 0, 1, 3, 7.
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Centered maximal cliques of P4(15) – the classification

Theorem

If C is a centered maximal 15-element clique of the collinearity graph of
P4(15), then one of the following possibilities is realized:

(C1) C is a solid and every point of C is a center point,
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Centered maximal cliques of P4(15) – the classification

Theorem

If C is a centered maximal 15-element clique of the collinearity graph of
P4(15), then one of the following possibilities is realized:

(C2) C is the union of 3 Fano planes whose intersection is a line formed by
center points,
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Centered maximal cliques of P4(15) – the classification

Theorem

If C is a centered maximal 15-element clique of the collinearity graph of
P4(15), then one of the following possibilities is realized:

(C3) C is the union of a Fano plane and four lines passing through the
unique center point,
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Centered maximal cliques of P4(15) – the classification

Theorem

If C is a centered maximal 15-element clique of the collinearity graph of
P4(15), then one of the following possibilities is realized:

(C4) C consists of seven lines passing through the unique center point.
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Centered maximal cliques of P4(15) – the classification

Theorem

If C is a centered maximal 15-element clique of the collinearity graph of
P4(15), then one of the following possibilities is realized:

(C1) C is a solid and every point of C is a center point,

(C2) C is the union of 3 Fano planes whose intersection is a line formed by
center points,

(C3) C is the union of a Fano plane and four lines passing through the
unique center point,

(C4) C consists of seven lines passing through the unique center point.

M. Pankov, K.P., M. Żynel, Symmetric (15, 8, 4)-designs in terms of
the geometry of binary simplex codes of dimension 4, Des. Codes
Cryptogr. (2025), DOI: 10.1007/s10623-025-01570-7.
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Symmetric (15, 8, 4)-designs

There are five non-isomorphic symmetric (15, 8, 4)-designs.

Theorem

There is a non-centered maximal 15-element clique in the collinearity
graph of P4(15) which is the union of a maximal singular subspace of
P4(15) with a plane deleted and a plane disjoint with this subspace.
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The automorphism group action

There is no automorphism of the non-centered maximal clique
sending points of S \ F ′ to points of the plane F .

There is no automorphism sending center point to non-center point.

Lemma

A symmetric (15, 8, 4)-design corresponding to a clique of type (C1) is the
unique symmetric (15, 8, 4)-design admitting automorphisms acting
transitively on the set of blocks.

Theorem, C. E. Praeger, S. Zhou, 2006

The design of points and hyperplane complements of PG(3, 2) is the
unique symmetric (15, 8, 4)-design admitting a flag-transitive,
point-imprimitive subgroup of automorphisms.
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Work in progress

Looking into subspaces of a centered maximal clique C of Pm(n) in
the general case m = 2k−2, n = 4m − 1 = 2k − 1.

Determining the automorphism group structure of maximal cliques of
P4(15) i.e. for k = 4.

Krzysztof Petelczyc Geometry of binary simplex codes 5th Pythagorean Conference 23 / 24



Work in progress

Looking into subspaces of a centered maximal clique C of Pm(n) in
the general case m = 2k−2, n = 4m − 1 = 2k − 1.

Determining the automorphism group structure of maximal cliques of
P4(15) i.e. for k = 4.

Krzysztof Petelczyc Geometry of binary simplex codes 5th Pythagorean Conference 23 / 24



Krzysztof Petelczyc Geometry of binary simplex codes 5th Pythagorean Conference 24 / 24


