

Geometry of binary simplex codes and symmetric block designs

Krzysztof Petelczyc

(Joint work with Mark Pankov and Mariusz Żynel)

University of Białystok, Poland

5th Pythagorean Conference, Kalamata 2025

Geometry with projective lines over \mathbb{F}_2

Consider the vector space \mathbb{F}_2^n . Set $[n] = \{1, \dots, n\}$.

- the points of $\text{PG}(n-1, 2) \equiv$ the non-empty subsets of $[n]$,
e.g. $(1, 1, 1, 1, 0, 0, 0) \equiv \{1, 2, 3, 4\}$ for $n = 7$
- the third point on the line containing X and Y is $X \Delta Y$,
e.g. $(1, 1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1, 1) = (0, 0, 1, 1, 0, 1, 1)$
 $\{1, 2, 3, 4\} \Delta \{1, 2, 6, 7\} = \{3, 4, 6, 7\}$
- the set of all t -element subsets of $[n]$ contains lines of $\text{PG}(n-1, 2)$
 $\iff t = 2m$ and $n \geq 3m$

Geometry with projective lines over \mathbb{F}_2

Consider the vector space \mathbb{F}_2^n . Set $[n] = \{1, \dots, n\}$.

- the points of $\text{PG}(n-1, 2) \equiv$ the non-empty subsets of $[n]$,
e.g. $(1, 1, 1, 1, 0, 0, 0) \equiv \{1, 2, 3, 4\}$ for $n = 7$
- the third point on the line containing X and Y is $X \Delta Y$,
e.g. $(1, 1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1, 1) = (0, 0, 1, 1, 0, 1, 1)$
 $\{1, 2, 3, 4\} \Delta \{1, 2, 6, 7\} = \{3, 4, 6, 7\}$
- the set of all t -element subsets of $[n]$ contains lines of $\text{PG}(n-1, 2)$
 $\iff t = 2m$ and $n \geq 3m$

Geometry with projective lines over \mathbb{F}_2

Consider the vector space \mathbb{F}_2^n . Set $[n] = \{1, \dots, n\}$.

- the points of $\text{PG}(n-1, 2) \equiv$ the non-empty subsets of $[n]$,
e.g. $(1, 1, 1, 1, 0, 0, 0) \equiv \{1, 2, 3, 4\}$ for $n = 7$
- the third point on the line containing X and Y is $X \triangle Y$,
e.g. $(1, 1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1, 1) = (0, 0, 1, 1, 0, 1, 1)$
 $\{1, 2, 3, 4\} \triangle \{1, 2, 6, 7\} = \{3, 4, 6, 7\}$
- the set of all t -element subsets of $[n]$ contains lines of $\text{PG}(n-1, 2)$
 $\iff t = 2m$ and $n \geq 3m$

Geometry with projective lines over \mathbb{F}_2

Consider the vector space \mathbb{F}_2^n . Set $[n] = \{1, \dots, n\}$.

- the points of $\text{PG}(n-1, 2) \equiv$ the non-empty subsets of $[n]$,
e.g. $(1, 1, 1, 1, 0, 0, 0) \equiv \{1, 2, 3, 4\}$ for $n = 7$
- the third point on the line containing X and Y is $X \triangle Y$,
e.g. $(1, 1, 1, 1, 0, 0, 0) + (1, 1, 0, 0, 0, 1, 1) = (0, 0, 1, 1, 0, 1, 1)$
 $\{1, 2, 3, 4\} \triangle \{1, 2, 6, 7\} = \{3, 4, 6, 7\}$
- the set of all t -element subsets of $[n]$ contains lines of $\text{PG}(n-1, 2)$
 $\iff t = 2m$ and $n \geq 3m$

Geometry with projective lines over \mathbb{F}_2

 M. Pankov, K.P., M. Żynel, *Point-line geometries related to binary equidistant codes*, J. Comb. Theory Ser. A, **210** (2025), 1-30.

For $n \geq 3m$ we introduce the point-line geometry:

- points are **2m-element subsets** of the set $[n]$,
- lines are the lines of $\text{PG}(n-1, 2)$ formed by these subsets,
- two distinct points X and Y are collinear iff $|X \cap Y| = m$.

Denote this geometry by $\mathcal{P}_m([n])$
or simply by $\mathcal{P}_m(n)$.

Maximal singular subspaces of $\mathcal{P}_m(n)$ correspond to maximal equidistant binary linear codes of length n and Hamming weight $2m$.

Geometry with projective lines over \mathbb{F}_2

 M. Pankov, K.P., M. Żynel, *Point-line geometries related to binary equidistant codes*, J. Comb. Theory Ser. A, **210** (2025), 1-30.

For $n \geq 3m$ we introduce the point-line geometry:

- points are **2m-element subsets** of the set $[n]$,
- lines are the lines of $\text{PG}(n-1, 2)$ formed by these subsets,
- two distinct points X and Y are **collinear** iff $|X \cap Y| = m$.

Denote this geometry by $\mathcal{P}_m([n])$
or simply by $\mathcal{P}_m(n)$.

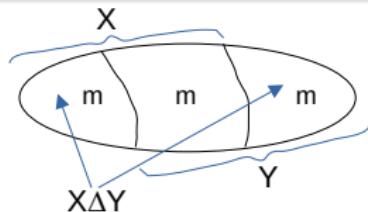
Maximal singular subspaces of $\mathcal{P}_m(n)$ correspond to maximal equidistant binary linear codes of length n and Hamming weight $2m$.

Geometry with projective lines over \mathbb{F}_2

M. Pankov, K.P., M. Żynel, *Point-line geometries related to binary equidistant codes*, J. Comb. Theory Ser. A, **210** (2025), 1-30.

For $n \geq 3m$ we introduce the point-line geometry:

- points are $2m$ -element subsets of the set $[n]$,
- lines are the lines of $\text{PG}(n-1, 2)$ formed by these subsets,
- two distinct points X and Y are collinear iff $|X \cap Y| = m$.



Denote this geometry by $\mathcal{P}_m([n])$ or simply by $\mathcal{P}_m(n)$.

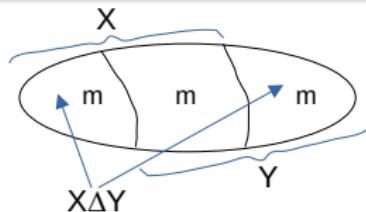
Maximal singular subspaces of $\mathcal{P}_m(n)$ correspond to maximal equidistant binary linear codes of length n and Hamming weight $2m$.

Geometry with projective lines over \mathbb{F}_2

M. Pankov, K.P., M. Żynel, *Point-line geometries related to binary equidistant codes*, J. Comb. Theory Ser. A, **210** (2025), 1-30.

For $n \geq 3m$ we introduce the point-line geometry:

- points are $2m$ -element subsets of the set $[n]$,
- lines are the lines of $\text{PG}(n-1, 2)$ formed by these subsets,
- two distinct points X and Y are collinear iff $|X \cap Y| = m$.



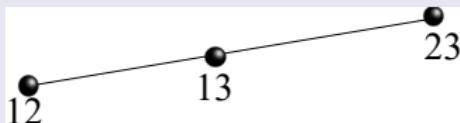
Denote this geometry by $\mathcal{P}_m([n])$ or simply by $\mathcal{P}_m(n)$.

Maximal singular subspaces of $\mathcal{P}_m(n)$ correspond to maximal equidistant binary linear codes of length n and Hamming weight $2m$.

Geometry $\mathcal{P}_m(n)$ – examples

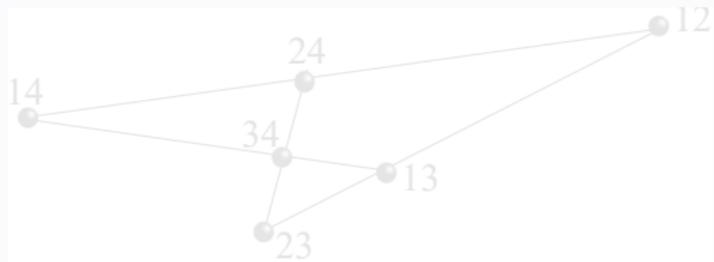
$n = 3, m = 1$

A line of size 3



$n = 4, m = 1$

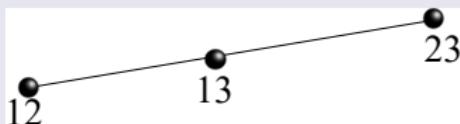
The Pasch configuration



Geometry $\mathcal{P}_m(n)$ – examples

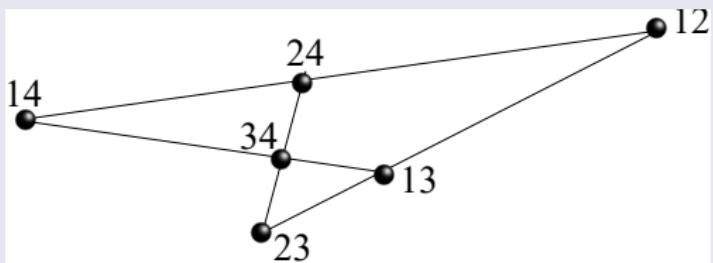
$n = 3, m = 1$

A line of size 3



$n = 4, m = 1$

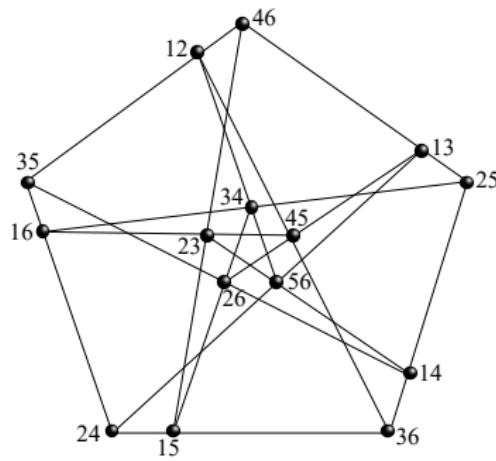
The Pasch configuration



Geometry $\mathcal{P}_m(n)$ – examples

$n = 6, m = 2$

The Cremona-Richmond configuration = GQ(2, 2)



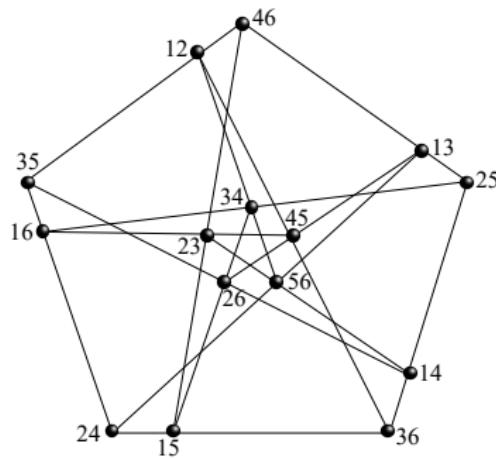
$n = 2^k - 1, m = 2^{k-2}$

Every maximal singular subspace of $\mathcal{P}_m(n)$ is a projective space $\text{PG}(k-1, 2)$ corresponding to a **binary simplex code** of dimension k .

Geometry $\mathcal{P}_m(n)$ – examples

$n = 6, m = 2$

The Cremona-Richmond configuration = GQ(2, 2)



$n = 2^k - 1, m = 2^{k-2}$

Every maximal singular subspace of $\mathcal{P}_m(n)$ is a projective space $\text{PG}(k-1, 2)$ corresponding to a **binary simplex code** of dimension k .

The collinearity graph of $\mathcal{P}_m(n)$

- The **collinearity graph** of $\mathcal{P}_m(n)$ is a simple graph whose vertices are the points of $\mathcal{P}_m(n)$ and two vertices are adjacent only if they determine a line.
- A subgraph of the collinearity graph is called a **clique** if it is a complete graph itself.
- A clique which is not contained in any other clique is called a **maximal clique**.

If $n \geq 3m + 1$ and $m \neq 2$, then the collinearity graph of $\mathcal{P}_m(n)$ contains maximal cliques different from maximal singular subspaces.

The collinearity graph of $\mathcal{P}_m(n)$

- The **collinearity graph** of $\mathcal{P}_m(n)$ is a simple graph whose vertices are the points of $\mathcal{P}_m(n)$ and two vertices are adjacent only if they determine a line.
- A subgraph of the collinearity graph is called a **clique** if it is a complete graph itself.
- A clique which is not contained in any other clique is called a **maximal clique**.

If $n \geq 3m + 1$ and $m \neq 2$, then the collinearity graph of $\mathcal{P}_m(n)$ contains maximal cliques different from maximal singular subspaces.

The collinearity graph of $\mathcal{P}_m(n)$

- The **collinearity graph** of $\mathcal{P}_m(n)$ is a simple graph whose vertices are the points of $\mathcal{P}_m(n)$ and two vertices are adjacent only if they determine a line.
- A subgraph of the collinearity graph is called a **clique** if it is a complete graph itself.
- A clique which is not contained in any other clique is called a **maximal clique**.

If $n \geq 3m + 1$ and $m \neq 2$, then the collinearity graph of $\mathcal{P}_m(n)$ contains maximal cliques different from maximal singular subspaces.

The collinearity graph of $\mathcal{P}_m(n)$

- The **collinearity graph** of $\mathcal{P}_m(n)$ is a simple graph whose vertices are the points of $\mathcal{P}_m(n)$ and two vertices are adjacent only if they determine a line.
- A subgraph of the collinearity graph is called a **clique** if it is a complete graph itself.
- A clique which is not contained in any other clique is called a **maximal clique**.

If $n \geq 3m + 1$ and $m \neq 2$, then the collinearity graph of $\mathcal{P}_m(n)$ contains **maximal cliques different from maximal singular subspaces**.

Maximal cliques vs symmetric block designs

From now on, for a certain integer $k \geq 2$, we assume that

$$m = 2^{k-2} \quad \text{and} \quad n = 4m - 1 = 2^k - 1.$$

Then every maximal singular subspace of $\mathcal{P}_m(n)$

- corresponds to a binary simplex code of dimension k ,
- is a maximal clique of the collinearity graph of $\mathcal{P}_m(n)$,
- is isomorphic to $\text{PG}(k-1, 2)$ and contains $2^k - 1 = n$ elements.

If \mathcal{C} is a maximal clique of $\mathcal{P}_m(n)$ and $|\mathcal{C}| = n$ then \mathcal{C} determines a symmetric $(n, 2m, m)$ -design whose

- points are elements of $[n]$,
- blocks are points of \mathcal{C} .

Maximal cliques vs symmetric block designs

From now on, for a certain integer $k \geq 2$, we assume that

$$m = 2^{k-2} \quad \text{and} \quad n = 4m - 1 = 2^k - 1.$$

Then every maximal singular subspace of $\mathcal{P}_m(n)$

- corresponds to a binary simplex code of dimension k ,
- is a maximal clique of the collinearity graph of $\mathcal{P}_m(n)$,
- is isomorphic to $\text{PG}(k-1, 2)$ and contains $2^k - 1 = n$ elements.

If \mathcal{C} is a maximal clique of $\mathcal{P}_m(n)$ and $|\mathcal{C}| = n$ then \mathcal{C} determines a symmetric $(n, 2m, m)$ -design whose

- points are elements of $[n]$,
- blocks are points of \mathcal{C} .

Maximal cliques vs symmetric block designs

From now on, for a certain integer $k \geq 2$, we assume that

$$m = 2^{k-2} \quad \text{and} \quad n = 4m - 1 = 2^k - 1.$$

Then every maximal singular subspace of $\mathcal{P}_m(n)$

- corresponds to a binary simplex code of dimension k ,
- is a maximal clique of the collinearity graph of $\mathcal{P}_m(n)$,
- is isomorphic to $\text{PG}(k-1, 2)$ and contains $2^k - 1 = n$ elements.

If \mathcal{C} is a maximal clique of $\mathcal{P}_m(n)$ and $|\mathcal{C}| = n$ then \mathcal{C} determines a symmetric $(n, 2m, m)$ -design whose

- points are elements of $[n]$,
- blocks are points of \mathcal{C} .

Maximal cliques vs symmetric block designs

From now on, for a certain integer $k \geq 2$, we assume that

$$m = 2^{k-2} \quad \text{and} \quad n = 4m - 1 = 2^k - 1.$$

Then every maximal singular subspace of $\mathcal{P}_m(n)$

- corresponds to a binary simplex code of dimension k ,
- is a maximal clique of the collinearity graph of $\mathcal{P}_m(n)$,
- is isomorphic to $\text{PG}(k-1, 2)$ and contains $2^k - 1 = n$ elements.

If \mathcal{C} is a maximal clique of $\mathcal{P}_m(n)$ and $|\mathcal{C}| = n$ then \mathcal{C} determines a symmetric $(n, 2m, m)$ -design whose

- points are elements of $[n]$,
- blocks are points of \mathcal{C} .

Maximal cliques vs symmetric block designs

From now on, for a certain integer $k \geq 2$, we assume that

$$m = 2^{k-2} \quad \text{and} \quad n = 4m - 1 = 2^k - 1.$$

Then every maximal singular subspace of $\mathcal{P}_m(n)$

- corresponds to a binary simplex code of dimension k ,
- is a maximal clique of the collinearity graph of $\mathcal{P}_m(n)$,
- is isomorphic to $\text{PG}(k-1, 2)$ and contains $2^k - 1 = n$ elements.

If \mathcal{C} is a maximal clique of $\mathcal{P}_m(n)$ and $|\mathcal{C}| = n$ then \mathcal{C} determines a **symmetric $(n, 2m, m)$ -design** whose

- points are elements of $[n]$,
- blocks are points of \mathcal{C} .

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \Delta H_2^c = H_1 \Delta H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \Delta H_2^c = H_1 \Delta H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \Delta H_2^c = H_1 \Delta H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \Delta H_2^c = H_1 \Delta H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \Delta H_2^c = H_1 \Delta H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Hyperplane complements in $\text{PG}(k-1, 2)$

- A hyperplane H of $\text{PG}(k-1, 2)$ contains $2^{k-1} - 1$ points.
- Its complement H^c contains $2^k - 1 - (2^{k-1} - 1) = 2^{k-1} = 2m$ points.
- If $H_1 \neq H_2$ the intersection $H_1^c \cap H_2^c$ consists of $2^{k-2} = m$ points.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is a symmetric $(n, 2m, m)$ -design.

There is the unique hyperplane $H_3 \neq H_1, H_2$ such that $H_1 \cap H_2 \subset H_3$, so

- $H_1 \cup H_2 \cup H_3$ contains all points of $\text{PG}(k-1, 2)$,
- $H_1^c \triangle H_2^c = H_1 \triangle H_2 = H_3^c$.

The design of points and hyperplane complements of $\text{PG}(k-1, 2)$ is isomorphic to the design corresponding to a maximal singular subspace of $\mathcal{P}_m(n)$.

Maximal centered cliques

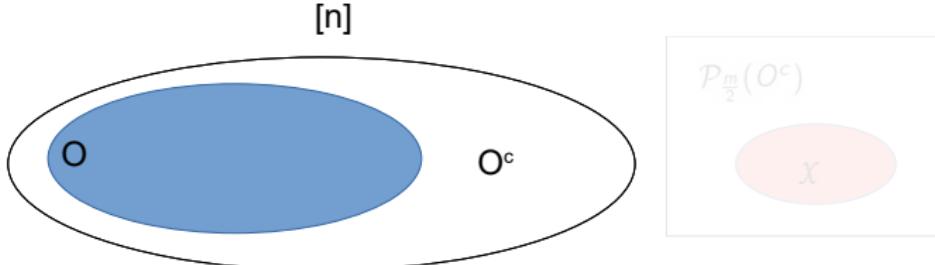
We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be a **center point** of \mathcal{C} .

- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$

Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be a **center point** of \mathcal{C} .

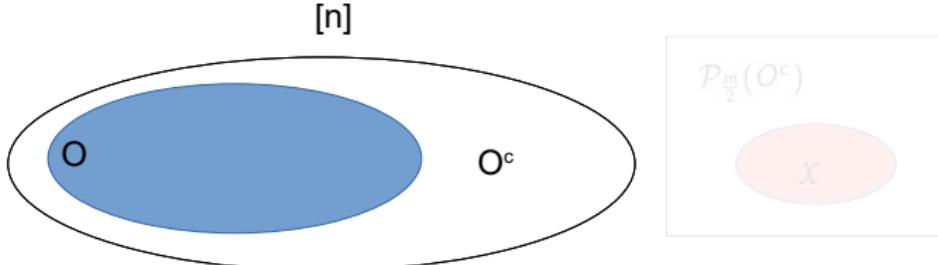
- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$



Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be a **center point** of \mathcal{C} .

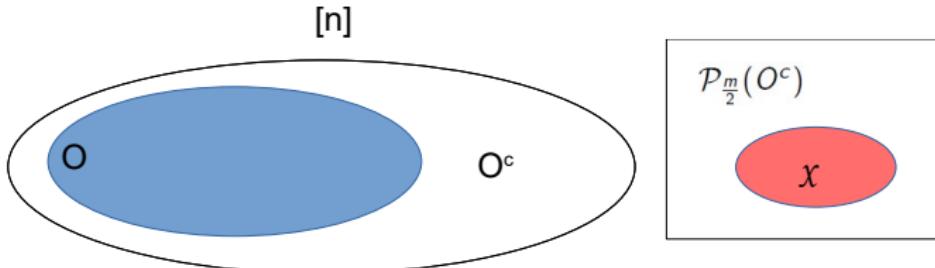
- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$



Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be a **center point** of \mathcal{C} .

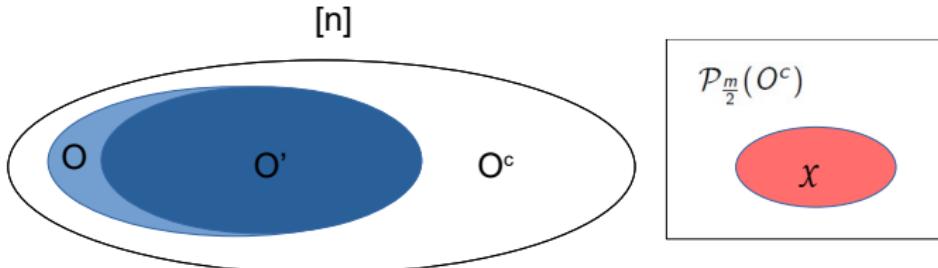
- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$



Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be a **center point** of \mathcal{C} .

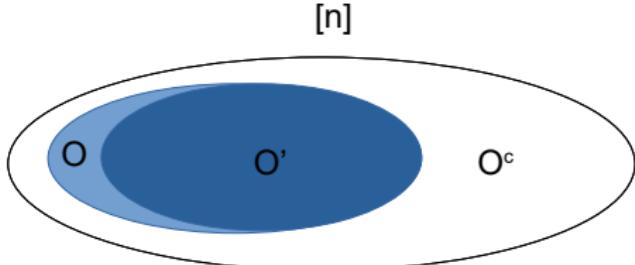
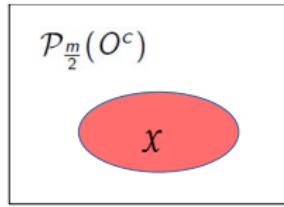
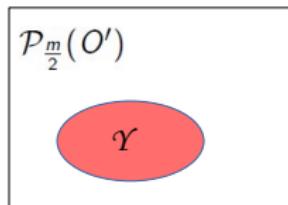
- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$
- take $O' \subset O$, $|O'| = 2m - 1$ and consider the geometry $\mathcal{P}_{\frac{m}{2}}(O')$



Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} .
The point O is said to be **a center point** of \mathcal{C} .

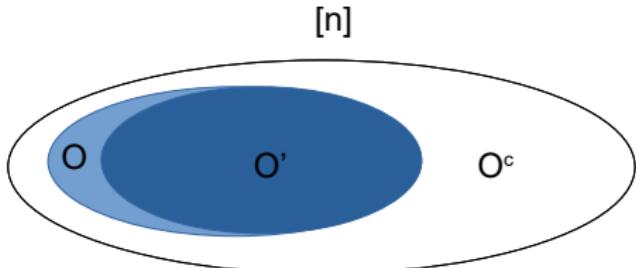
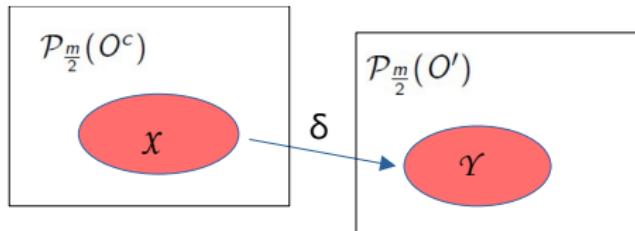
- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$
- take $O' \subset O$, $|O'| = 2m - 1$ and consider the geometry $\mathcal{P}_{\frac{m}{2}}(O')$
- take any maximal clique \mathcal{Y} of $\mathcal{P}_{\frac{m}{2}}(O')$ such that $|\mathcal{Y}| = 2m - 1$



Maximal centered cliques

We say that a maximal clique \mathcal{C} is **centered** if there is $O \in \mathcal{C}$ such that for every $C \in \mathcal{C} \setminus \{O\}$ the line joining C and O is contained in \mathcal{C} . The point O is said to be **a center point** of \mathcal{C} .

- take $O \subset [n]$, $|O| = 2m$, and $[n] \setminus O = O^c$, $|O^c| = 2m - 1$
- consider the geometry $\mathcal{P}_{\frac{m}{2}}(O^c)$
- take any maximal clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$ such that $|\mathcal{X}| = 2m - 1$
- take $O' \subset O$, $|O'| = 2m - 1$ and consider the geometry $\mathcal{P}_{\frac{m}{2}}(O')$
- take any maximal clique \mathcal{Y} of $\mathcal{P}_{\frac{m}{2}}(O')$ such that $|\mathcal{Y}| = 2m - 1$
- take a bijection $\delta: \mathcal{X} \rightarrow \mathcal{Y}$



Maximal centered cliques

The result of the construction

The set

$$\{O\} \cup \{X \cup \delta(X) : X \in \mathcal{X}\} \cup \{X \cup (O \setminus \delta(X)) : X \in \mathcal{X}\}$$

is a **maximal centered clique** of the collinearity graph of $\mathcal{P}_m(n)$ consisting of $n = 4m - 1$ elements. We denote this clique by $\mathcal{X} \#_{\delta} \mathcal{Y}$.

... and in the opposite direction

Let \mathcal{C} be a centered maximal n -element clique of the collinearity graph of $\mathcal{P}_m(n)$ and let O be a center point of \mathcal{C} .

- There is the unique maximal $(2m - 1)$ -element clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$,
- for every $O' \subset O$, $|O'| = 2m - 1$ there is the unique maximal $(2m - 1)$ -element clique \mathcal{Y} of $\mathcal{P}_{\frac{m}{2}}(O')$

such that $\mathcal{X} \#_{\delta} \mathcal{Y}$ for a certain bijection from \mathcal{X} to \mathcal{Y} .

Maximal centered cliques

The result of the construction

The set

$$\{O\} \cup \{X \cup \delta(X) : X \in \mathcal{X}\} \cup \{X \cup (O \setminus \delta(X)) : X \in \mathcal{X}\}$$

is a **maximal centered clique** of the collinearity graph of $\mathcal{P}_m(n)$ consisting of $n = 4m - 1$ elements. We denote this clique by $\mathcal{X} \#_{\delta} \mathcal{Y}$.

... and in the opposite direction

Let \mathcal{C} be a centered maximal n -element clique of the collinearity graph of $\mathcal{P}_m(n)$ and let O be a center point of \mathcal{C} .

- There is the unique maximal $(2m - 1)$ -element clique \mathcal{X} of $\mathcal{P}_{\frac{m}{2}}(O^c)$,
- for every $O' \subset O$, $|O'| = 2m - 1$ there is the unique maximal $(2m - 1)$ -element clique \mathcal{Y} of $\mathcal{P}_{\frac{m}{2}}(O')$

such that $\mathcal{X} \#_{\delta} \mathcal{Y}$ for a certain bijection from \mathcal{X} to \mathcal{Y} .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m-1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The index $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m - 1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The index $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m - 1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The index $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m - 1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The index $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m - 1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The **index** $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Maximal centered cliques of $\mathcal{P}_4(15)$

Let $k = 4$, so $m = 2^{4-2} = 4$, $n = 2^4 - 1 = 15$.

- $\mathcal{P}_{\frac{m}{2}}(2m - 1) = \mathcal{P}_2(7)$ is a rank 3 polar space
- every maximal clique of $\mathcal{P}_2(7)$ is a Fano plane
- if $\mathcal{X} \#_{\delta} \mathcal{Y}$ is a centered maximal clique of $\mathcal{P}_4(15)$, then \mathcal{X}, \mathcal{Y} are Fano planes

Let $\mathcal{F}_1, \mathcal{F}_2$ be Fano planes.

- Bijections $\delta, \delta': \mathcal{F}_1 \rightarrow \mathcal{F}_2$ are said to be **equivalent** if there are automorphisms $g_i: \mathcal{F}_i \rightarrow \mathcal{F}_i$, $i = 1, 2$, such that

$$\delta' = g_2 \delta g_1.$$

- The **index** $\text{ind}(\delta)$ is the number of lines which go to lines under δ .

Bijections between Fano planes – the classification

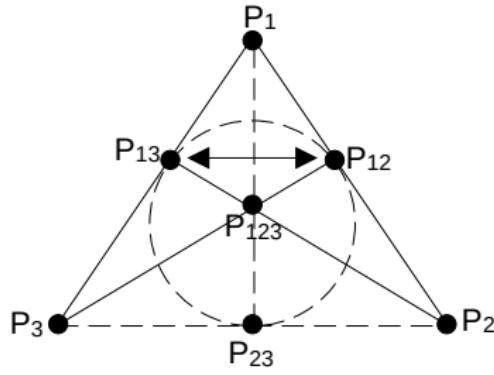


Figure: The case when δ is of index 3

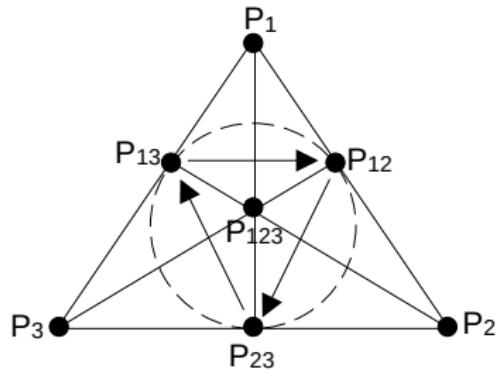


Figure: The case when δ is of index 1

Proposition

Two bijections between \mathcal{F}_1 and \mathcal{F}_2 are equivalent if and only if they are of the same index. There are precisely **four classes of equivalence** and the corresponding values of the index are 0, 1, 3, 7.

Bijections between Fano planes – the classification

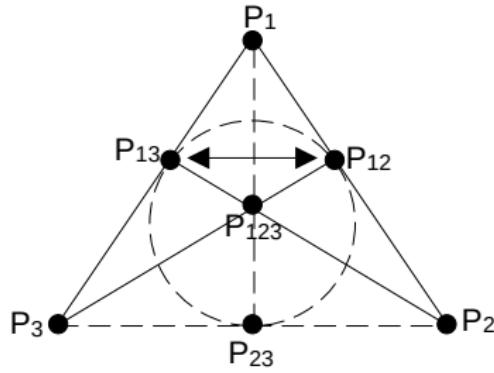


Figure: The case when δ is of index 3

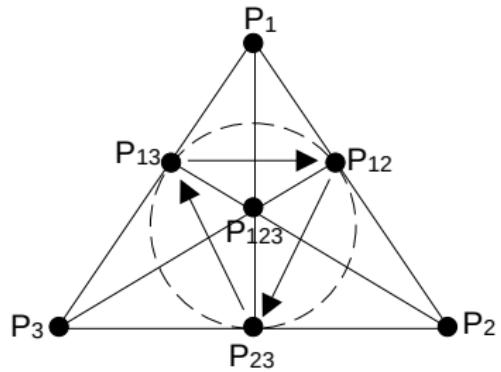


Figure: The case when δ is of index 1

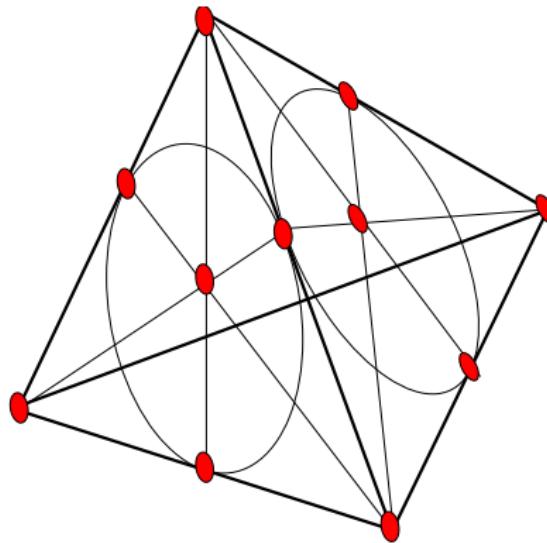
Proposition

Two bijections between \mathcal{F}_1 and \mathcal{F}_2 are equivalent if and only if they are of the same index. There are precisely **four classes of equivalence** and the corresponding values of the index are 0, 1, 3, 7.

Theorem

If \mathcal{C} is a centered maximal 15-element clique of the collinearity graph of $\mathcal{P}_4(15)$, then one of the following possibilities is realized:

(C1) \mathcal{C} is a solid and every point of \mathcal{C} is a center point,

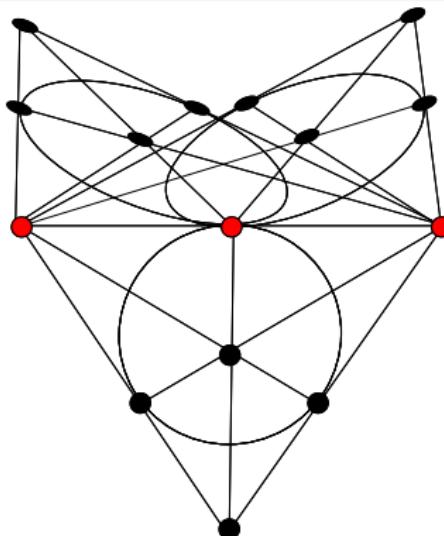


Centered maximal cliques of $\mathcal{P}_4(15)$ – the classification

Theorem

If \mathcal{C} is a centered maximal 15-element clique of the collinearity graph of $\mathcal{P}_4(15)$, then one of the following possibilities is realized:

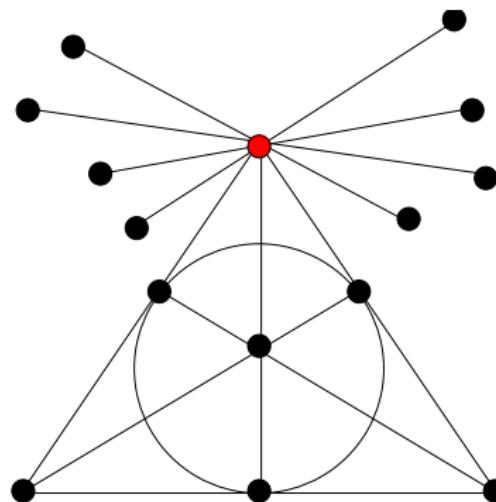
(C2) \mathcal{C} is the union of 3 Fano planes whose intersection is a line formed by center points,



Theorem

If \mathcal{C} is a centered maximal 15-element clique of the collinearity graph of $\mathcal{P}_4(15)$, then one of the following possibilities is realized:

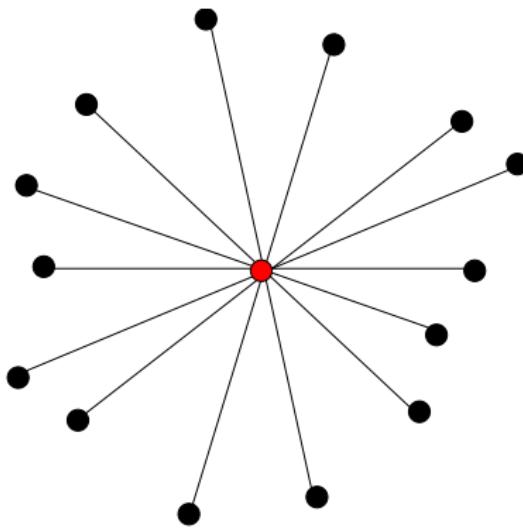
(C3) \mathcal{C} is the union of a Fano plane and four lines passing through the unique center point,



Theorem

If \mathcal{C} is a centered maximal 15-element clique of the collinearity graph of $\mathcal{P}_4(15)$, then one of the following possibilities is realized:

(C4) \mathcal{C} consists of seven lines passing through the unique center point.



Centered maximal cliques of $\mathcal{P}_4(15)$ – the classification

Theorem

If \mathcal{C} is a centered maximal 15-element clique of the collinearity graph of $\mathcal{P}_4(15)$, then one of the following possibilities is realized:

- (C1) \mathcal{C} is a solid and every point of \mathcal{C} is a center point,
- (C2) \mathcal{C} is the union of 3 Fano planes whose intersection is a line formed by center points,
- (C3) \mathcal{C} is the union of a Fano plane and four lines passing through the unique center point,
- (C4) \mathcal{C} consists of seven lines passing through the unique center point.

M. Pankov, K.P., M. Żynel, *Symmetric $(15, 8, 4)$ -designs in terms of the geometry of binary simplex codes of dimension 4*, Des. Codes Cryptogr. (2025), DOI: 10.1007/s10623-025-01570-7.

Symmetric $(15, 8, 4)$ -designs

There are five non-isomorphic symmetric $(15, 8, 4)$ -designs.

Theorem

There is a non-centered maximal 15-element clique in the collinearity graph of $\mathcal{P}_4(15)$ which is the union of a maximal singular subspace of $\mathcal{P}_4(15)$ with a plane deleted and a plane disjoint with this subspace.

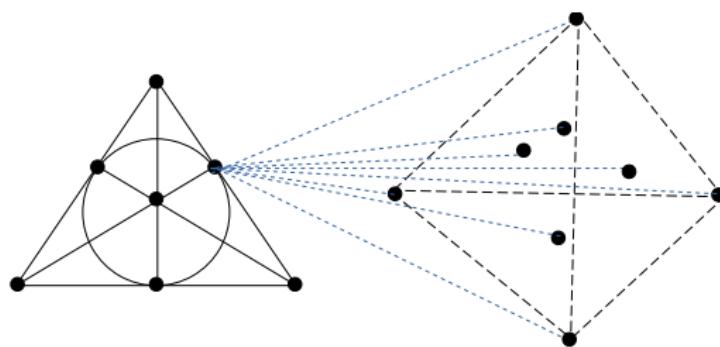


Symmetric $(15, 8, 4)$ -designs

There are five non-isomorphic symmetric $(15, 8, 4)$ -designs.

Theorem

There is a non-centered maximal 15-element clique in the collinearity graph of $\mathcal{P}_4(15)$ which is the union of a maximal singular subspace of $\mathcal{P}_4(15)$ with a plane deleted and a plane disjoint with this subspace.



The automorphism group action

- There is no automorphism of the non-centered maximal clique sending points of $\mathcal{S} \setminus \mathcal{F}'$ to points of the plane \mathcal{F} .
- There is no automorphism sending center point to non-center point.

Lemma

A symmetric $(15, 8, 4)$ -design corresponding to a clique of type (C1) is the unique symmetric $(15, 8, 4)$ -design admitting automorphisms acting transitively on the set of blocks.

Theorem, C. E. Praeger, S. Zhou, 2006

The design of points and hyperplane complements of $\text{PG}(3, 2)$ is the unique symmetric $(15, 8, 4)$ -design admitting a flag-transitive, point-imprimitive subgroup of automorphisms.

The automorphism group action

- There is no automorphism of the non-centered maximal clique sending points of $\mathcal{S} \setminus \mathcal{F}'$ to points of the plane \mathcal{F} .
- There is no automorphism sending center point to non-center point.

Lemma

A symmetric $(15, 8, 4)$ -design corresponding to a clique of type (C1) is the unique symmetric $(15, 8, 4)$ -design admitting automorphisms acting transitively on the set of blocks.

Theorem, C. E. Praeger, S. Zhou, 2006

The design of points and hyperplane complements of $\text{PG}(3, 2)$ is the unique symmetric $(15, 8, 4)$ -design admitting a flag-transitive, point-imprimitive subgroup of automorphisms.

The automorphism group action

- There is no automorphism of the non-centered maximal clique sending points of $\mathcal{S} \setminus \mathcal{F}'$ to points of the plane \mathcal{F} .
- There is no automorphism sending center point to non-center point.

Lemma

A symmetric $(15, 8, 4)$ -design corresponding to a clique of type (C1) is the unique symmetric $(15, 8, 4)$ -design admitting automorphisms acting transitively on the set of blocks.

Theorem, C. E. Praeger, S. Zhou, 2006

The design of points and hyperplane complements of $\text{PG}(3, 2)$ is the unique symmetric $(15, 8, 4)$ -design admitting a flag-transitive, point-imprimitive subgroup of automorphisms.

The automorphism group action

- There is no automorphism of the non-centered maximal clique sending points of $\mathcal{S} \setminus \mathcal{F}'$ to points of the plane \mathcal{F} .
- There is no automorphism sending center point to non-center point.

Lemma

A symmetric $(15, 8, 4)$ -design corresponding to a clique of type (C1) is the unique symmetric $(15, 8, 4)$ -design admitting automorphisms acting transitively on the set of blocks.

Theorem, C. E. Praeger, S. Zhou, 2006

The design of points and hyperplane complements of $\text{PG}(3, 2)$ is the unique symmetric $(15, 8, 4)$ -design admitting a flag-transitive, point-imprimitive subgroup of automorphisms.

Work in progress

- Looking into subspaces of a centered maximal clique \mathcal{C} of $\mathcal{P}_m(n)$ in the general case $m = 2^{k-2}$, $n = 4m - 1 = 2^k - 1$.
- Determining the automorphism group structure of maximal cliques of $\mathcal{P}_4(15)$ i.e. for $k = 4$.

Work in progress

- Looking into subspaces of a centered maximal clique \mathcal{C} of $\mathcal{P}_m(n)$ in the general case $m = 2^{k-2}$, $n = 4m - 1 = 2^k - 1$.
- Determining the automorphism group structure of maximal cliques of $\mathcal{P}_4(15)$ i.e. for $k = 4$.

That's all Folks!