

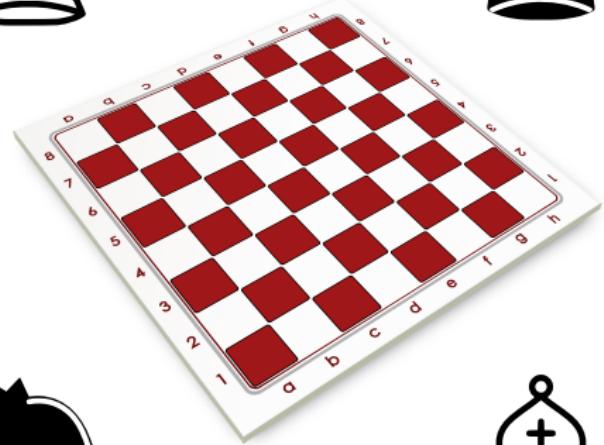
Designs of Perfect Matchings

Lukas Klawuhn

Paderborn University

05 June 2025

Games!



Tournament

Tournament

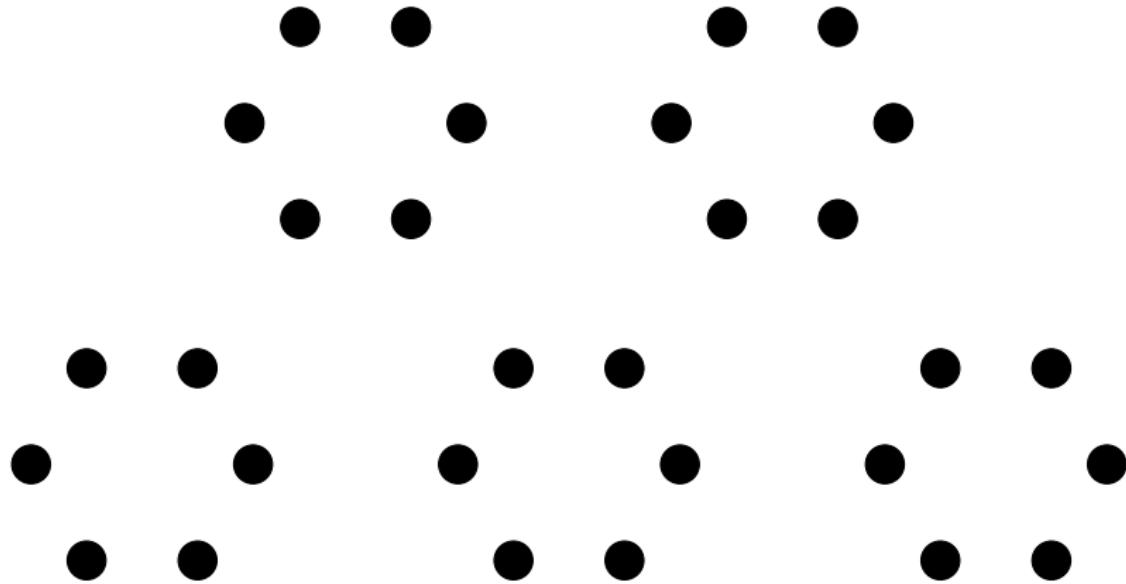
$$n \text{ players} \longrightarrow \binom{n}{2} \text{ matches}$$

Tournament

$$2n \text{ players} \longrightarrow \binom{2n}{2} = n(2n - 1) \text{ matches}$$

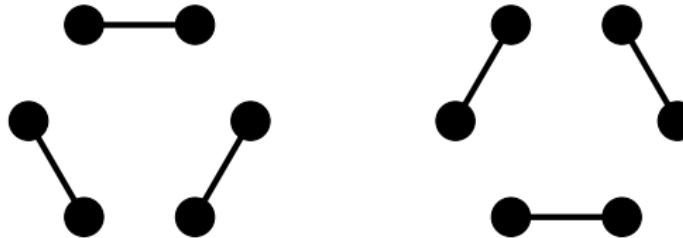
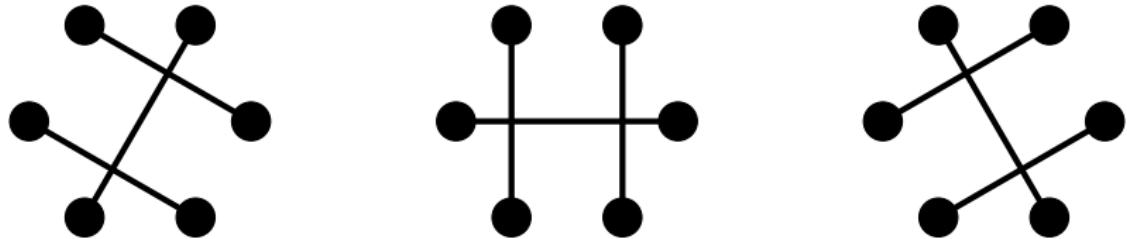
Tournament

$$2n \text{ players} \longrightarrow \binom{2n}{2} = n(2n - 1) \text{ matches}$$



Tournament

$$2n \text{ players} \longrightarrow \binom{2n}{2} = n(2n - 1) \text{ matches}$$



Hyperfactorisations

Hyperfactorisations

1-factorisation: every edge in exactly 1 perfect matching

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly 1 perfect matching

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly c perfect matchings

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly c perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \geq 5$, K_{2n} has a non-trivial hyperfactorisation.

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly c perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \geq 5$, K_{2n} has a non-trivial hyperfactorisation.

Generalisation:

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly c perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \geq 5$, K_{2n} has a non-trivial hyperfactorisation.

Generalisation:

- perfect matching \longrightarrow uniform set partition

Hyperfactorisations

- 1-factorisation: every edge in exactly 1 perfect matching
- hyperfactorisation: every pair of disjoint edges in exactly c perfect matchings

Theorem [Boros, Jungnickel, Vanstone (1991)]

For every $n \geq 5$, K_{2n} has a non-trivial hyperfactorisation.

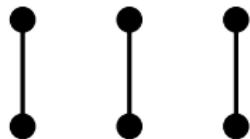
Generalisation:

- perfect matching \longrightarrow uniform set partition
- pair of disjoint subsets \longrightarrow t disjoint subsets

λ -factorisations

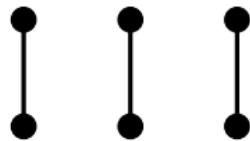
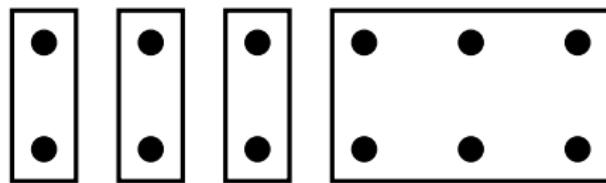
λ -factorisations

t disjoint edges



λ -factorisations

t disjoint edges \longrightarrow set partition of shape $(2(n - t), 2, 2, \dots, 2)$



2

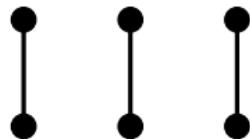
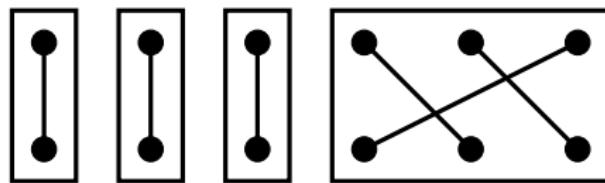
2

2

$2(n - t)$

λ -factorisations

t disjoint edges \longrightarrow set partition of shape $(2(n - t), 2, 2, \dots, 2)$



2

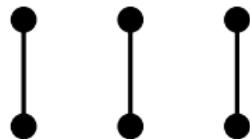
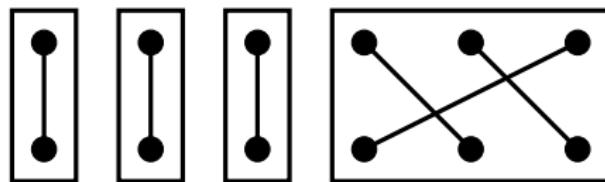
2

2

$2(n - t)$

λ -factorisations

t disjoint edges \longrightarrow set partition of shape $(2(n - t), 2, 2, \dots, 2)$



2

2

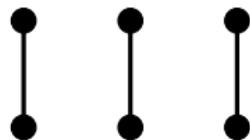
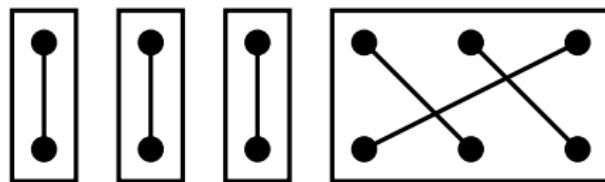
2

$2(n - t)$

λ -factorisation: every set partition of shape 2λ is refined by exactly c perfect matchings

λ -factorisations

t disjoint edges \longrightarrow set partition of shape $(2(n - t), 2, 2, \dots, 2)$



2

2

2

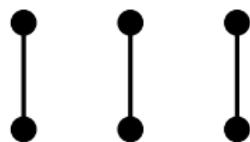
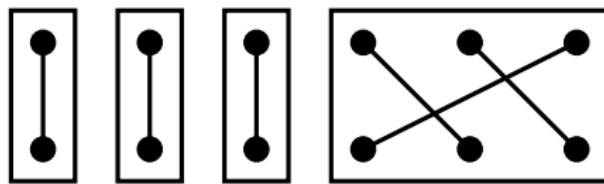
$2(n - t)$

λ -factorisation: every set partition of shape 2λ is refined by exactly c perfect matchings

\leadsto 1-factorisation: $(n - 1, 1)$ -factorisation

λ -factorisations

t disjoint edges \longrightarrow set partition of shape $(2(n - t), 2, 2, \dots, 2)$



2

2

2

$2(n - t)$

λ -factorisation: every set partition of shape 2λ is refined by exactly c perfect matchings

\rightsquigarrow 1-factorisation: $(n - 1, 1)$ -factorisation

hyperfactorisation: $(n - 2, 1, 1)$ -factorisation

Example

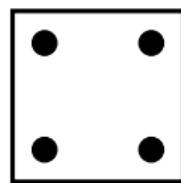
$n = 6, \lambda = (42)$:

Example

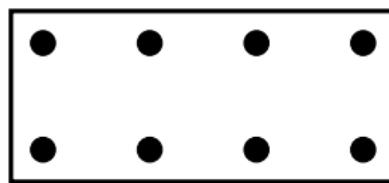
$n = 6, \lambda = (42)$: set partitions of shape (84)

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



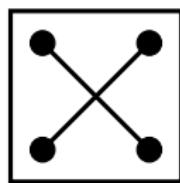
4



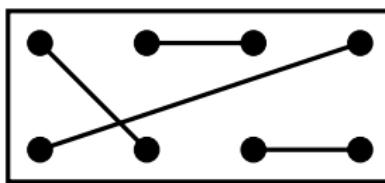
8

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



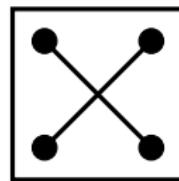
4



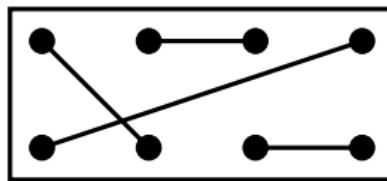
8

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



4

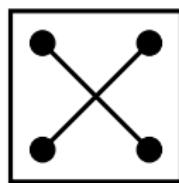


8

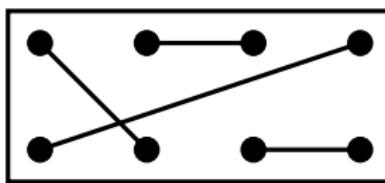
Perfect matchings on $\text{PG}(1, 11) = \mathbb{F}_{11} \cup \{\infty\}$:

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



4



8

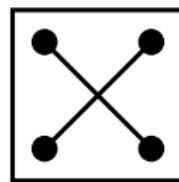
Perfect matchings on $\text{PG}(1, 11) = \mathbb{F}_{11} \cup \{\infty\}$:

$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^\square\},$$

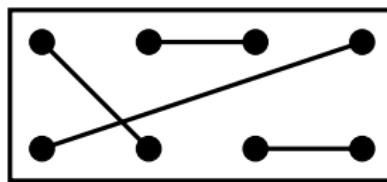
$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^\square\}.$$

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



4



8

Perfect matchings on $\text{PG}(1, 11) = \mathbb{F}_{11} \cup \{\infty\}$:

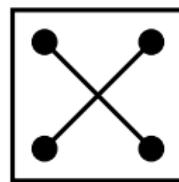
$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^\square\},$$

$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^\square\}.$$

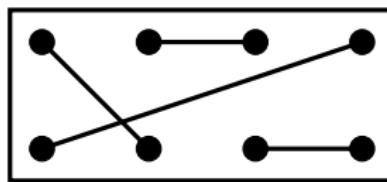
$G := \text{AGL}(1, 11) = \text{Stab}(\infty)$ acts on perfect matchings

Example

$n = 6, \lambda = (42)$: set partitions of shape (84)



4



8

Perfect matchings on $\text{PG}(1, 11) = \mathbb{F}_{11} \cup \{\infty\}$:

$$M_1 = \{\{0, \infty\}\} \cup \{\{x, -x\} : x \in \mathbb{F}_{11}^\square\},$$

$$M_2 = \{\{0, \infty\}\} \cup \{\{x, 7x\} : x \in \mathbb{F}_{11}^\square\}.$$

$G := \text{AGL}(1, 11) = \text{Stab}(\infty)$ acts on perfect matchings

$D = M_1^G \cup M_2^G$ is (42)-factorisation of index 1

Main results

Main results

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_\mu)_{\mu \vdash n}$ be its dual distribution. Then

$$D \text{ is a } \lambda\text{-factorisation} \iff a'_\mu = 0 \text{ for all } \mu \vdash n \text{ with } \lambda \trianglelefteq \mu \neq (n).$$

Main results

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_\mu)_{\mu \vdash n}$ be its dual distribution. Then

$$D \text{ is a } \lambda\text{-factorisation} \iff a'_\mu = 0 \text{ for all } \mu \vdash n \text{ with } \lambda \trianglelefteq \mu \neq (n).$$

Proof idea: Gelfand pair $(S_{2n}, S_2 \wr S_n)$

Main results

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a non-empty set of perfect matchings and $(a'_\mu)_{\mu \vdash n}$ be its dual distribution. Then

$$D \text{ is a } \lambda\text{-factorisation} \iff a'_\mu = 0 \text{ for all } \mu \vdash n \text{ with } \lambda \trianglelefteq \mu \neq (n).$$

Proof idea: Gelfand pair $(S_{2n}, S_2 \wr S_n)$

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

(42) \trianglelefteq (51)

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]

Let $\lambda \vdash n$, $\lambda \neq (n)$, and let D be a λ -factorisation of index 1. If k, l with $k \leq l$ are distinct parts of λ , then $2k - 1$ divides $2l + 1$.

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]

Let $\lambda \vdash n$, $\lambda \neq (n)$, and let D be a λ -factorisation of index 1. If k, l with $k \leq l$ are distinct parts of λ , then $2k - 1$ divides $2l + 1$.

(422):

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]

Let $\lambda \vdash n$, $\lambda \neq (n)$, and let D be a λ -factorisation of index 1. If k, l with $k \leq l$ are distinct parts of λ , then $2k - 1$ divides $2l + 1$.

$(422): 3 \nmid 5$

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]

Let $\lambda \vdash n$, $\lambda \neq (n)$, and let D be a λ -factorisation of index 1. If k, l with $k \leq l$ are distinct parts of λ , then $2k - 1$ divides $2l + 1$.

$(422): 3 \nmid 5 \implies$ no (422)-factorisation of index 1

Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]

Let $D \subseteq \mathcal{M}_{2n}$ be a λ -factorisation. If $\mu \trianglerighteq \lambda$, then D is also μ -factorisation.

$(42) \trianglelefteq (51) \implies$ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]

Let $\lambda \vdash n$, $\lambda \neq (n)$, and let D be a λ -factorisation of index 1. If k, l with $k \leq l$ are distinct parts of λ , then $2k - 1$ divides $2l + 1$.

$(422): 3 \nmid 5 \implies$ no (422)-factorisation of index 1

Corollary [Bamberg, K., (Schmidt) 2025]

For $n \geq 4$, a $(n - 2, 2)$ -factorisation of index 1 can only exist if $n \equiv 0 \pmod{3}$.

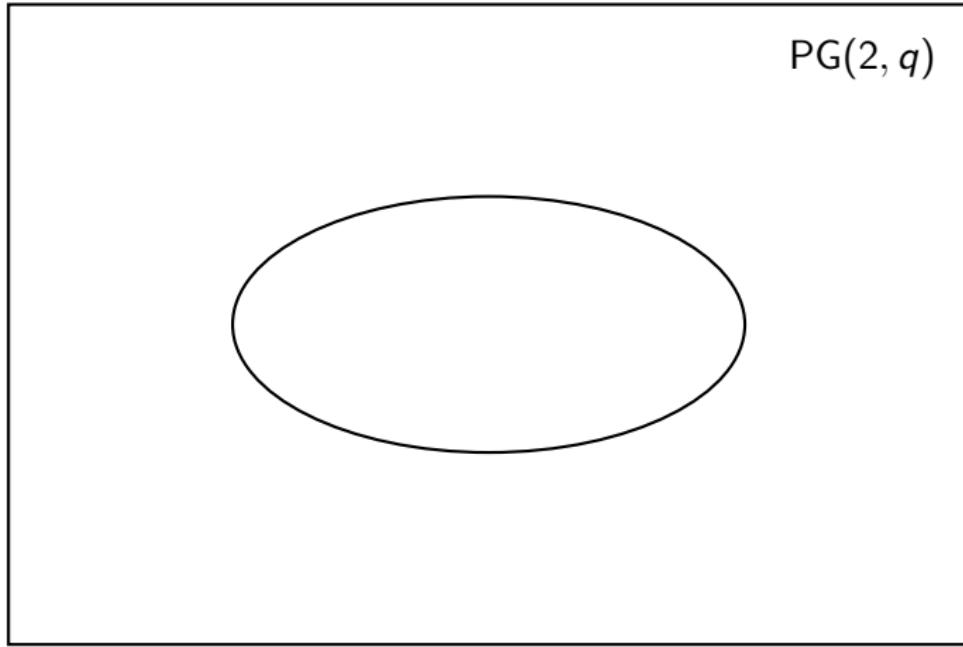
Construction

Construction

Cameron: Hyperovals in finite projective planes

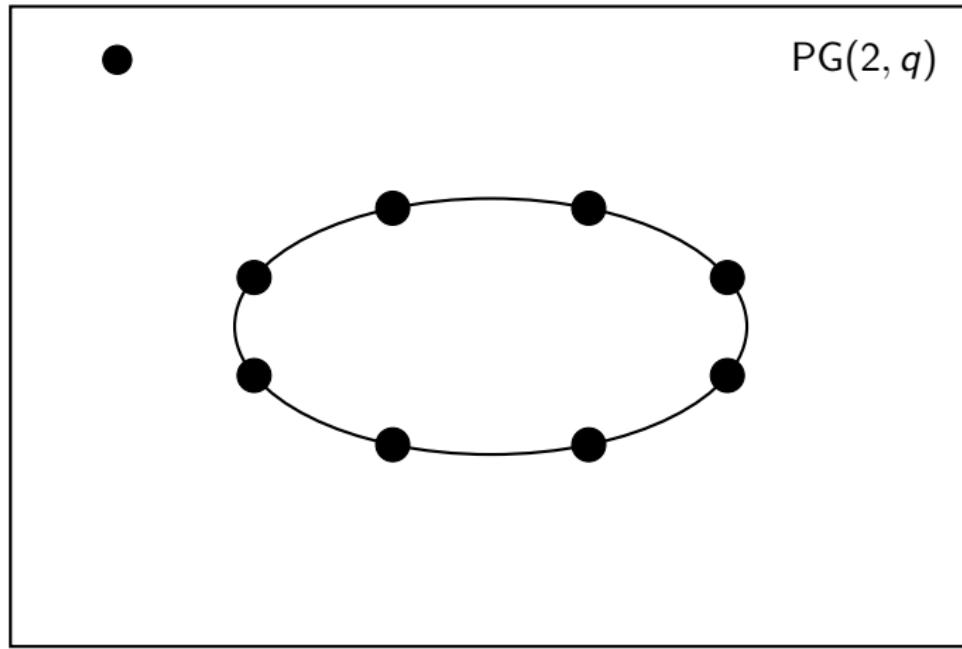
Construction

Cameron: Hyperovals in finite projective planes



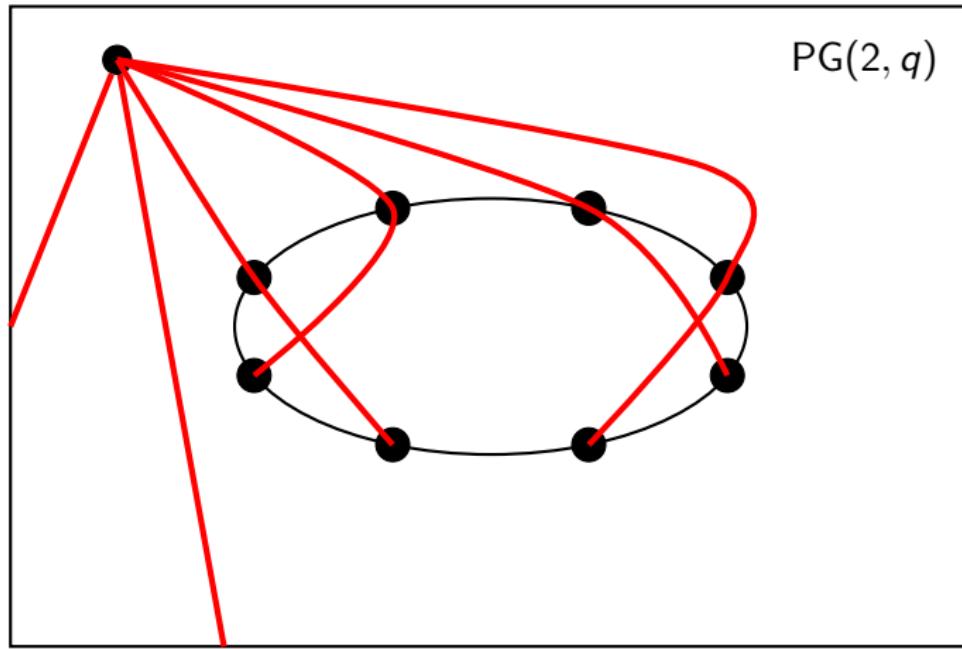
Construction

Cameron: Hyperovals in finite projective planes



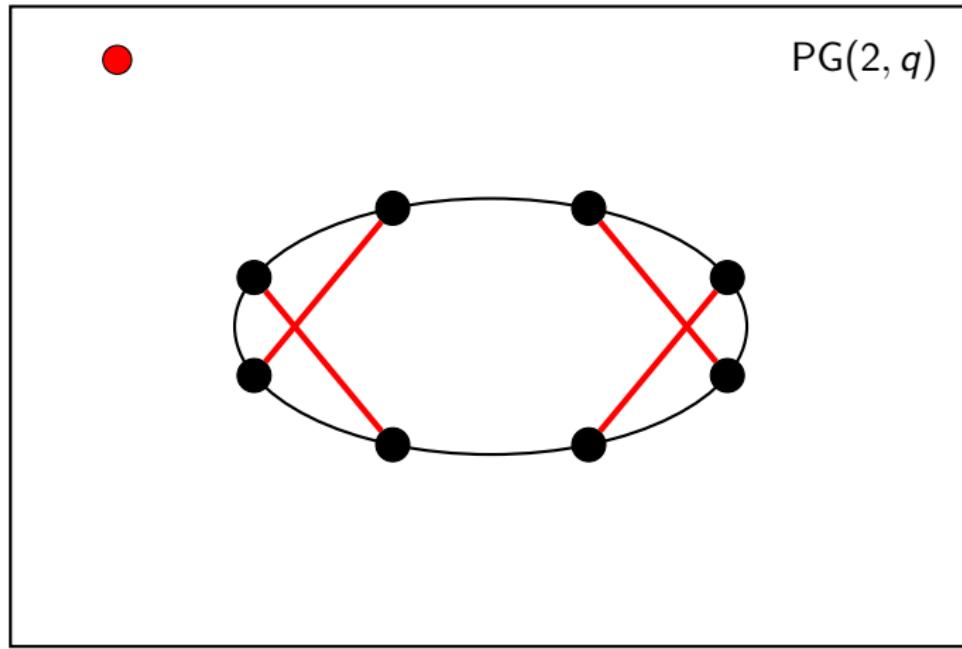
Construction

Cameron: Hyperovals in finite projective planes



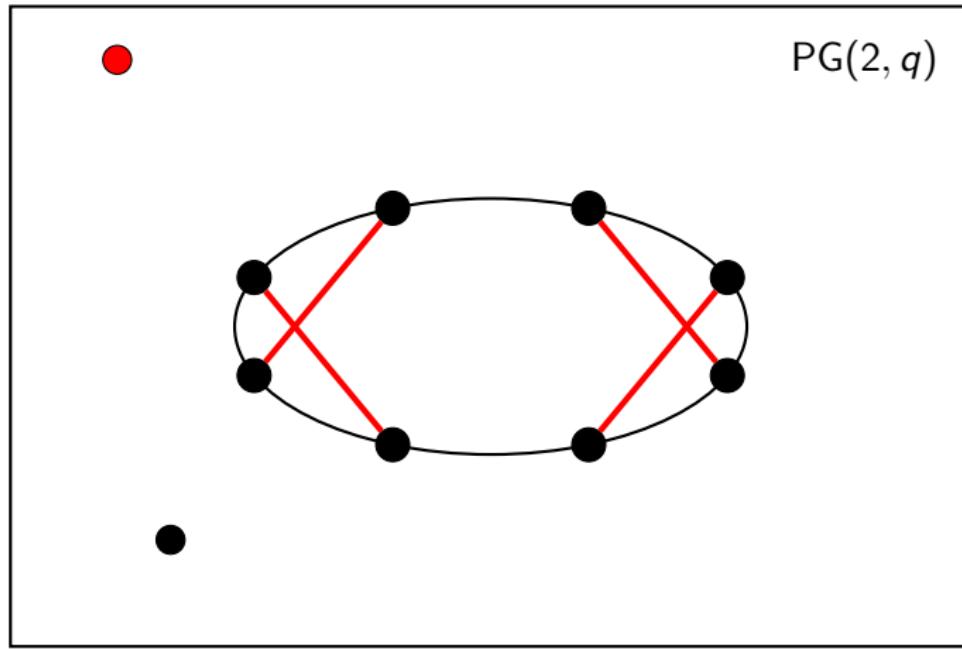
Construction

Cameron: Hyperovals in finite projective planes



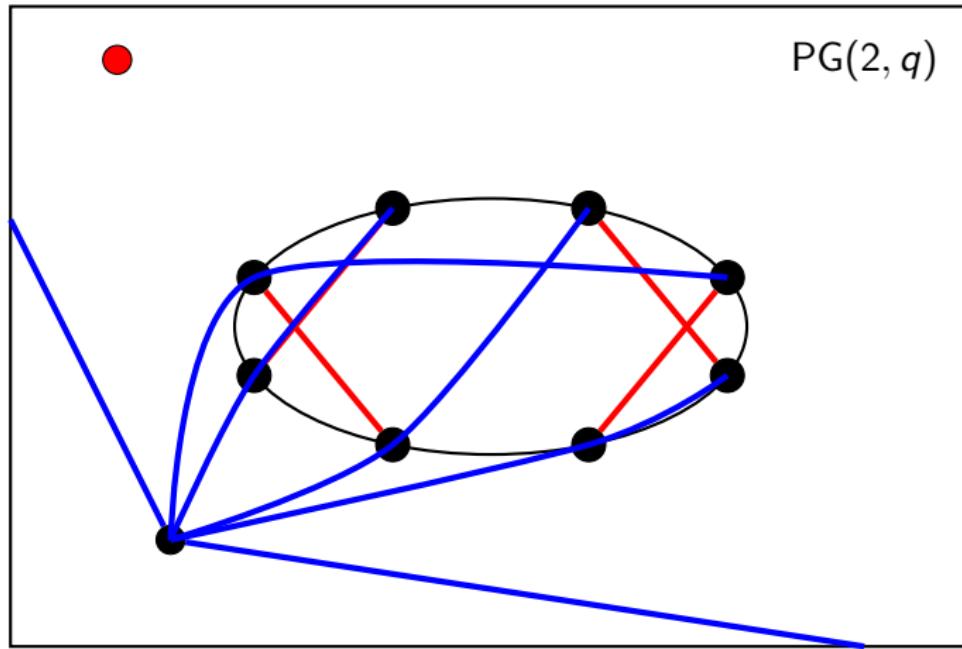
Construction

Cameron: Hyperovals in finite projective planes



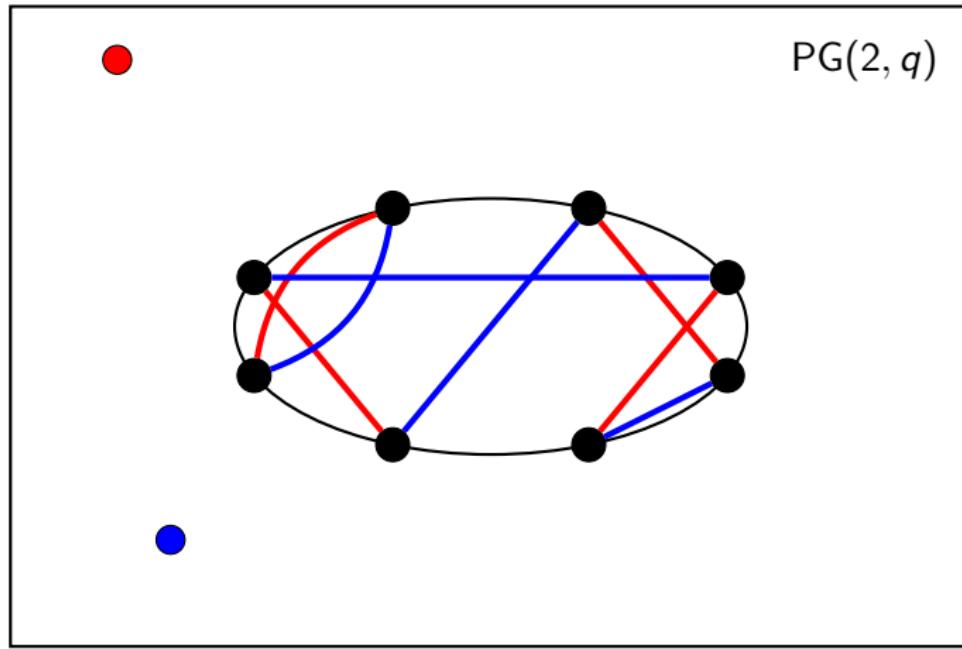
Construction

Cameron: Hyperovals in finite projective planes



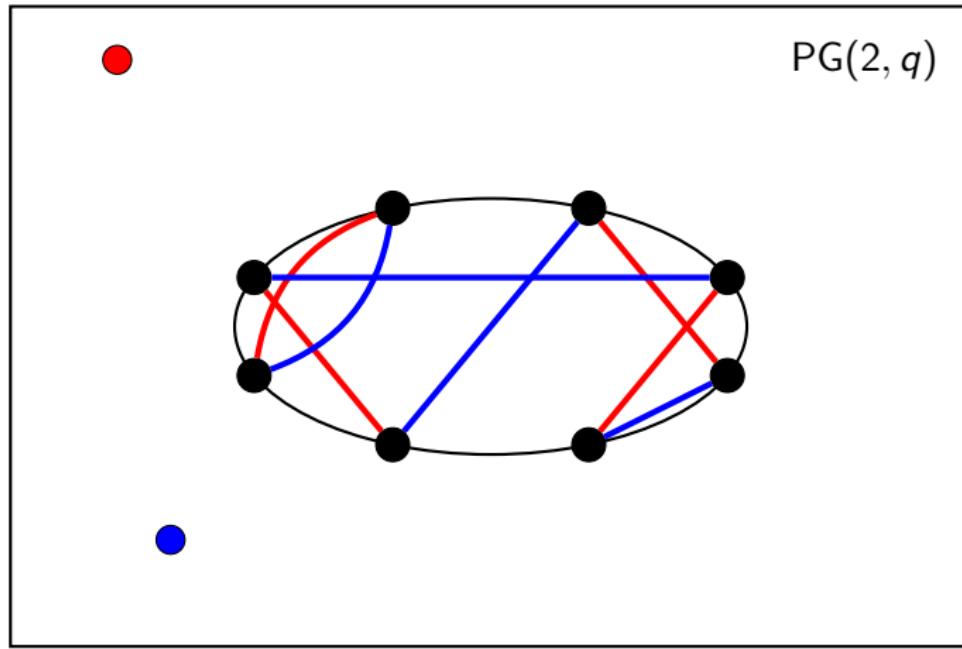
Construction

Cameron: Hyperovals in finite projective planes



Construction

Cameron: Hyperovals in finite projective planes



→ hyperfactorisation on points of the oval

Thank you for your attention!