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Hyperfactorisations

1-factorisation: every edge in exactly 1 perfect matching
hyperfactorisation: every pair of disjoint edges in exactly

perfect matching

s

Theorem [Boros, Jungnickel, Vanstone (1991)]
For every n ≥ 5, K2n has a non-trivial hyperfactorisation.

Generalisation:
• perfect matching −→ uniform set partition
• pair of disjoint subsets −→ t disjoint subsets
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λ-factorisations

t disjoint edges

−→ set partition of shape (2(n − t), 2, 2, . . . , 2)

2 2 2 2(n − t)

λ-factorisation: every set partition of shape 2λ is refined
by exactly c perfect matchings

⇝ 1-factorisation: (n − 1, 1)-factorisation
hyperfactorisation: (n − 2, 1, 1)-factorisation
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Example

n = 6, λ = (42):

set partitions of shape (84)

4 8

Perfect matchings on PG(1, 11) = F11 ∪ {∞}:

M1 = {{0, ∞}} ∪ {{x , −x} : x ∈ F□11},

M2 = {{0, ∞}} ∪ {{x , 7x} : x ∈ F□11}.

G := AGL(1, 11) = Stab(∞) acts on perfect matchings
D = MG

1 ∪ MG
2 is (42)-factorisation of index 1
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Main results

Theorem [Bamberg, K., (Schmidt) 2025]
Let D ⊆ M2n be a non-empty set of perfect matchings and (a′

µ)µ ⊢ n be its
dual distribution. Then

D is a λ-factorisation ⇐⇒ a′
µ = 0 for all µ ⊢ n with λ⊴ µ ̸= (n).

Proof idea: Gelfand pair (S2n, S2 ≀ Sn)

Theorem [Bamberg, K., (Schmidt) 2025]
Let D ⊆ M2n be a λ-factorisation. If µ⊵ λ, then D is also µ-factorisation.
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Comparing designs

Theorem [Bamberg, K., (Schmidt) 2025]
Let D ⊆ M2n be a λ-factorisation. If µ⊵ λ, then D is also µ-factorisation.

(42)⊴ (51) =⇒ a (42)-factorisation is also a (51)-factorisation

Corollary [Bamberg, K., (Schmidt) 2025]
Let λ ⊢ n, λ ̸= (n), and let D be a λ-factorisation of index 1. If k, l with
k ≤ l are distinct parts of λ, then 2k − 1 divides 2l + 1.

(422): 3 ∤ 5 =⇒ no (422)-factorisation of index 1

Corollary [Bamberg, K., (Schmidt) 2025]
For n ≥ 4, a (n − 2, 2)-factorisation of index 1 can only exist if n ≡ 0
mod 3.
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Construction

Cameron: Hyperovals in finite projective planes

PG(2, q)

12
3

4
5 6

7

8

−→ hyperfactorisation on points of the oval
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Thank you for your attention!
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