

Two-factorizations of some regular graphs

Mariusz Meszka

AGH University of Kraków, Poland

A decomposition of $G = (V, E)$ is a collection $\{H_1, H_2, \dots, H_t\}$ of edge-disjoint subgraphs of G such that each edge of G belongs to exactly one H_i .

These subgraphs are called **blocks** of a decomposition.

G has an **H -decomposition** if all blocks are isomorphic to a given graph H .

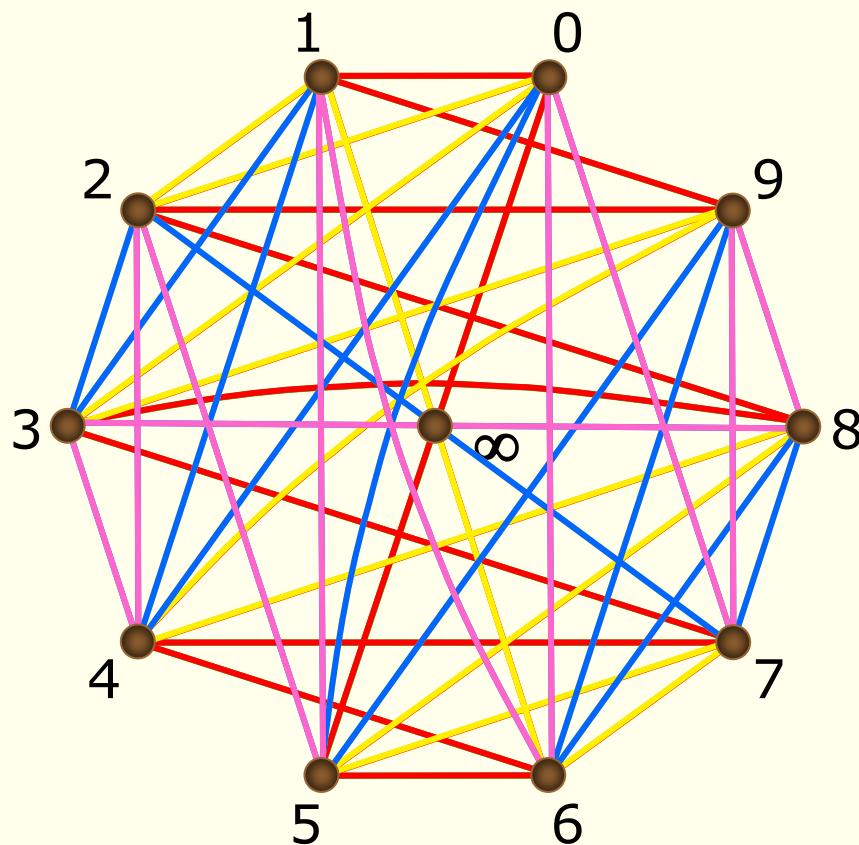
If H is a spanning regular subgraph of degree k in G then H is called a **k -factor** of G and an H -decomposition is called a **k -factorization** of G or **H -factorization**.

Theorem [F. Walecki (1883)]

For each odd $n \geq 3$, the complete graph K_n is decomposable into Hamilton cycles.

Example

$n = 11$

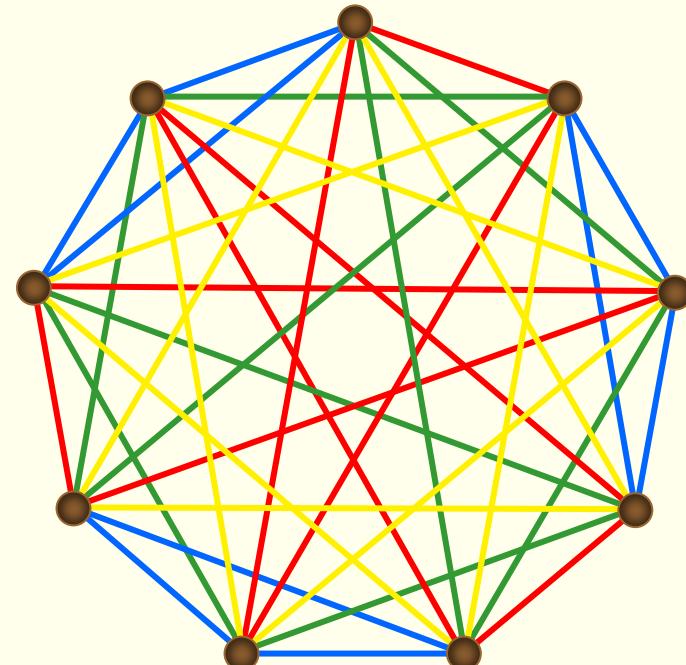


Theorem [D. Ray-Chaudhuri, R. Wilson (1971)]

The complete graph K_n is factorable into C_3 -factors if and only if $n \equiv 3 \pmod{6}$.

Example

$G=K_9, H=C_3$



Theorem [B. Alspach, P. Schellenberg, D. Stinson, D. Wagner (1989)]

For positive integers n and k such that n is odd and $3 \leq k \leq n$, the complete graph K_n has a C_k -factorization if and only if $k \mid n$.

Theorem [A. Kotzig, A. Rosa (1974); R. Baker, R. Wilson (1977);
A. Brouwer (1978); R. Rees, D. Stinson (1987)]

The graph $K_n \setminus I$ has a C_3 -factorization if and only if
 $n \equiv 0 \pmod{6}$ and $n \geq 18$.

Theorem [B. Alspach, R. Häggkvist (1985); B. Alspach, P. Schellenberg,
D. Stinson, D. Wagner (1989); D. Hoffman, P. Schellenberg (1991)]

For any $k \geq 3$, the graph $K_n \setminus I$ has a C_k -factorization
if and only if $k \mid n$, except when $k=3$ and $n \in \{6, 12\}$.

Oberwolfach Problem [G. Ringel (1967)]

Let $3 \leq k_1, k_2, \dots, k_t$, and $k_1 + k_2 + \dots + k_t = n$.

Does the complete graph K_n , when n is odd, or $K_n \setminus I$, when n is even, have a 2-factorization in which every 2-factor consists of cycles of lengths k_1, k_2, \dots, k_t ?

$\text{OP}(n; k_1, k_2, \dots, k_t)$ denotes given instance of the Oberwolfach problem.

Exceptions:

- $\text{OP}(6; 3, 3)$
- $\text{OP}(9; 5, 4)$
- $\text{OP}(11; 5, 3, 3)$
- $\text{OP}(12; 3, 3, 3, 3)$

Theorem [B. Alspach, R. Häggkvist (1985);

D. Bryant, P. Danziger (2012)]

If F is a bipartite 2-factor of order n , then there exists a 2-factorization of $K_n - I$ in which each 2-factor is isomorphic to F .

Theorem [T. Traetta (2013)]

For any $n \geq 7$ and $k \geq 3$, there exists a solution to $\text{OP}(n; k, n-k)$, except for $\text{OP}(9; 5, 4)$;

Theorem [B. Alspach, D. Bryant, D. Horsley, B. Maenhaut, V. Scharaschkin (2016)]

If $p \equiv 5 \pmod{8}$ is prime, then $\text{OP}(F)$ has a solution for every 2-factor F of order $2p$.

An n -vertex graph H is said to be ξ -separable if there exists a set S of at most ξn -vertices such that each component of $H \setminus S$ has size at most ξn .

Theorem [S. Glock, F. Joos, J. Kim, D. Kühn, D. Osthus (2021)]

For given $\Delta \in \mathbb{N}$ and $\alpha > 0$, there exists $\xi_0 > 0$ and $n_0 \in \mathbb{N}$ such that the following holds for all $n \geq n_0$ and $\xi < \xi_0$.

Let \mathcal{F}, \mathcal{K} be collections of graphs satisfying the following:

- (1) \mathcal{F} is a collection of at least αn copies of F , where F is a 2-regular n -vertex graph,
- (2) each $H \in \mathcal{K}$ is a ξ -separable n -vertex r_H -regular graph for some $r_H \leq \Delta$,
- (3) $e(\mathcal{F} \cup \mathcal{K}) = \binom{n}{2}$.

Then K_n decomposes into $\mathcal{F} \cup \mathcal{K}$.

Computer verification

- $n \leq 13$ [F. Franek, J. Holub, A. Rosa (2004)]
- $n \leq 17$ [P. Adams, D. Bryant (2006)]
- $n \leq 40$ [A. Deza, F. Franek, W. Hua, A. Rosa, MM (2010)]
- $n \leq 60$ [F. Salassa, G. Dragotto, T. Traetta, M. Buratti, F. Della Croce (2021)]
- $n \leq 100$ [MM (2024)]

Hamilton–Waterloo Problem [A. Rosa (1995)]

Let Q and R be two 2-factors of order n .

Let q and r be two non-negative integers such that
 $q + r = \left\lfloor \frac{n-1}{2} \right\rfloor$.

Does the complete graph K_n , when n is odd, or $K_n \setminus I$,
when n is even, have a 2-factorization in which
 q of the 2-factors are isomorphic to Q and
 r of the 2-factors are isomorphic to R ?

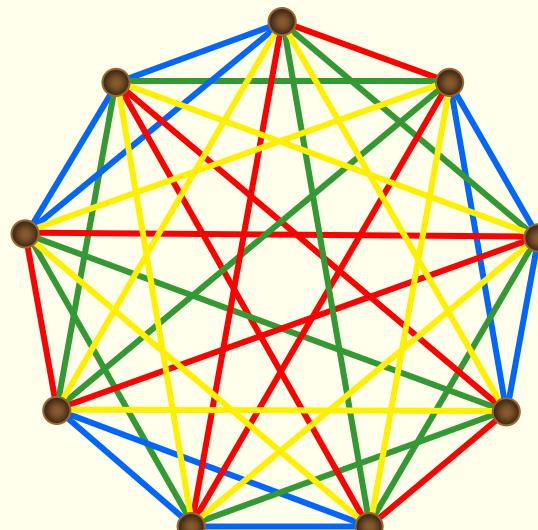
If each component of Q is a cycle of length k and each
component of R is a cycle of length l then the corresponding
instance of the Hamilton–Waterloo problem is denoted by
 $\text{HW}(G; k, l)$.

Example

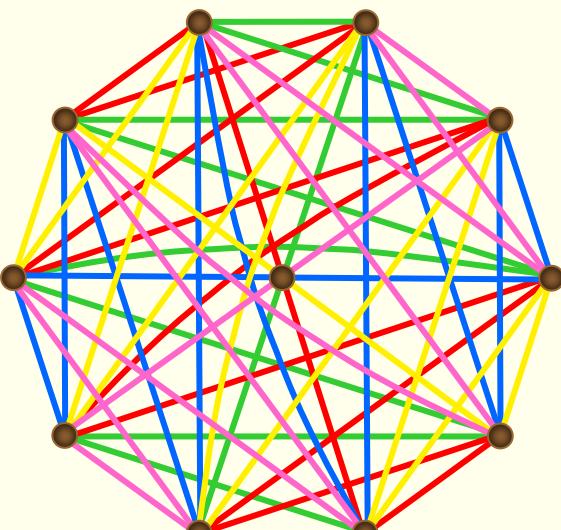
$n=9$

Q : C_3 -factor

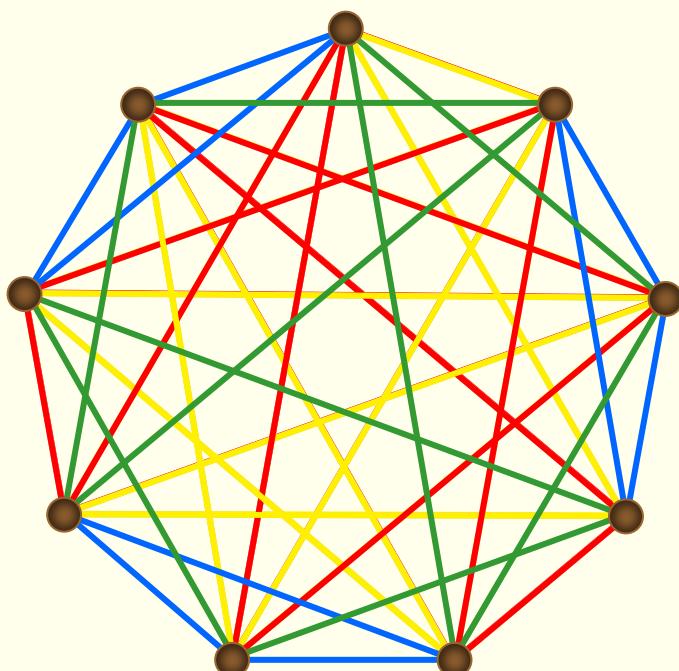
R : C_n -factor



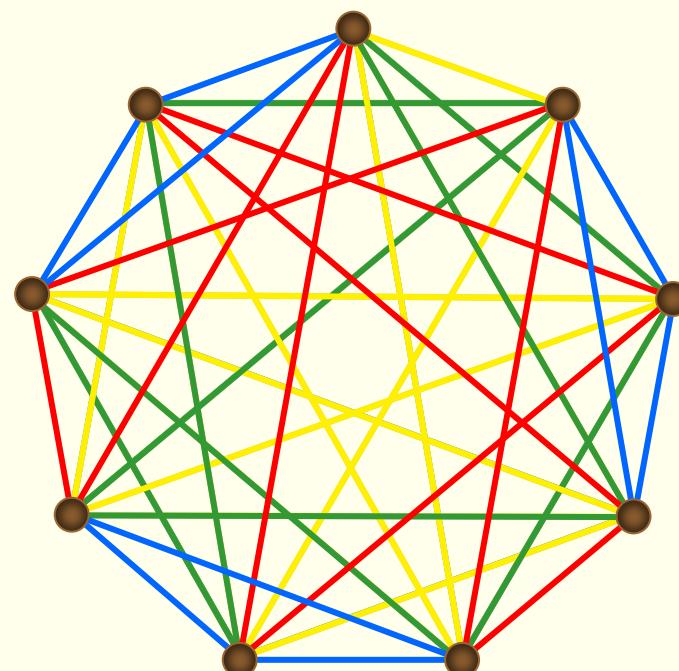
$q=4 \ r=0$



$q=0 \ r=4$



$q=2 \ r=2$



$q=1 \ r=3$

Theorem [P. Horak, R. Nedela, A. Rosa (2004)]

Let $n \equiv 9 \pmod{18}$. Then $(q,r) \in \text{HW}(K_n; 3, n)$ if and only if $q, r \geq 0$, $q+r = \frac{n-1}{2}$, and $r \neq 1$ when $n=9$.

Theorem [P. Horak, R. Nedela, A. Rosa (2004)]

Let $n \equiv 3$ or $15 \pmod{18}$. Assume that

$r \in \left\{ \frac{n+3}{6}, \frac{n+3}{6}+2, \frac{n+3}{6}+3, \dots, \frac{n-1}{2} \right\}$ and $q = \frac{n-1}{2} - r$.

Then $(q,r) \in \text{HW}(K_n; 3, n)$.

Theorem [A. Ling, J. Dinitz (2009)]

Let $n \equiv 3 \pmod{18}$ and $n \geq 57$. Then $(q,r) \in \text{HW}(K_n;3,n)$ if and only if $q, r \geq 0$, $q+r = \frac{n-1}{2}$, except possibly when $r=1$.

Theorem [J. Dinitz, A. Ling (2009)]

For each $n \equiv 3 \pmod{6}$, $(\frac{n-3}{2},1) \in \text{HW}(K_n;3,n)$ except when $n=9$ and with the possible exceptions of $n \in \{93,111,123,129,141,153,159,177,183,201,207,213,237,249\}$.

Theorem [MM (2025+)]

For each $n \equiv 3 \pmod{6}$, $(q,r) \in \text{HW}(K_n;3,n)$ if and only if $q, r \geq 0$, $q+r = \frac{n-1}{2}$, except when $n=9$ and $r=1$.

Theorem [A. Burgess, P. Danziger, T. Traetta (2018)]

Let m, v, q, r be integers such that m and v are odd, $m \geq v \geq 3$ and $q, r > 0$. Then $(q, r) \in \text{HW}(K_{mv}; m, mv)$ if and only if $q+r = \frac{mv-1}{2}$, except possibly when at least one of the following holds:

- (1) $r=1$
- (2) $q < \frac{m-1}{2}$
- (3) $q - \frac{m-1}{2} \in \{1, 3\}$ and $m > v$
- (4) $(m, v) = (5, 3)$ and $q - \frac{m-1}{2} \equiv 1, 3 \pmod{m}$

Theorem [S. Özkan, MM (2025+)]

Let m, v be odd integers such that $m \geq 7$ and $v \geq 3$. Then $(q, r) \in \text{HW}(K_{mv}; m, mv)$ if and only if $q+r = \frac{mv-1}{2}$ with $q, r \geq 0$.

Theorem [S. Özkan, MM (2025+)]

Let $v \geq 3$ be an odd integer. Then $(q,r) \in \text{HW}(K_{5v}; 5, 5v)$ if and only if $q+r = \frac{5v-1}{2}$ with $q, r \geq 0$, except possibly when $1 \leq r \leq \frac{v-1}{2}$ for $v \geq 7$ and $5 \nmid v$.

Theorem [A. Burgess, P. Danziger, T. Traetta (2018)]

Let m, v, p, r, s be integers such that m and v are odd, $m, v \geq 3$ and $q, r, s > 0$. Then $(q, r) \in \text{HW}(K_{smv}; m, mv)$ if and only if $q+r = \frac{smv-1}{2}$, except possibly when at least one of the following holds:

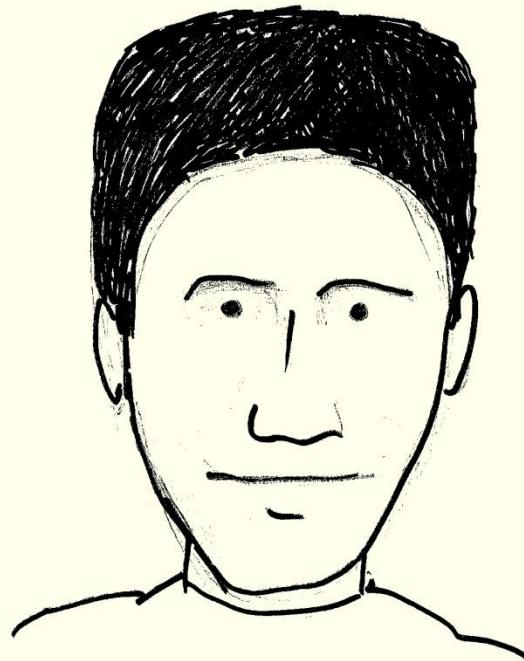
- (1) $r=1$
- (2) $(m,q)=(3,6)$
- (3) $s \in \{1, 2, 4\}$ and either $v > m$ or one of the following holds:
 - (a) $q < \left\lfloor \frac{sm-1}{2} \right\rfloor$
 - (b) $q - \left\lfloor \frac{sm-1}{2} \right\rfloor \in \{1, 3\}$ and $m > v$
 - (c) $(m, v) = (5, 3)$ and $q - \left\lfloor \frac{sm-1}{2} \right\rfloor \equiv 1, 3 \pmod{m}$
 - (d) $(v, s) = (3, 2)$

Theorem [S. Özkan, MM (2025+)]

Let m, v, s be integers such m, v are odd, $m \geq 7$, $v \geq 3$, $s \geq 1$.
Then $(q, r) \in \text{HW}(K_{smv}; m, mv)$ if and only if $q+r = \left\lfloor \frac{smv-1}{2} \right\rfloor$
with $q, r \geq 0$.

Tools and constructions

- graph products: Cartesian, lexicographic, direct, strong
- circulants
- Skolem-type sequences
- cycle designs
- block colorings of designs
- efficient computer search



Thank you!