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Linear equidistant codes

Alphabet – finite field Fq of q elements

Code ([n, k]q code) – k-dimensional subspace of F n
q

The Hamming distance between any two distinct codewords
is constant

All non-zero codewords have constant Hamming weight

Simplex codes are equidistant codes
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Outline of our result

M. Pankov, K. Petelczyc, M. Żynel
Point-line geometries related to binary equidistant codes
J. Combin. Theory Ser. A 210 (2025), 1-30.

A complete characterization of automorphism of
the point-line geometry of linear equidistant codes is given

In some non-trivial cases, there are automorphism of this
geometry induced by non-monomial semilinear automorphism
of the ambient vector space
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Point-line geometries

Let P be a set whose elements will be called points and let
L be a family of subsets of P called lines

A pair (P,L) is called a point-line geometry whenever
▶ every line contains at least two points and
▶ the intersection of two distinct lines contains at most one point

Two distinct points are said to be collinear if there is
a line containing them

A subset X ⊆ P is called a subspace whenever for any two
distinct collinear points from X , the entire line containing
them is a subset of X

A subspace is singular when every two of its distinct points
are collinear
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Automorphisms of point-line geometries

In a point-line geometry, a one-to-one transformation of its
pointset preserving the family of its lines in both directions is
called an automorphism (a collineation)

Fundamental Theorem of Projective Geometry

Every automorphism of a projective space is induced by a
semilinear automorphism of the ambient vector space.
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Ambient projective space

Let V = F n
2 . The standard basis of V is

e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)

For every non-zero vector v of V we have

v = eI =
∑
i∈I

ei , ∅ ≠ I ⊆ [n] = {1, 2, . . . , n}

The i-th coordinate of eI is either 1, if i ∈ I , or 0 otherwise

P(V ) is the projective space over V

PI is the point of P(V ) corresponding to eI

If P,Q are distinct points, then

P,Q = ⟨P,Q⟩ = {P,Q,P ⊙ Q}

For non-empty subsets I , J ⊂ [n] we have

eI + eJ = eI△J , consequently PI ⊙ PJ = PI△J
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Settings for our point-line geometry

For every point PI of P(V ) its Hamming weight is

w(PI ) = |I |

Let m ∈ N such that 3m ≤ n

Take all those points of the projective space P(V ) whose
Hamming weight is 2m

Pm =
{
PI ∈ P(V ) : |I | = 2m

}
Pm can be considered a point-line geometry whose lines are
the lines of the projective space P(V ) contained in Pm

For distinct PI ,PJ ∈ Pm we have

PI ⊙ PJ ∈ Pm iff |I ∩ J| = m

M. Żynel Automorphisms of geometries related to binary equidistant codes



Point-line geometry of linear equidistant codes

The Hamming distance between any two distinct collinear
points P,Q ∈ Pm is

d(P,Q) = w(P ⊙ Q) = 2m

There is a natural one-to-one correspondence between
singular subspaces of the point-line geometry Pm and
2m-equidistant codes of V

Maximal singular subspaces of the point-line geometry Pm

correspond to maximal 2m-equidistant codes of V
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Geometries in our class

A line of size 3 (n = 3m = 3)

The Pasch (Veblen) configuration (n = 3m + 1 = 4)

The Cremona-Richmond configuration known also as the
generalized quadrangle of type 2, 2 (n = 3m = 6)

A polar space (n = 4m − 1 = 7)

If n = 4m − 1 = 2k − 1, then the maximal singular subspaces
of Pm correspond to binary simplex codes of dimension k

Remark

All the geometries in our class can be considered
partial Steiner triple systems embedded in Steiner triple systems
which are projective spaces over the two-element field
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Linear automorphisms

Every linear automorphism, in particular, a coordinate
permutation (a monomial linear automorphism) of V
preserving the pointset Pm induces an automorphism of the
point-line geometry of linear equidistant codes Pm
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Hyperplane closure

Let S be the hyperplane of V made up by all vectors

(x1, . . . , xn) ∈ V with x1 + x2 + · · ·+ xn = 0

A projective point PI ∈ P(V ) is contained in S iff |I | is even

For any distinct P,Q ∈ Pm the point P ⊙ Q belongs to P(S)

Pm =
{
P ⊙ Q ∈ P(S) : P,Q ∈ Pm

}

P
Q

P ⊙ Q

Pm

Pm
S

Pm = P(S) only if n = 4m − 1, 4m, 4m + 1

Every non-zero vector of S is the sum of some vectors of
Hamming weight 2m

P(S) is the smallest projective space containing Pm
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Horizon

Let P ∈ Pm \ Pm

For pairwise distinct PI ,PJ ,PI ′ ,PJ′ ∈ Pm such that

P = PI ⊙ PJ = PI ′ ⊙ PJ′

we write

⟨PI ,PJ⟩ ∼ ⟨PI ′ ,PJ′⟩
whenever

PI ⊙ PI ′ = PJ ⊙ PJ′ ∈ Pm or PI ⊙ PJ′ = PJ ⊙ PI ′ ∈ Pm

If both of these last two points belong to Pm, then we get
a punctured Fano plane in Pm
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Specific linear automorphism for n = 4m − 1

Let i ∈ [n] and consider a linear automorphism of V

fi (ej) =

{
ej , j ̸= i ,

e[n], j = i ,

for all j ∈ [n]

Note that fi (eI ) = eI when i ̸∈ I

For i ∈ I ⊂ [n] we have

fi (eI ) = e[n] + eI\{i} = e[n]\(I\{i})

If |I | = 2m, then∣∣[n] \ (I \ {i})∣∣ = 4m − 1− (2m − 1) = 2m

Therefore fi preserves Pm
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Specific linear automorphisms for n = 4m

Let i , j ∈ [n], i ̸= j , and consider linear automorphisms of V

fij(et) =


et , t ̸= i , j ,

e[n]\{i}, t = i ,

e[n]\{j}, t = j ,

gij(et) =


et , t ̸= i , j ,

e[n]\{j}, t = i ,

e[n]\{i}, t = j ,

for all t ∈ [n]

Note that fij(eI ) = gij(eI ) = eI when i , j ̸∈ I

For i , j ∈ I ⊂ [n] we have

fij(eI ) = gij(eI ) = e[n]\{i} + e[n]\{j} + eI\{i,j} = e{i,j} + eI\{i,j} = eI

If |I | = 2m and I contains only one of i , j , say i , then

fij(eI ) = e[n]\{i} + eI\{i} = e[n]\I

gij(eI ) = e[n]\{j} + eI\{i} = e([n]\{j})\(I\{i})∣∣[n] \ I ∣∣ = 2m and
∣∣([n] \ {j}) \ (I \ {i})∣∣ = 2m

Therefore, both fij and gij preserve Pm
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Our result

Theorem (M. Pankov, K. Petelczyc, M.Ż. 2024)

Every automorphism of the geometry Pm is induced by
a coordinate permutation (monomial linear automorphism) of V or
it is the composition of the automorphism induced by a coordinate
permutation and, in case

n = 4m − 1

fi (ej) =

{
ej , j ̸= i ,

e[n], j = i ,

for some i ∈ [n],

n = 4m

fij(et) =


et , t ̸= i , j ,

e[n]\{i}, t = i ,

e[n]\{j}, t = j ,

or
gij(et) =


et , t ̸= i , j ,

e[n]\{j}, t = i ,

e[n]\{i}, t = j ,

for some distinct i , j ∈ [n].
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Non-binary case

Let V = F n
q where q > 2

Take all those vectors of V which Hamming weight is t

Vt =
{
v ∈ V : |v | = t

}
Take all those points of the projective space P(V ) which are
spanned by vectors from Vt

Ht =
{
⟨v⟩ ∈ P(V ) : v ∈ Vt

}
Ht can be considered a point-line geometry whose lines are
the lines of the projective space P(V ) contained in Ht

For n = qk−1
q−1 and t = qk−1 maximal singular subspaces of Ht

correspond to q-ary simplex codes of dimension k

There are lines of P(V ) connecting non-collinear points of Ht

that contain more than one point not in Ht

The collinearity graph of Ht is connected of diameter > 2
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Thank you for your attention



The Pasch (Veblen) configuration

Figure: Points and lines of P1 for n = 3m + 1 = 4
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The Cremona-Richmond configuration

Figure: Points and lines of P2 for n = 3m = 6

Every PI ∈ P2 is identified with its complement, the 2-element
subset [6] \ I , and three points of P2 form a line if and only if the
corresponding 2-element subsets are mutually disjoint.
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