

Automorphisms of geometries related to binary equidistant codes

Mariusz Żynel

University of Białystok
Poland

5th Pythagorean Conference, Kalamata, Greece, June 1-6, 2025

Linear equidistant codes

- *Alphabet* – finite field F_q of q elements
- *Code ($[n, k]_q$ code)* – k -dimensional subspace of F_q^n
- The *Hamming distance* between any two distinct codewords is constant
- All non-zero codewords have constant *Hamming weight*
- *Simplex codes* are equidistant codes

M. Pankov, K. Petelczyc, M. Żynel

Point-line geometries related to binary equidistant codes

J. Combin. Theory Ser. A 210 (2025), 1-30.

- A complete characterization of automorphism of the point-line geometry of linear equidistant codes is given
- In some non-trivial cases, there are automorphism of this geometry induced by non-monomial semilinear automorphism of the ambient vector space

- Let \mathcal{P} be a set whose elements will be called *points* and let \mathcal{L} be a family of subsets of \mathcal{P} called *lines*
- A pair $(\mathcal{P}, \mathcal{L})$ is called a *point-line geometry* whenever
 - every line contains at least two points and
 - the intersection of two distinct lines contains at most one point
- Two distinct points are said to be *collinear* if there is a line containing them
- A subset $X \subseteq \mathcal{P}$ is called a *subspace* whenever for any two distinct collinear points from X , the entire line containing them is a subset of X
- A subspace is *singular* when every two of its distinct points are collinear

- In a point-line geometry, a one-to-one transformation of its pointset preserving the family of its lines in both directions is called an *automorphism* (a *collineation*)

Fundamental Theorem of Projective Geometry

Every automorphism of a projective space is induced by a semilinear automorphism of the ambient vector space.

Ambient projective space

- Let $V = F_2^n$. The standard basis of V is

$$e_1 = (1, 0, \dots, 0), \dots, e_n = (0, \dots, 0, 1)$$

- For every non-zero vector v of V we have

$$v = e_I = \sum_{i \in I} e_i, \quad \emptyset \neq I \subseteq [n] = \{1, 2, \dots, n\}$$

- The i -th coordinate of e_I is either 1, if $i \in I$, or 0 otherwise
- $\mathcal{P}(V)$ is the projective space over V
- P_I is the point of $\mathcal{P}(V)$ corresponding to e_I
- If P, Q are distinct points, then

$$\overline{P, Q} = \langle P, Q \rangle = \{P, Q, P \odot Q\}$$

- For non-empty subsets $I, J \subset [n]$ we have

$$e_I + e_J = e_{I \triangle J}, \quad \text{consequently} \quad P_I \odot P_J = P_{I \triangle J}$$

Settings for our point-line geometry

- For every point P_I of $\mathcal{P}(V)$ its **Hamming weight** is

$$w(P_I) = |I|$$

- Let $m \in \mathbb{N}$ such that $3m \leq n$
- Take all those points of the projective space $\mathcal{P}(V)$ whose Hamming weight is $2m$

$$\mathcal{P}_m = \{P_I \in \mathcal{P}(V) : |I| = 2m\}$$

- \mathcal{P}_m can be considered a **point-line geometry** whose lines are the lines of the projective space $\mathcal{P}(V)$ contained in \mathcal{P}_m
- For distinct $P_I, P_J \in \mathcal{P}_m$ we have

$$P_I \odot P_J \in \mathcal{P}_m \quad \text{iff} \quad |I \cap J| = m$$

- The **Hamming distance** between any two distinct collinear points $P, Q \in \mathcal{P}_m$ is

$$d(P, Q) = w(P \odot Q) = 2m$$

- There is a natural one-to-one correspondence between singular subspaces of the point-line geometry \mathcal{P}_m and $2m$ -equidistant codes of V
- Maximal singular subspaces of the point-line geometry \mathcal{P}_m correspond to maximal $2m$ -equidistant codes of V

Geometries in our class

- A line of size 3 ($n = 3m = 3$)
- The Pasch (Veblen) configuration ($n = 3m + 1 = 4$)
- The Cremona-Richmond configuration known also as the generalized quadrangle of type 2, 2 ($n = 3m = 6$)
- A polar space ($n = 4m - 1 = 7$)
- If $n = 4m - 1 = 2^k - 1$, then the maximal singular subspaces of \mathcal{P}_m correspond to binary simplex codes of dimension k

Remark

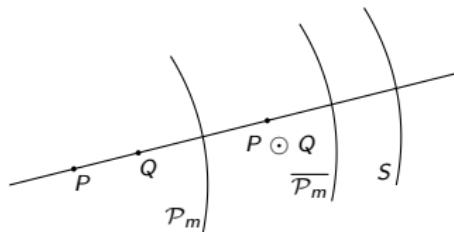
All the geometries in our class can be considered **partial Steiner triple systems** embedded in **Steiner triple systems** which are projective spaces over the two-element field

Linear automorphisms

- Every linear automorphism, in particular, a coordinate permutation (a monomial linear automorphism) of V preserving the pointset \mathcal{P}_m induces an automorphism of the point-line geometry of linear equidistant codes \mathcal{P}_m

Hyperplane closure

- Let S be the hyperplane of V made up by all vectors $(x_1, \dots, x_n) \in V$ with $x_1 + x_2 + \dots + x_n = 0$
- A projective point $P_I \in \mathcal{P}(V)$ is contained in S iff $|I|$ is even
- For any distinct $P, Q \in \mathcal{P}_m$ the point $P \odot Q$ belongs to $\mathcal{P}(S)$
- $\overline{\mathcal{P}_m} = \{P \odot Q \in \mathcal{P}(S) : P, Q \in \mathcal{P}_m\}$



- $\overline{\mathcal{P}_m} = \mathcal{P}(S)$ only if $n = 4m - 1, 4m, 4m + 1$
- Every non-zero vector of S is the sum of some vectors of Hamming weight $2m$
- $\mathcal{P}(S)$ is the smallest projective space containing \mathcal{P}_m

Horizon

- Let $P \in \overline{\mathcal{P}}_m \setminus \mathcal{P}_m$
- For pairwise distinct $P_I, P_J, P_{I'}, P_{J'} \in \mathcal{P}_m$ such that

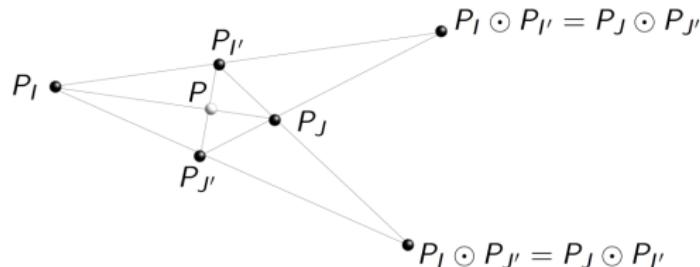
$$P = P_I \odot P_J = P_{I'} \odot P_{J'}$$

we write

$$\langle P_I, P_J \rangle \sim \langle P_{I'}, P_{J'} \rangle$$

whenever

$$P_I \odot P_{I'} = P_J \odot P_{J'} \in \mathcal{P}_m \quad \text{or} \quad P_I \odot P_{J'} = P_J \odot P_{I'} \in \mathcal{P}_m$$



- If both of these last two points belong to \mathcal{P}_m , then we get a *punctured Fano plane* in \mathcal{P}_m

Specific linear automorphism for $n = 4m - 1$

- Let $i \in [n]$ and consider a linear automorphism of V

$$f_i(e_j) = \begin{cases} e_j, & j \neq i, \\ e_{[n]}, & j = i, \end{cases}$$

for all $j \in [n]$

- Note that $f_i(e_I) = e_I$ when $i \notin I$
- For $i \in I \subset [n]$ we have

$$f_i(e_I) = e_{[n]} + e_{I \setminus \{i\}} = e_{[n] \setminus (I \setminus \{i\})}$$

- If $|I| = 2m$, then

$$|[n] \setminus (I \setminus \{i\})| = 4m - 1 - (2m - 1) = 2m$$

- Therefore f_i preserves \mathcal{P}_m

Specific linear automorphisms for $n = 4m$

- Let $i, j \in [n]$, $i \neq j$, and consider linear automorphisms of V

$$f_{ij}(e_t) = \begin{cases} e_t, & t \neq i, j, \\ e_{[n] \setminus \{i\}}, & t = i, \\ e_{[n] \setminus \{j\}}, & t = j, \end{cases} \quad g_{ij}(e_t) = \begin{cases} e_t, & t \neq i, j, \\ e_{[n] \setminus \{j\}}, & t = i, \\ e_{[n] \setminus \{i\}}, & t = j, \end{cases}$$

for all $t \in [n]$

- Note that $f_{ij}(e_I) = g_{ij}(e_I) = e_I$ when $i, j \notin I$
- For $i, j \in I \subset [n]$ we have

$$f_{ij}(e_I) = g_{ij}(e_I) = e_{[n] \setminus \{i\}} + e_{[n] \setminus \{j\}} + e_{I \setminus \{i, j\}} = e_{\{i, j\}} + e_{I \setminus \{i, j\}} = e_I$$

- If $|I| = 2m$ and I contains only one of i, j , say i , then

$$f_{ij}(e_I) = e_{[n] \setminus \{i\}} + e_{I \setminus \{i\}} = e_{[n] \setminus I}$$

$$g_{ij}(e_I) = e_{[n] \setminus \{j\}} + e_{I \setminus \{i\}} = e_{([n] \setminus \{j\}) \setminus (I \setminus \{i\})}$$

$$|[n] \setminus I| = 2m \quad \text{and} \quad |([n] \setminus \{j\}) \setminus (I \setminus \{i\})| = 2m$$

- Therefore, both f_{ij} and g_{ij} preserve \mathcal{P}_m

Our result

Theorem (M. Pankov, K. Petelczyc, M.Ż. 2024)

Every automorphism of the geometry \mathcal{P}_m is induced by a coordinate permutation (monomial linear automorphism) of V or it is the composition of the automorphism induced by a coordinate permutation and, in case

- $n = 4m - 1$

$$f_i(e_j) = \begin{cases} e_j, & j \neq i, \\ e_{[n]}, & j = i, \end{cases}$$

for some $i \in [n]$,

- $n = 4m$

$$f_{ij}(e_t) = \begin{cases} e_t, & t \neq i, j, \\ e_{[n] \setminus \{i\}}, & t = i, \\ e_{[n] \setminus \{j\}}, & t = j, \end{cases} \quad \text{or} \quad g_{ij}(e_t) = \begin{cases} e_t, & t \neq i, j, \\ e_{[n] \setminus \{j\}}, & t = i, \\ e_{[n] \setminus \{i\}}, & t = j, \end{cases}$$

for some distinct $i, j \in [n]$.

Non-binary case

- Let $V = F_q^n$ where $q > 2$
- Take all those vectors of V which Hamming weight is t

$$V_t = \{v \in V : |v| = t\}$$

- Take all those points of the projective space $\mathcal{P}(V)$ which are spanned by vectors from V_t

$$\mathcal{H}_t = \{\langle v \rangle \in \mathcal{P}(V) : v \in V_t\}$$

- \mathcal{H}_t can be considered a **point-line geometry** whose lines are the lines of the projective space $\mathcal{P}(V)$ contained in \mathcal{H}_t
- For $n = \frac{q^k - 1}{q - 1}$ and $t = q^{k-1}$ maximal singular subspaces of \mathcal{H}_t correspond to q -ary **simplex codes** of dimension k
- There are lines of $\mathcal{P}(V)$ connecting non-collinear points of \mathcal{H}_t that contain **more than one point** not in \mathcal{H}_t
- The collinearity graph of \mathcal{H}_t is connected of diameter > 2

Thank you for your attention

The Pasch (Veblen) configuration

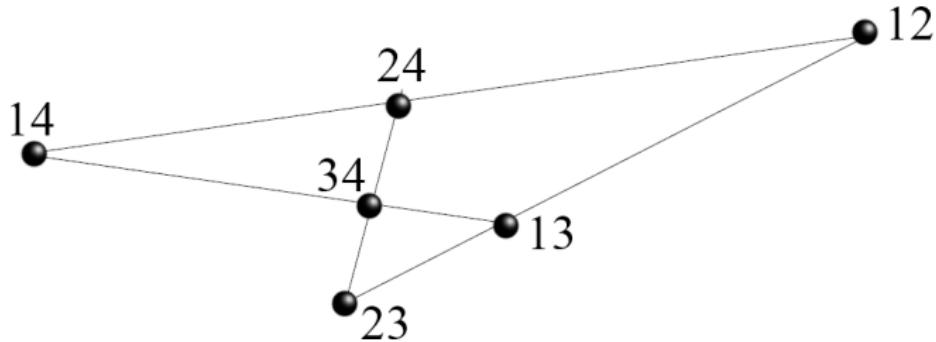


Figure: Points and lines of \mathcal{P}_1 for $n = 3m + 1 = 4$

The Cremona-Richmond configuration

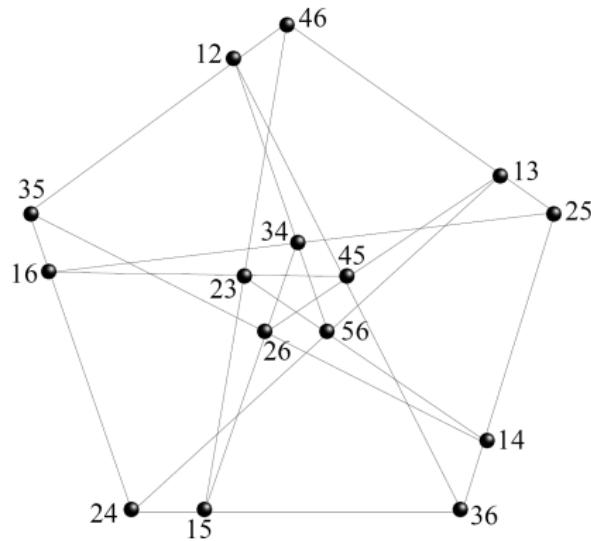


Figure: Points and lines of \mathcal{P}_2 for $n = 3m = 6$

Every $P_I \in \mathcal{P}_2$ is identified with its complement, the 2-element subset $[6] \setminus I$, and three points of \mathcal{P}_2 form a line if and only if the corresponding 2-element subsets are mutually disjoint.