

Point-line geometries related to binary equidistant codes

Mark Pankov
University of Warmia and Mazury

The 5th Pythagorean Conference
Kalamata, 1-5 June, 2025

The language of points and lines

A *point-line geometry* $(\mathcal{L}, \mathcal{P})$ is a pair, where \mathcal{P} is a set of points and \mathcal{L} is a set of lines:

- each line contains at least three points,
- the intersection of two distinct lines contains at most one point.

Distinct points are *collinear* if there is a line containing them.

The *collinearity graph* of $(\mathcal{L}, \mathcal{P})$ is the simple graph whose vertices are points and two points are connected by an edge if they are collinear.

A *subspace* is a subset $\mathcal{S} \subset \mathcal{P}$ such that for any collinear points $x, y \in \mathcal{S}$ the line joining x, y is contained in \mathcal{S} .

A subspace is *singular* if any two distinct points of this subspace are collinear.

Example: Polar space

Let Ω be a non-degenerate reflexive sesquilinear form on a vector space V .

A non-zero vector $x \in V$ is *isotropic* if $\Omega(x, x) = 0$.

A subspace $S \subset V$ is *totally isotropic* if $\Omega(x, y) = 0$ for any $x, y \in S$.

The associated polar space:

The points are 1-dimensional totally isotropic subspaces.

The lines correspond to 2-dimensional totally isotropic subspaces.

The maximal singular subspaces correspond to maximal totally isotropic subspaces. They are of the same dimension which is called the *Witt index* of Ω .

Our plans

We consider a point-line geometry whose maximal singular subspaces correspond to an equivalence class of equidistant codes.

A large portion of material concerns the case of binary equidistant codes, binary simplex codes and their applications to symmetric block designs.

At the end, some words on geometries of non-binary simplex codes.

Binary equidistant codes

Let \mathbb{F} be the field of two elements and \mathbb{F}^n be an n -dimensional vector space over this field. A *binary linear $[n, k]$ code* is a k -dimensional subspace of \mathbb{F}^n .

The *Hamming weight* of $v \in \mathbb{F}^n$ is the number of non-zero coordinates of v .

The *Hamming distance* between $v, w \in \mathbb{F}^n$ is the Hamming weight of $v - w$.

A code $C \subset \mathbb{F}^n$ is *t -equidistant* if the Hamming distance between any distinct codewords $c, c' \in C$ is t , equivalently, all non-zero codewords in C are of Hamming weight t .

Example: The binary $[7, 3]$ code with the generator matrix

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

is 4-equidistant.

This code also is a *binary simplex code of dimension 3*.

Binary simplex codes

Suppose that $n = 2^k - 1$.

Note that $2^k - 1$ is the number of 1-dimensional subspaces of \mathbb{F}^k , i.e. the number of points in the projective space $PG(k - 1, 2)$.

A k -dimensional code $C \subset \mathbb{F}^n$ is a binary *simplex* code if in every generator matrix of C all columns are non-zero and mutually distinct, i.e. there is a one-to-one correspondence between the columns and points of $PG(k - 1, 2)$.

Every binary simplex code of dimension k is 2^{k-1} -equidistant.

Every two such codes are *equivalent*, i.e. there is a monomial linear automorphism of \mathbb{F}^n transferring one of these codes to the other.

Theorem 1 (A. Bonisoli). *Every equidistant code is equivalent to a code obtained by replication of a simplex code and adding some zero coordinates to each code word.*

Some examples of binary equidistant codes

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

is the generator matrix of the binary 8-equidistant [14, 3] code which is the 2-replication of a 3-dimensional binary simplex code.

To obtain more equidistant codes we can permute columns

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

and add zero columns

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}.$$

The projective space $PG(n-1, 2)$. Set theoretical approach

As above, \mathbb{F} is the field of two elements and \mathbb{F}^n is a vector space over this field.

Every point $P = \langle x_1, \dots, x_n \rangle$, $x_i \in \{0, 1\}$ of the associated projective space $PG(n - 1, 2)$ can be identified with the non-empty set $I \subset [n] = \{1, \dots, n\}$ formed by all indices $i \in [n]$ such that $x_i \neq 0$.

Then every line of $PG(n - 1, 2)$ is a triple of subsets $I, J, I \triangle J$, where $I \triangle J$ is the symmetric difference.

We will consider $PG(n - 1, 2)$ as the set of all non-empty subsets of $[n]$ whose lines are triples $I, J, I \triangle J$.

The Hamming weight of the point corresponding to $I \subset [n]$ is $|I|$ and the Hamming distance between I, J is $|I \triangle J|$.

Subgeometries of points with fixed Hamming weight

Let m be an integer satisfying $1 \leq m \leq n/2$.

Denote by $\mathcal{P}_m(n)$ the set of all subsets $I \subset [n]$ such that $|I| = 2m$, i.e. the set of all points of $PG(n-1, 2)$ with Hamming weight $2m$.

Consider $\mathcal{P}_m(n)$ as a point-line geometry whose lines are the lines of $PG(n-1, 2)$ contained in $\mathcal{P}_m(n)$.

Then $I, J \in \mathcal{P}_m(n)$ are collinear if and only if $|I \Delta J| = m$ or, equivalently, $|I \cap J| = m$.

We assume that $n \geq 3m$.

Reason: If $n < 3m$, then for any subsets $I, J \subseteq [n]$ satisfying $|I| = |J| = 2m$ we have $|I \cap J| > m$ which implies that $|I \Delta J| < 2m$, i.e. such $\mathcal{P}_m(n)$ does not contain lines.

For the same reason, every set formed by all points of fixed odd Hamming weight does not contain lines (if $I, J \subseteq [n]$ and $|I| = |J|$ is odd, then $|I \Delta J|$ is even).

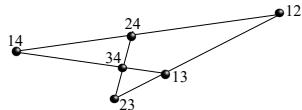
Singular subspaces of the geometry $\mathcal{P}_m(n)$ are subspaces of $PG(n-1, 2)$ corresponding to $2m$ -equidistant codes.

Maximal singular subspaces are of the same dimension, the corresponding equidistant codes form an equivalence class.

One important case: If $n = 2^{k-1} - 1$ and $m = 2^{k-2}$, then maximal singular subspaces of $\mathcal{P}_m(n)$ correspond to binary simplex codes of dimension k .

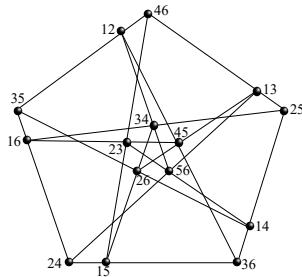
Examples

1. $\mathcal{P}_1(4)$ is the Pasch configuration.



2. $\mathcal{P}_2(6)$ is the Cremona-Richmond configuration.

Every $P_I \in \mathcal{P}_2$ is identified with the 2-element subset $[6] \setminus I$ and three points of \mathcal{P}_2 form a line if and only if the corresponding 2-element subsets are mutually disjoint.



3. $\mathcal{P}_2(7)$ is a polar space.

All vectors $(x_1, \dots, x_7) \in \mathbb{F}^7$ of Hamming weight 4 form the quadric

$$\sum_{i=1}^7 x_i = 0 \text{ and } \sum_{i < j} x_i x_j = 0.$$

Binary simplex codes of dimension 4 are maximal singular subspace of this quadric.

Automorphism of $\mathcal{P}_m(n)$

An *automorphism* of the geometry $\mathcal{P}_m(n)$ is a bijective transformation preserving the family of lines in both directions.

Every permutation on $[n]$ induces an automorphism of $\mathcal{P}_m(n)$.

In some cases, there are automorphisms of $\mathcal{P}_m(n)$ which are not induced by permutations.

Example 1. Suppose that $n = 4m - 1$ and fix $i \in [n]$. Consider $f_i : \mathcal{P}_m(n) \rightarrow \mathcal{P}_m(n)$

$$f_i(I) = I \text{ if } i \notin I \text{ and } f_i(I) = ([n] \setminus I) \cup \{i\} \text{ if } i \in I.$$

Example 2. Suppose that $n = 4m$ and fix distinct $i, j \in [n]$. Consider $f_{ij} : \mathcal{P}_m(n) \rightarrow \mathcal{P}_m(n)$

$$f_{ij}(I) = I \text{ if } i, j \in I \text{ or } i, j \notin I \text{ and } f_{ij}(I) = [n] \setminus I \text{ if } I \text{ contains precisely one of } i, j.$$

Theorem 2 (M.P., K. Petelczyc, M. Żynel). *Every automorphism of the geometry $\mathcal{P}_m(n)$ is induced by a permutation on $[n]$ or is the composition of an automorphism induced by a permutation and one of the automorphisms considered in Examples 1, 2.*

More details at Mariusz Żynel talk (Thursday, June 5, 17:10-17:30).

Maximal cliques of the collinearity graph and symmetric block designs

Let $\Gamma_m(n)$ be the collinearity graph of the geometry $\mathcal{P}_m(n)$, i.e. the simple graph whose vertices are points of $\mathcal{P}_m(n)$ and two vertices are connected by an edge if they are collinear points.

Every maximal singular subspace of $\mathcal{P}_m(n)$ is a maximal clique of $\Gamma_m(n)$.

- Maximal cliques of $\Gamma_m(3m)$ are precisely lines of $\mathcal{P}_m(3m)$.
- $\mathcal{P}_2(7)$ is a polar space which implies that maximal cliques of $\Gamma_2(7)$ coincide maximal singular subspaces of $\mathcal{P}_2(7)$.

In the remaining cases, $\Gamma_m(n)$ contains maximal cliques which are not maximal singular subspaces of $\mathcal{P}_m(n)$.

By Fisher's inequality, every maximal clique of $\Gamma_m(n)$ contains no more than n elements.

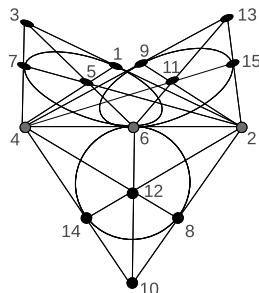
Every n -clique of $\Gamma_m(n)$ is formed by blocks of a certain symmetric $(n, 2m, m)$ -design.

Geometric description of the five symmetric $(15, 8, 4)$ -designs

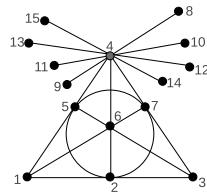
It is well-known that there are precisely five symmetric $(15, 8, 4)$ -designs.

M.P., K. Petelczyc, M. Żynel obtained the following geometric description of these designs as maximal cliques of $\Gamma_4(15)$.

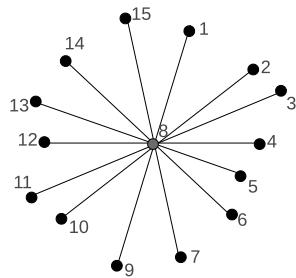
- (1) Maximal singular subspace isomorphic to $PG(3, 2)$.
- (2) Three Fano planes through a line.



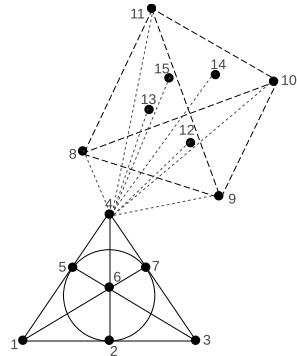
(3) Fano plane and four lines through a point



(4) Eight lines through a point



(5) $PG(3, 2)$ minus Fano plane plus a disjoint Fano plane.

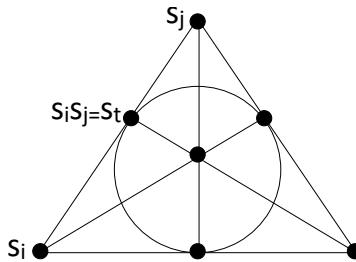


More details at Krzysztof Petelczyc's talk (Thursday, June 5, 16:50-17:10).

Automorphisms of $(15, 8, 4)$ -designs

Fano plane can be considered as the group \mathcal{F} consisted of the identity e and involutions s_1, \dots, s_7 corresponding to the points of Fano plane.

The product is $s_i s_j = s_t$, where s_t corresponds to the third points on the line joining the points related to s_i and s_j .



The automorphism group of a symmetric $(15, 8, 4)$ -design of type (1) (i.e. a maximal singular subspace isomorphic to $PG(3, 2)$) is $GL(4, 2)$.

Theorem 3 (M.P., K. Petelczyc, M. Żynel). *The automorphism group of a symmetric $(15, 8, 4)$ -design of type (2)-(5) is the semidirect product of the group \mathcal{F} and a subgroup of $GL(3, 2)$. This subgroup is dependent on the design type.*

Geometries of non-binary simplex codes

A q -ary simplex code of dimension k is a non-degenerate linear $[\frac{q^k-1}{q-1}, k]_q$ with the property that the columns in every generator matrix are mutually non-proportional, i.e. there is a one-to-one correspondence between the columns and points of the projective space $PG(k-1, q)$.

Consider the point-line geometry $\mathcal{S}(k, q)$ whose points and lines are 1-dimensional and 2-dimensional subcodes of q -ary simplex codes of dimension k and maximal singular subspaces correspond to q -ary simplex code of dimension k .

Every maximal clique of the collinearity graph of $\mathcal{S}(k, q)$ contains no more than $n = \frac{q^k-1}{q-1}$ vertices.

Every maximal singular subspace of $\mathcal{S}(k, q)$ is a maximal clique of the collinearity graph.

For $q \geq 5$, M. Kwiatkowski, M. P., A. Tyc constructed a class of n -cliques distinct from maximal singular subspaces.

If $k = 2$ (maximal singular subspaces are lines), then some of such cliques are projectively equivalent to the normal rational curve

$$\{\langle 1, t, \dots, t^{m-1} \rangle : t \in \mathbb{F}_q\} \cup \{\langle (0, \dots, 0, 1) \rangle\},$$

in other words, they are arcs.

More details at Adam Tyc's talk (Thursday, June 5, 9:50-10:10).