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The language of points and lines

A point-line geometry (L, P) is a pair, where P is a set of points and L is a set of lines:
e cach line contains at least three points,
e the intersection of two distinct lines contains at most one point.

Distinct points are collinear if there is a line containing them.

The collinearity graph of (L,P) is the simple graph whose vertices are points and two points
are connected by an edge if they are collinear.

A subspace is a subset S C P such that for any collinear points x,y € S the line joining x, y is
contained in S.
A subspace is singular if any two distinct points of this subspace are collinear.



Example: Polar space

Let €2 be a non-degenerate reflexive sesquelinear form on a vector space V.
A non-zero vector z € V' is isotropic if Q(x,z) = 0.
A subspace S C V is totally isotropic if Q(x,y) = 0 for any x,y € S.

The associated polar space:

The points are 1-dimensional totally isotropic subspaces.

The lines correspond to 2-dimensional totally isotropic subspaces.

The maximal singular subspaces correspond to maximal totally isotropic subspaces. They are
of the same dimension which is called the Witt index of 2.



Our plans

We consider a point-line geometry whose maximal singular subspaces correspond to an equiv-
alence class of equidistant codes.

A large portion of material concerns the case of binary equidistant codes, binary simplex codes
and their applications to symmetric block designs.

At the end, some words on geometries of non-binary simplex codes.



Binary equidistant codes

Let F be the field of two elements and F™ be an n-dimensional vector space over this field.
A binary linear [n, k] code is a k-dimensional subspace of F".

The Hamming weight of v € F™ is the number of non-zero coordinates of v.
The Hamming distance between v, w € F™ is the Hamming weight of v — w.

A code C C F" is t-equidistant if the Hamming distance between any distinct codewords
c,d € Cis t, equivalently, all non-zero codewords in C' are of Hamming weight ¢.

Example: The binary [7,3] code with the generator matrix
1001101
0101011
0010111

is 4-equidistant.
This code also is a binary simplex code of dimension 3.



Binary simplex codes

Suppose that n = 2% — 1.
Note that 2 — 1 is the number of 1-dimensional subspaces of F*, i.e. the number of points in
the projective space PG(k — 1,2).

A k-dimensional code C' C F" is a binary simplex code if in every generator matrix of C all
columns are non-zero and mutually distinct, i.e. there is a one-to-one correspondence between
the columns and points of PG(k — 1,2).

Every binary simplex code of dimension k is 2¥~!-equidistant.
Every two such codes are equivalent, i.e. there is a monomial linear automorphism of F"
transferring one of these codes to the other.

Theorem 1 (A. Bonisoli). Every equidistant code is equivalent to a code obtained by replication
of a simplex code and adding some zero coordinates to each code word.



Some examples of binary equidistant codes

1 101
1 011
0111

= o O

100110110
010101101
001011100

is the generator matrix of the binary 8-equidistant [1
3-dimensional binary simplex code.

,3] code which is the 2-replication of a

W

To obtain more equidistant codes we can permute columns
1 0011011001110
01 010110101O0T1T1
001011 1001O0T1T1T1
and add zero columns
100110110011 100°0
0101011010101 T1O00O0
001011 1001O0T1TT1TT1TQO00Q0



The projective space PG(n—1,2). Set theoretical approach

As above, F is the field of two elements and F™ is a vector space over this field.

Every point P = (x1,...,x,), z; € {0,1} of the associated projective space PG(n — 1,2) can
be identified with the non-empty set I C [n] = {1,...,n} formed by all indices i € [n] such
that x; # 0.

Then every line of PG(n — 1,2) is a triple of subsets I, J, IAJ, where IAJ is the symmetric
difference.

We will consider PG(n — 1,2) as the set of all non-empty subsets of [n] whose lines are triples
1, J, IAJ.

The Hamming weight of the point corresponding to I C [n] is || and the Hamming distance
between I, J is [IAJ].



Subgeometries of points with fixed Hamming weight

Let m be an integer satisfying 1 < m < n/2.

Denote by P,,(n) the set of all subsets I C [n] such that |I| = 2m, i.e. the set of all points of
PG(n — 1,2) with Hamming weight 2m.

Consider P,,(n) as a point-line geometry whose lines are the lines of PG(n — 1,2) contained in
Pr(n).

Then I, J € P, (n) are collinear if and only if |[IAJ| = m or, equivalently, |I N J| = m.

We assume that n > 3m.

Reason: If n < 3m, then for any subsets I, J C [n] satisfying || = |.J| = 2m we have |[INJ| > m
which implies that [ A J| < 2m, i.e. such P,,(n) does not contain lines.

For the same reason, every set formed by all points of fixed odd Hamming weight does not
contain lines (if 7, J C [n] and |I| = |J| is odd, then |I A J| is even).

Singular subspaces of the geometry P,,(n) are subspaces of PG(n — 1,2) corresponding to
2m-equidistant codes.

Maximal singular subspaces are of the same dimension, the corresponding equidistant codes
form an equivalence class.

One important case: If n = 287! — 1 and m = 272, then maximal singular subspaces of
Pum(n) correspond to binary simplex codes of dimension k.



Examples
1. P1(4) is the Pasch configuration.
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2. P5(6) is the Cremona-Richmond configuration.
Every P; € P, is identified with the 2-element subset [6] \ I and three points of P, form a line
if and only if the corresponding 2-element subsets are mutually disjoint.




3. Po(7) is a polar space.
All vectors (1, ...,27) € FT of Hamming weight 4 form the quadric

7

Zmi =0 and inxj =0.

i=1 i<j

Binary simplex codes of dimension 4 are maximal singular subspace of this quadric.



Automorphism of P,,(n)

An automorphism of the geometry P,,(n) is a bijective transformation preserving the family of
lines in both directions.
Every permutation on [n] induces an automorphism of P,,(n).

In some cases, there are automorphisms of P,,(n) which are not induced by permutations.
Example 1. Suppose that n = 4m — 1 and fix ¢ € [n]. Consider f; : P,(n) — Pn(n)
fill)=1if i ¢ 1 and fi(I) = ([n]\I)U{i} if i€l
Example 2. Suppose that n = 4m and fix distinct i, j € [n]. Consider f;; : Pm(n) = Pp(n)
fi;(I)=1 if i,;5e€lori,j¢I and f;;(I)=[n]\ I if I contains precisely one of i, j.

Theorem 2 (M.P., K. Petelczyc, M. Zynel). FEvery automorphism of the geometry Pp(n)
is induced by a permutation on [n] or is the composition of an automorphism induced by a
permutation and one of the automorphisms considered in Examples 1, 2.

More details at Mariusz Zynel talk (Thursday, June 5, 17:10-17:30).



Maximal cliques of the collinearity graph and symmetric
block designs

Let I',,,(n) be the collinearity graph of the geometry P,,(n), i.e. the simple graph whose vertices
are points of P,,(n) and two vertices are connected by an edge if they are collinear points.

Every maximal singular subspace of P,,(n) is a maximal clique of T',(n).
e Maximal cliques of I';,,(3m) are precisely lines of P,,(3m).

e P,(7) is a polar space which implies that maximal cliques of I'5(7) coincide maximal
singular subspaces of Py(7).

In the remaining cases, I',,(n) contains maximal cliques which are not maximal singular sub-
spaces of P, (n).

By Fisher’s inequality, every maximal clique of T',(n) contains no more than n elements.
Fvery n-clique of T'y,(n) is formed by blocks of a certain symmetric (n, 2m,m)-design.



Geometric description of the five symmetric (15, 8,4)-designs

It is well-known that there are precisely five symmetric (15,8, 4)-designs.

M.P., K. Petelczyc, M. Zynel obtained the following geometric description of these designs as
maximal cliques of T'y(15).

(1) Maximal singular subspace isomorphic to PG(3,2).

(2) Three Fano planes through a line.




(3) Fano plane and four lines through a point

(4) Eight lines through a point




(5) PG(3,2) minus Fano plane plus a disjoint Fano plane.

More details at Krzysztof Petelczyc’s talk (Thursday, June 5, 16:50-17:10).



Automorphisms of (15,8, 4)-designs

Fano plane can be considered as the group F consisted of the identity e and involutions s1, ..., s7
corresponding to the points of Fano plane.

The product is s;s; = s¢, where s; corresponds to the third points on the line joining the points
related to s; and s;.

The automorphism group of a symmetric (15,8, 4)-design of type (1) (i.e. a maximal singular
subspace isomorphic to PG(3,2)) is GL(4,2).

Theorem 3 (M.P., K. Petelczyc, M. Zynel). The automorphism group of a symmetric (15,8, 4)-
design of type (2)-(5) is the semidirect product of the group F and a subgroup of GL(3,2). This
subgroup is dependent on the design type.



Geometries of non-binary simplex codes

A g-ary simplex code of dimension k is a non-degenerate linear [q:_—_ll, k], with the property that
the columns in every generator matrix are mutually non-proportional, i.e. there is a one-to-one
correspondence between the columns and points of the projective space PG(k — 1, q).

Consider the point-line geometry S(k,q) whose points and lines are 1-dimensional and 2-
dimensional subcodes of g-ary simplex codes of dimension k and maximal singular subspaces
correspond to g-ary simplex code of dimension k.

Every maximal clique of the collinearity graph of S(k,q) contains no more than n = %
vertices.

Every maximal singular subspace of S(k, ¢) is a maximal clique of the collinearity graph.

For ¢ > 5, M. Kwiatkowski, M. P., A. Tyc constructed a class of n-cliques distinct from maximal
singular subspaces.

If £ = 2 (maximal singular subspaces are lines), then some of such cliques are projectively
equivalent to the normal rational curve

{(1,t,..., " Y teF,U{{0,...,0,1))},

in other words, they are arcs.

More details at Adam Tyc’s talk (Thursday, June 5, 9:50-10:10).



