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A Tale of Two Partitions

Much classical algebraic combinatorics ⇝
representation theory of the symmetric group Sn ⇝
integer partitions

For n, λi ∈ N, we say that

λ = (λ1, . . . , λr )

is a partition of n, written
λ ⊢ n,

if λ is weakly decreasing and
∑r

i=1 λi = n. Example: (3, 2, 1, 1) ⊢ 7.

(3, 5, 4, 7)(1, 2, 6)
?−→
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The First Partition: Cycle Type

Two notations for σ ∈ Sn:

one-line notation: σ = [2, 4, 9, 7, 10, 3, 1, 14, 6, 12, 11, 5, 13, 8]

cycle notation: σ = (1, 2, 4, 7)(3, 9, 6)(5, 10, 12)(8, 14)(11)(13).

The cycle type of σ is the partition of n given by the lengths of the
disjoint cycles in the cycle notation for σ.

In the example above, σ has cycle type (4, 3, 3, 2, 1, 1).

For α = (α1, . . . , αr ) ⊢ n, let

Cα := {σ ∈ Sn : σ has cycle type α}.
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Definition of Young Diagram

The Young diagram of shape λ ⊢ n is a left-aligned array of cells with λi

boxes in the ith row, counting from the top.

As an example, the Young diagram of shape (5, 5, 4, 2, 1, 1) is:

Figure: Young diagram of shape (5, 5, 4, 2, 1, 1)
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Definition of Standard Young Tableau

A standard Young tableau of shape λ ⊢ n is obtained from the Young
diagram of λ by

1 filling the cells with distinct elements of [1, n]

2 so that entries in each row and column are strictly increasing

We write SYT(n) for the set of standard Young tableaux of size n.

1 2 3 4 5
6 7 8 9 18
10111217
1316
14
15

Figure: A standard Young tableau of shape (5, 5, 4, 2, 1, 1)
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Robinson–Schensted Correspondence

The Robinson–Schensted (RS) correspondence is a bijection

Sn
RS−−→

∐
λ⊢n

SYT(λ)× SYT(λ)

written RS(σ) = (P,Q).

Shorthand Algorithm. Let σ = [σ1, . . . , σn] ∈ Sn, and let RS(σ) = (P,Q).
Inductively:

For P: try to add σk to the end the first row

For P: otherwise put it in its proper position, bumping out what was
there already and try to place the bumped element in the next row...

For Q: record where the new box was added in P with a k
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Robinson–Schensted Example

P : 2 → 2 6 → 2 5
6 → 2 5 7

6 →
2 4 7
5
6

→
1 4 7
2
5
6

→ P =

1 3 7
2 4
5
6

Q : 1 → 1 2 → 1 2
3 → 1 2 4

3 →
1 2 4
3
5

→
1 2 4
3
5
6

→ Q =

1 2 4
3 7
5
6

Figure: Given the input σ =[2, 6, 5, 7, 4, 1, 3]= (3, 5, 4, 7)(1, 2, 6), the RS
algorithm produces the output RS(σ) = (P,Q).
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The Second Partition: RS Shape

For σ ∈ Sn, write RS(σ) = (P,Q). Note that P and Q share the same
shape; if this shape is λ ⊢ n, then we call λ the RS shape of σ, and we
write

sh(σ) = λ.

From the last example, σ = [2, 6, 5, 7, 4, 1, 3] = (3, 5, 4, 7)(1, 2, 6), we had

RS(σ) = (

1 3 7
2 4
5
6

,

1 2 4
3 7
5
6

)

so
sh(σ) = (3, 2, 1, 1).

Erickson, Hunziker, Meddaugh, Sepanski, . . . (Baylor) RS Shapes from Cycles June 2025 8 / 23



Main Goal

Given a cycle type
α = (α1, . . . , αr ) ⊢ n

and having defined the conjugacy classes Cα in Sn, along with the RS
shape of an element σ ∈ Sn,

λ = sh(σ) ⊢ n,

we now introduce our main object of study.

Define
Sα := {sh(σ) : σ ∈ Cα}.

Our main result describes Sα for all cycle types α = (α1, α2).
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The Bounding Box

For α = (α1, . . . , αr ), define

Bα :=

{
λ ⊢ n :

λ′
1 ≤ n − r +#{i : αi = 2}+ δ1,αr ,

λ1 ≤ n − r +#{i : αi = 1}

}
.

λ′
1 denotes the number of rows of λ and λ1 denotes the number of

columuns.
For example, if α = (4, 2), then r = 2 and Bα consists of all partitions of
n = 6 whose Young diagram fits inside the box of dimensions
(6− 2 + 1 + 0)× (6− 2 + 0) = 5× 4. Concretely, we have

B(4,2) =

 , , , , , , ,

 .
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Global Constraint

Theorem (Sα Box Constraint)

Let α = (α1, . . . , αr ) ⊢ n. Then Sα ⊆ Bα.

Idea of proof:
A result of Schensted (generalized by Greene) shows that the number of
columns (resp., rows) in λ = sh(σ) equals the length of the longest
ascending (resp., descending) subsequence in [σ1, . . . , σn]. With this tool,
analysis of maximal ascending (resp., descending) subsequences in cycles
gives the result.
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Main Result

Theorem (Identification of Sα for r = 2)

Let n ∈ N, and let α = (α1, α2) ⊢ n.

1 If n is odd, then Sα = Bα.

2 If n is even, then Sα = Bα unless α occurs in the following table:

α Bα \ Sα

(n − 1, 1) {
(
n
2 ,

n
2

)
}(

n
2 ,

n
2

)
, where 4 | n {(n − 2, 1, 1), (3, 1, . . . , 1)}(

n
2 ,

n
2

)
, where 4 ∤ n {(n − 2, 1, 1)}

(4, 2) {(2, 2, 2)}

(5, 3) {(2, 2, 2, 2)}
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Admissible Tableaux

Tλ := the tableau in SYT(λ) with column word [1, . . . , n].

T(3,2,1,1) =

1 5 7
2 6
3
4

Given a standard Young tableau Q, we define

Q↑ := the tableau obtained from Q by reversing the entries in each column.

T(3,2,1,1) =

1 5 7
2 6
3
4

, T ↑
(3,2,1,1) =

4 6 7
3 5
2
1

.

Definition (Admissible Tableaux)

A standard tableau Q is said to be admissible if the entries in Q↑ increase
from left to right along each row.
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Raison d’Etre for Admissible

The group Sn acts naturally on a tableau T of size n by permuting entries.

Corollary (Main Use of Admissible)

Let λ ⊢ n and let Q ∈ SYT(λ) be admissible. If you find

σ ∈ Sn,

define
P = σ · Q↑,

and can verify that
P ∈ SYT(λ)

then RS(σ) = (P,Q), and we have

sh(σ) = λ.

In particular, in the special case Q = Tλ, the one-line notation of σ is the
column word of P↑.
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Warm-Up, r = 1, and the Canonical Cycle

Here is the solution to the main problem for the baby case, r = 1:

S(n) = B(n).

Construction (Canonical Cycle–Rough Outline)

Let λ ∈ B(n). Construct a canonical σ as follows:

1 Begin with Tλ, which is admissible.

2 Draw spiral arrows in each column of T ↑
λ starting in the first column

and working to the right.

3 After the last column, work your way back to the first column along
the bottom.

4 The arrows give σ−1. Hence to write σ in cycle notation, simply
follow the arrows backwards.
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Picture of the Canonical Cycle for λ = (3, 3, 3, 2, 1, 1)

6 10 13

5 9 12

4 8 11

3 7

2

1

(a) T ↑
λ

6 10 13

5 9 12

4 8 11

3 7

2

1

(b) Arrows giving σ−1

1 4 9

2 8 11

3 10 13

5 12

6

7

(c) P = σ · T ↑
λ

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

5

6

7

8

9

10

11

12

13

(d) Graph of σ

Arrows → cycle notation; reverse column word of P → one-line notation:

σ−1 = (1, 6, 2, 5, 3, 4, 10, 8, 9, 13, 11, 12, 7)

σ = [7, 6, 5, 3, 2, 1, 12, 10, 8, 4, 13, 11, 9].

Via the RS correspondence, we have RS(σ) = (P,Tλ).
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Beyond r = 1, α-Colorings

Definition

Let α = (α1, . . . , αr ) ⊢ n, λ ∈ Bα, and Q ∈ SYT(λ) admissible. An
α-coloring of Q↑ is a partitioning of the boxes of Q↑ into the colors
c1, . . . , cr , such that

1 there are exactly αi boxes with color ci
2 upon cyclically permuting the entries of each color via the arrows

from the canonical constructions, while ignoring the boxes of other
colors, one obtains a standard tableau P ∈ SYT(λ).

The associated permutation of an α-coloring is the permutation σ such
that P = σ · Q↑.

Theorem

Let α, λ ⊢ n and let Q ∈ SYT(λ) be admissible. If there exists an
α-coloring of Q↑, then λ ∈ Sα.
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α-Coloring Picture for α = (7, 6) and λ = (3, 3, 3, 2, 1, 1)
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(a) Q↑ = T ↑
λ
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(b) Arrows giving σ−1
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(c) P = σ · Q↑
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(d) Graph of σ

Arrows → cycle notation; reverse column word of P → one-line notation:

σ−1 = (1, 6, 3, 4, 10, 8)(2, 5, 9, 13, 11, 12, 7)

σ = [8, 7, 6, 3, 2, 1, 12, 10, 5, 4, 13, 11, 9].

Via the RS correspondence, we have RS(σ) = (P,Tλ).
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Idea for Proof of Main Theorem

The main theorem was for α = (α1, α2) ⊢ n and said that Sα = Bα with 5
exceptions for even n.

Idea of proof: Construct α-colorings that apply to every shape λ ∈ Bα

except for the table of exceptions.
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Strict Partition Conjecture

We say that α ⊢ n is a strict partition if α1 > · · · > αr . The following
conjecture is verified by computer for all n ≤ 15.

Conjecture

Let α = (α1, . . . , αr ) ⊢ n be a strict partition, where r ≥ 3.

1 If αr > 1, then Sα = Bα.

2 If αr = 1 and n is odd, then Sα = Bα.

3 If αr = 1 and n is even, then Bα \ Sα = {(n2 ,
n
2 )}.

The following conjecture is verified by computer for all n ≤ 13.

Conjecture

Let α = (α1, . . . , αr ) ⊢ n be a strict partition, where r ≥ 1. For each
λ ∈ Sα, there exists an admissible Q ∈ SYT(λ) such that Q↑ admits an
α-coloring.
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Further Problems

Problem

For general cycle types α = (α1, . . . , αr ) ⊢ n, describe Sα explicitly.

Answer known in one special case (Schützenberger): Let α = (2r−k , 1k).
Then

Sα = {λ ⊢ n : λ has exactly k many columns of odd length} .
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Further Problem

Conjecture (“Almost” Pieri rule)

Let α = (α1, . . . , αr ) ⊢ n, where αr > 1 and r ≥ 1. Fix a positive integer
k, and set

α̃ := (α1, . . . , αr , 1
k).

Then we have

Sα̃ =

λ ∈ Bα̃ :

Young diagram of λ is obtained from the Young diagram
of some µ ∈ Sα by adding exactly k boxes, with no two
in the same column, and such that if λ′

1 = 2 then all k
boxes must be added to the first row

 .

(λ′
1 = 2 means λ has two rows)
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The End

Thank you!
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