

Robinson–Schensted Shapes Arising from Cycle Decompositions

Martha Du Preez, William Q. Erickson, Jonathan Feigert, Markus Hunziker, Jonathan Meddaugh, Mitchell Minyard, Kyle Rosengartner, Mark R. Sepanski*

Baylor University

5th Pythagorean Conference, June 2025

A Tale of Two Partitions

Much classical algebraic combinatorics \rightsquigarrow
representation theory of the *symmetric group* $S_n \rightsquigarrow$
integer partitions

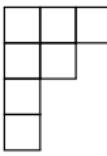
For $n, \lambda_i \in \mathbb{N}$, we say that

$$\lambda = (\lambda_1, \dots, \lambda_r)$$

is a **partition** of n , written

$$\lambda \vdash n,$$

if λ is weakly decreasing and $\sum_{i=1}^r \lambda_i = n$. Example: $(3, 2, 1, 1) \vdash 7$.

$$(3, 5, 4, 7)(1, 2, 6) \xrightarrow{?}$$


The First Partition: Cycle Type

Two notations for $\sigma \in S_n$:

- *one-line notation*: $\sigma = [2, 4, 9, 7, 10, 3, 1, 14, 6, 12, 11, 5, 13, 8]$
- *cycle notation*: $\sigma = (1, 2, 4, 7)(3, 9, 6)(5, 10, 12)(8, 14)(11)(13)$.

The **cycle type** of σ is the partition of n given by the lengths of the disjoint cycles in the cycle notation for σ .

In the example above, σ has cycle type $(4, 3, 3, 2, 1, 1)$.

For $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$, let

$$\mathcal{C}_\alpha := \{\sigma \in S_n : \sigma \text{ has cycle type } \alpha\}.$$

Definition of Young Diagram

The **Young diagram** of shape $\lambda \vdash n$ is a left-aligned array of cells with λ_i boxes in the i th row, counting from the top.

As an example, the Young diagram of shape $(5, 5, 4, 2, 1, 1)$ is:

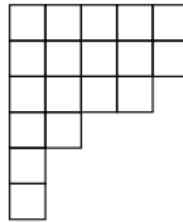


Figure: Young diagram of shape $(5, 5, 4, 2, 1, 1)$

Definition of Standard Young Tableau

A **standard Young tableau** of shape $\lambda \vdash n$ is obtained from the Young diagram of λ by

- 1 filling the cells with distinct elements of $[1, n]$
- 2 so that entries in each row and column are strictly increasing

We write $\text{SYT}(n)$ for the set of standard Young tableaux of size n .

1	2	3	4	5
6	7	8	9	18
10	11	12 17		
13 16				
14				
15				

Figure: A standard Young tableau of shape $(5, 5, 4, 2, 1, 1)$

Robinson–Schensted Correspondence

The **Robinson–Schensted (RS) correspondence** is a bijection

$$S_n \xrightarrow{\text{RS}} \coprod_{\lambda \vdash n} \text{SYT}(\lambda) \times \text{SYT}(\lambda)$$

written $\text{RS}(\sigma) = (P, Q)$.

Shorthand Algorithm. Let $\sigma = [\sigma_1, \dots, \sigma_n] \in S_n$, and let $\text{RS}(\sigma) = (P, Q)$. Inductively:

- For P : try to add σ_k to the end the first row
- For P : otherwise put it in its proper position, bumping out what was there already and try to place the bumped element in the next row...
- For Q : record where the new box was added in P with a k

Robinson–Schensted Example

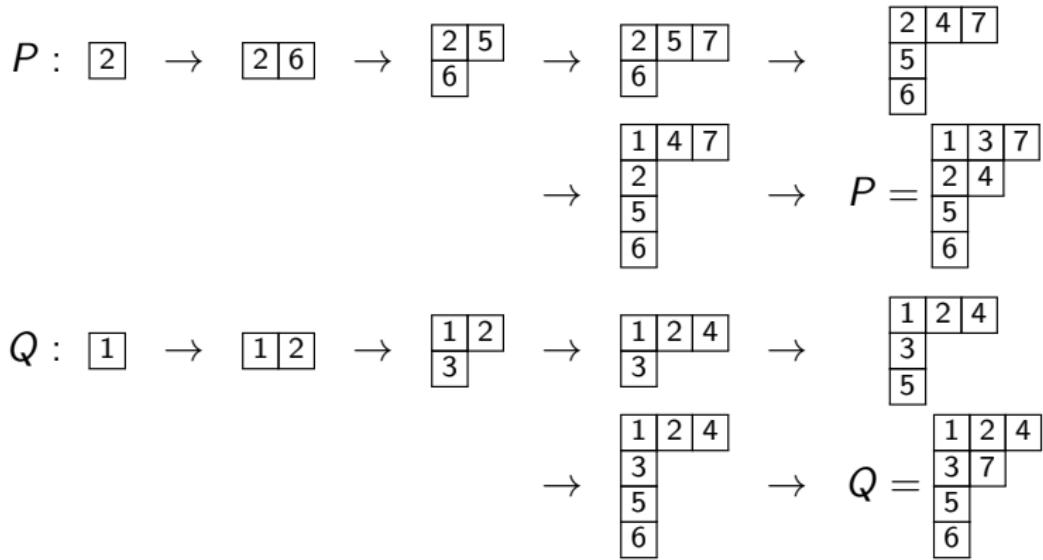


Figure: Given the input $\sigma = [2, 6, 5, 7, 4, 1, 3] = (3, 5, 4, 7)(1, 2, 6)$, the RS algorithm produces the output $\text{RS}(\sigma) = (P, Q)$.

The Second Partition: RS Shape

For $\sigma \in S_n$, write $\text{RS}(\sigma) = (P, Q)$. Note that P and Q share the same shape; if this shape is $\lambda \vdash n$, then we call λ the **RS shape** of σ , and we write

$$\text{sh}(\sigma) = \lambda.$$

From the last example, $\sigma = [2, 6, 5, 7, 4, 1, 3] = (3, 5, 4, 7)(1, 2, 6)$, we had

$$\text{RS}(\sigma) = \left(\begin{array}{|c|c|c|} \hline 1 & 3 & 7 \\ \hline 2 & 4 & \\ \hline 5 & & \\ \hline 6 & & \\ \hline \end{array}, \begin{array}{|c|c|c|} \hline 1 & 2 & 4 \\ \hline 3 & 7 & \\ \hline 5 & & \\ \hline 6 & & \\ \hline \end{array} \right)$$

so

$$\text{sh}(\sigma) = (3, 2, 1, 1).$$

Main Goal

Given a cycle type

$$\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$$

and having defined the conjugacy classes \mathcal{C}_α in S_n , along with the RS shape of an element $\sigma \in S_n$,

$$\lambda = \text{sh}(\sigma) \vdash n,$$

we now introduce our main object of study.

Define

$$\mathcal{S}_\alpha := \{\text{sh}(\sigma) : \sigma \in \mathcal{C}_\alpha\}.$$

Our main result describes \mathcal{S}_α for all cycle types $\alpha = (\alpha_1, \alpha_2)$.

The Bounding Box

For $\alpha = (\alpha_1, \dots, \alpha_r)$, define

$$\mathcal{B}_\alpha := \left\{ \lambda \vdash n : \begin{array}{l} \lambda'_1 \leq n - r + \#\{i : \alpha_i = 2\} + \delta_{1,\alpha_r}, \\ \lambda_1 \leq n - r + \#\{i : \alpha_i = 1\} \end{array} \right\}.$$

λ'_1 denotes the number of rows of λ and λ_1 denotes the number of columns.

For example, if $\alpha = (4, 2)$, then $r = 2$ and \mathcal{B}_α consists of all partitions of $n = 6$ whose Young diagram fits inside the box of dimensions $(6 - 2 + 1 + 0) \times (6 - 2 + 0) = 5 \times 4$. Concretely, we have

$$\mathcal{B}_{(4,2)} = \left\{ \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array}, \begin{array}{c} \begin{array}{|c|c|c|c|} \hline & & & \\ \hline \end{array} \end{array} \end{array} \right\}.$$

Theorem (\mathcal{S}_α Box Constraint)

Let $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$. Then $\mathcal{S}_\alpha \subseteq \mathcal{B}_\alpha$.

Idea of proof:

A result of Schensted (generalized by Greene) shows that the number of columns (resp., rows) in $\lambda = \text{sh}(\sigma)$ equals the length of the longest ascending (resp., descending) subsequence in $[\sigma_1, \dots, \sigma_n]$. With this tool, analysis of maximal ascending (resp., descending) subsequences in cycles gives the result.

Main Result

Theorem (Identification of \mathcal{S}_α for $r = 2$)

Let $n \in \mathbb{N}$, and let $\alpha = (\alpha_1, \alpha_2) \vdash n$.

- ① If n is odd, then $\mathcal{S}_\alpha = \mathcal{B}_\alpha$.
- ② If n is even, then $\mathcal{S}_\alpha = \mathcal{B}_\alpha$ unless α occurs in the following table:

α	$\mathcal{B}_\alpha \setminus \mathcal{S}_\alpha$
$(n-1, 1)$	$\{(\frac{n}{2}, \frac{n}{2})\}$
$(\frac{n}{2}, \frac{n}{2})$, where $4 \mid n$	$\{(n-2, 1, 1), (3, 1, \dots, 1)\}$
$(\frac{n}{2}, \frac{n}{2})$, where $4 \nmid n$	$\{(n-2, 1, 1)\}$
$(4, 2)$	$\{(2, 2, 2)\}$
$(5, 3)$	$\{(2, 2, 2, 2)\}$

Admissible Tableaux

T_λ := the tableau in $\text{SYT}(\lambda)$ with column word $[1, \dots, n]$.

$$T_{(3,2,1,1)} = \begin{array}{|c|c|c|} \hline 1 & 5 & 7 \\ \hline 2 & 6 & \\ \hline 3 & & \\ \hline 4 & & \\ \hline \end{array}$$

Given a standard Young tableau Q , we define

Q^\uparrow := the tableau obtained from Q by reversing the entries in each column.

$$T_{(3,2,1,1)} = \begin{array}{|c|c|c|} \hline 1 & 5 & 7 \\ \hline 2 & 6 & \\ \hline 3 & & \\ \hline 4 & & \\ \hline \end{array}, \quad T_{(3,2,1,1)}^\uparrow = \begin{array}{|c|c|c|} \hline 4 & 6 & 7 \\ \hline 3 & 5 & \\ \hline 2 & & \\ \hline 1 & & \\ \hline \end{array}.$$

Definition (Admissible Tableaux)

A standard tableau Q is said to be *admissible* if the entries in Q^\uparrow increase from left to right along each row.

Raison d'Etre for Admissible

The group S_n acts naturally on a tableau T of size n by permuting entries.

Corollary (Main Use of Admissible)

Let $\lambda \vdash n$ and let $Q \in \text{SYT}(\lambda)$ be admissible. If you find

$$\sigma \in S_n,$$

define

$$P = \sigma \cdot Q^\uparrow,$$

and can verify that

$$P \in \text{SYT}(\lambda)$$

then $\text{RS}(\sigma) = (P, Q)$, and we have

$$\text{sh}(\sigma) = \lambda.$$

In particular, in the special case $Q = T_\lambda$, the one-line notation of σ is the column word of P^\uparrow .

Warm-Up, $r = 1$, and the Canonical Cycle

Here is the solution to the main problem for the baby case, $r = 1$:

$$\mathcal{S}_{(n)} = \mathcal{B}_{(n)}.$$

Construction (Canonical Cycle–Rough Outline)

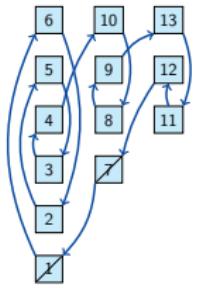
Let $\lambda \in \mathcal{B}_{(n)}$. Construct a canonical σ as follows:

- ① Begin with T_λ , which is admissible.
- ② Draw spiral arrows in each column of T_λ^\uparrow starting in the first column and working to the right.
- ③ After the last column, work your way back to the first column along the bottom.
- ④ The arrows give σ^{-1} . Hence to write σ in cycle notation, simply follow the arrows backwards.

Picture of the Canonical Cycle for $\lambda = (3, 3, 3, 2, 1, 1)$

6	10	13
5	9	12
4	8	11
3	7	
2		
1		

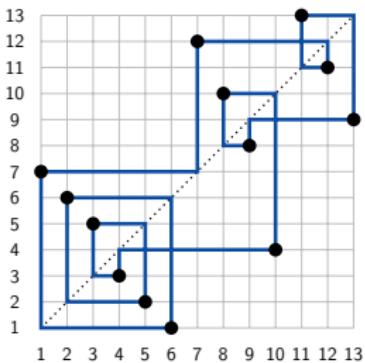
(a) T_λ^\uparrow



(b) Arrows giving σ^{-1}

1	4	9
2	8	11
3	10	13
5	12	
6		
7		

(c) $P = \sigma \cdot T_\lambda^\uparrow$



(d) Graph of σ

Arrows \rightarrow cycle notation; reverse column word of $P \rightarrow$ one-line notation:

$$\sigma^{-1} = (1, 6, 2, 5, 3, 4, 10, 8, 9, 13, 11, 12, 7)$$

$$\sigma = [7, 6, 5, 3, 2, 1, 12, 10, 8, 4, 13, 11, 9].$$

Via the RS correspondence, we have $\text{RS}(\sigma) = (P, T_\lambda)$.

Beyond $r = 1$, α -Colorings

Definition

Let $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$, $\lambda \in \mathcal{B}_\alpha$, and $Q \in \text{SYT}(\lambda)$ admissible. An α -coloring of Q^\uparrow is a partitioning of the boxes of Q^\uparrow into the colors c_1, \dots, c_r , such that

- ① there are exactly α_i boxes with color c_i
- ② upon cyclically permuting the entries of each color via the arrows from the canonical constructions, while ignoring the boxes of other colors, one obtains a standard tableau $P \in \text{SYT}(\lambda)$.

The *associated permutation* of an α -coloring is the permutation σ such that $P = \sigma \cdot Q^\uparrow$.

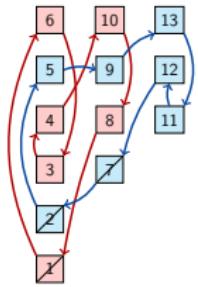
Theorem

Let $\alpha, \lambda \vdash n$ and let $Q \in \text{SYT}(\lambda)$ be admissible. If there exists an α -coloring of Q^\uparrow , then $\lambda \in \mathcal{S}_\alpha$.

α -Coloring Picture for $\alpha = (7, 6)$ and $\lambda = (3, 3, 3, 2, 1, 1)$

6	10	13
5	9	12
4	8	11
3	7	
2		
1		

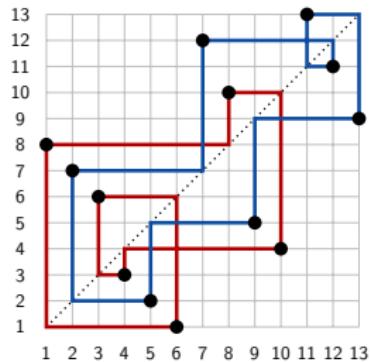
$$(a) Q^\uparrow = T_\lambda^\uparrow$$



$$(b) \text{ Arrows giving } \sigma^{-1}$$

1	4	9
2	5	11
3	10	13
6	12	
7		
8		

$$(c) P = \sigma \cdot Q^\uparrow$$



$$(d) \text{ Graph of } \sigma$$

Arrows \rightarrow cycle notation; reverse column word of $P \rightarrow$ one-line notation:

$$\sigma^{-1} = (1, 6, 3, 4, 10, 8)(2, 5, 9, 13, 11, 12, 7)$$

$$\sigma = [8, 7, 6, 3, 2, 1, 12, 10, 5, 4, 13, 11, 9].$$

Via the RS correspondence, we have $\text{RS}(\sigma) = (P, T_\lambda)$.

Idea for Proof of Main Theorem

The main theorem was for $\alpha = (\alpha_1, \alpha_2) \vdash n$ and said that $\mathcal{S}_\alpha = \mathcal{B}_\alpha$ with 5 exceptions for even n .

Idea of proof: Construct α -colorings that apply to every shape $\lambda \in \mathcal{B}_\alpha$ except for the table of exceptions.

Strict Partition Conjecture

We say that $\alpha \vdash n$ is a *strict partition* if $\alpha_1 > \cdots > \alpha_r$. The following conjecture is verified by computer for all $n \leq 15$.

Conjecture

Let $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$ be a strict partition, where $r \geq 3$.

- ① If $\alpha_r > 1$, then $\mathcal{S}_\alpha = \mathcal{B}_\alpha$.
- ② If $\alpha_r = 1$ and n is odd, then $\mathcal{S}_\alpha = \mathcal{B}_\alpha$.
- ③ If $\alpha_r = 1$ and n is even, then $\mathcal{B}_\alpha \setminus \mathcal{S}_\alpha = \{(\frac{n}{2}, \frac{n}{2})\}$.

The following conjecture is verified by computer for all $n \leq 13$.

Conjecture

Let $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$ be a strict partition, where $r \geq 1$. For each $\lambda \in \mathcal{S}_\alpha$, there exists an admissible $Q \in \text{SYT}(\lambda)$ such that Q^\uparrow admits an α -coloring.

Further Problems

Problem

For general cycle types $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$, describe \mathcal{S}_α explicitly.

Answer known in one special case (Schützenberger): Let $\alpha = (2^{r-k}, 1^k)$.
Then

$$\mathcal{S}_\alpha = \{\lambda \vdash n : \lambda \text{ has exactly } k \text{ many columns of odd length}\}.$$

Further Problem

Conjecture (“Almost” Pieri rule)

Let $\alpha = (\alpha_1, \dots, \alpha_r) \vdash n$, where $\alpha_r > 1$ and $r \geq 1$. Fix a positive integer k , and set

$$\tilde{\alpha} := (\alpha_1, \dots, \alpha_r, 1^k).$$

Then we have

$$S_{\tilde{\alpha}} = \left\{ \lambda \in \mathcal{B}_{\tilde{\alpha}} : \begin{array}{l} \text{Young diagram of } \lambda \text{ is obtained from the Young diagram} \\ \text{of some } \mu \in \mathcal{S}_\alpha \text{ by adding exactly } k \text{ boxes, with no two} \\ \text{in the same column, and such that if } \lambda'_1 = 2 \text{ then all } k \\ \text{boxes must be added to the first row} \end{array} \right\}.$$

($\lambda'_1 = 2$ means λ has two rows)

The End

Thank you!