

# Strong External Difference Families

Maura Paterson



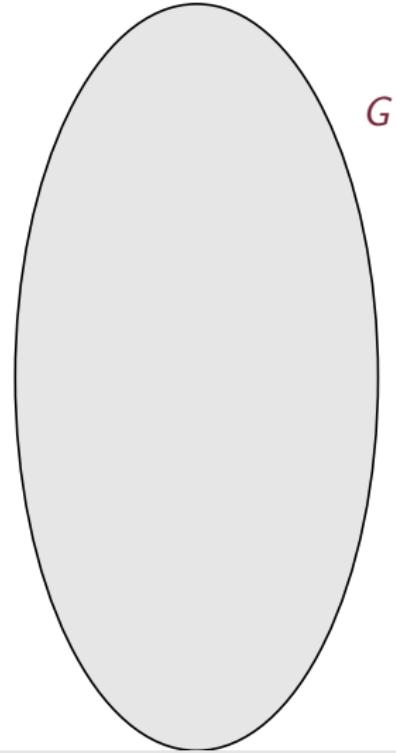
Pythagorean Conference

June 2025

# $(n, m, k, \lambda)$ -Strong External Difference Family

[P., Stinson '16]

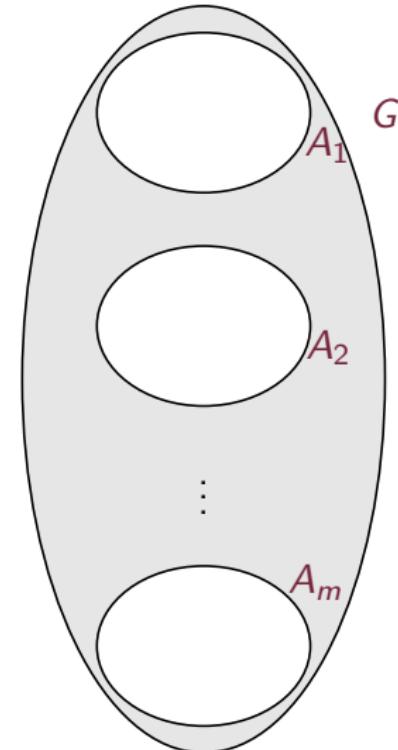
- $G$  abelian group with  $|G| = n$



# $(n, m, k, \lambda)$ -Strong External Difference Family

[P., Stinson '16]

- ▶  $G$  abelian group with  $|G| = n$
- ▶  $A_1, A_2, \dots, A_m$  disjoint  $k$ -subsets of  $G$

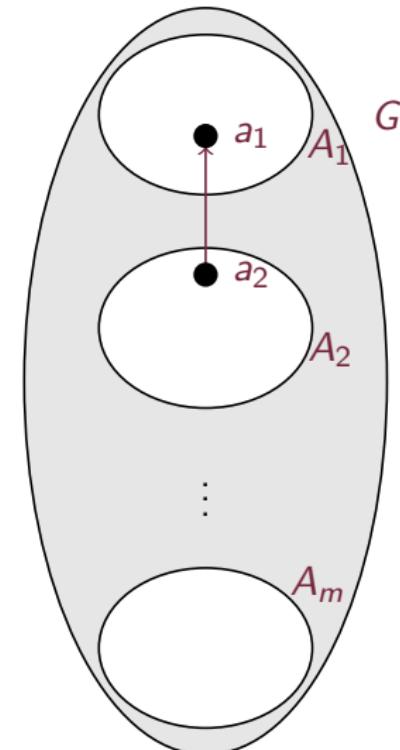


# $(n, m, k, \lambda)$ -Strong External Difference Family

[P., Stinson '16]

- ▶  $G$  abelian group with  $|G| = n$
- ▶  $A_1, A_2, \dots, A_m$  disjoint  $k$ -subsets of  $G$
- ▶ require

$$\begin{aligned} & \{a_1 - a_i \mid a_1 \in A_1, a_i \in A_i \text{ with } i \neq 1\} \\ &= \lambda(G \setminus \{0\}) \end{aligned}$$



# $(n, m, k, \lambda)$ -Strong External Difference Family

[P., Stinson '16]

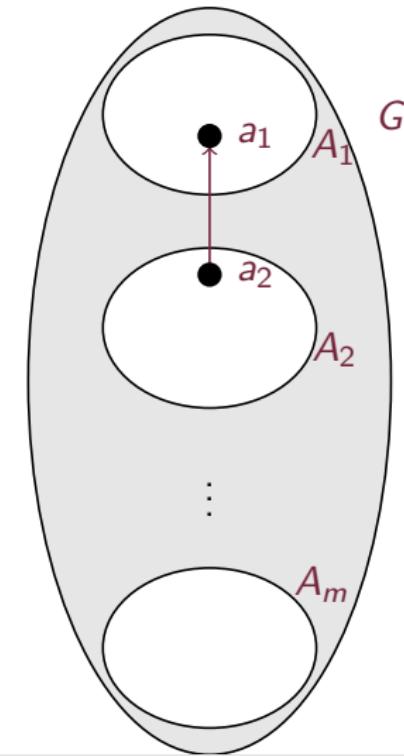
- ▶  $G$  abelian group with  $|G| = n$
- ▶  $A_1, A_2, \dots, A_m$  disjoint  $k$ -subsets of  $G$
- ▶ require

$$\begin{aligned} & \{a_1 - a_i \mid a_1 \in A_1, a_i \in A_i \text{ with } i \neq 1\} \\ &= \lambda(G \setminus \{0\}) \end{aligned}$$

- ▶ similarly require

$$\begin{aligned} & \{a_j - a_i \mid a_j \in A_j, a_i \in A_i \text{ with } i \neq j\} \\ &= \lambda(G \setminus \{0\}) \end{aligned}$$

for  $j = 2, 3, \dots, m$ .

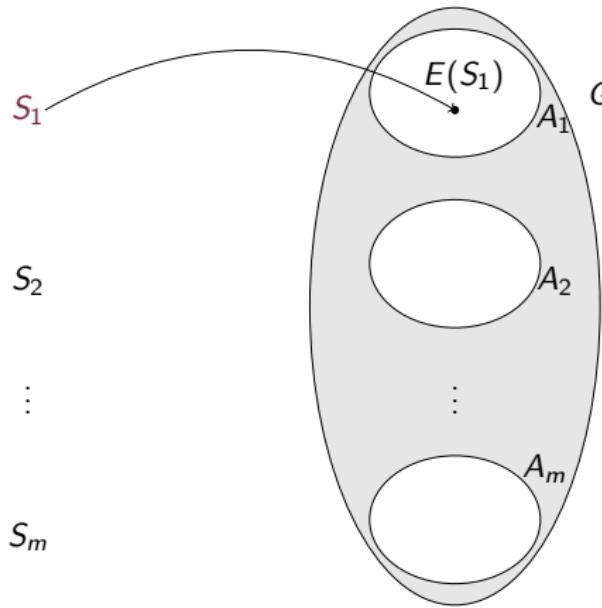


# Example: (10, 2, 3, 1)-SEDF

- ▶  $G = \mathbb{Z}_{10}$
- ▶  $A_1 = \{0, 1, 2\}, A_2 = \{3, 6, 9\}$

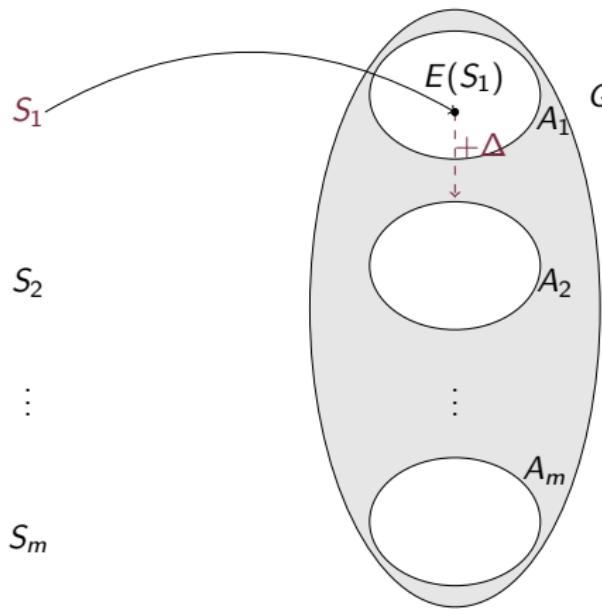
# Motivation: strong algebraic manipulation detection code

[Cramer, Dodis, Fehr, Padró, Wichs '08]



# Motivation: strong algebraic manipulation detection code

[Cramer, Dodis, Fehr, Padró, Wichs '08]



# Limitations when $\lambda = 1$

## Theorem ([P., Stinson '16])

A  $(n, m, k, 1)$ -SEDF exists if and only if  $m = 2$  and  $n = k^2 + 1$  or  $k = 1$  and  $m = n$ .

**Question:** Does there exist a strong  $(n, m, k, \lambda)$  external difference family with  $k > 1$  and  $m > 2$  for some  $\lambda > 1$ ?

# Parameters where constructions of $(n, 2, k, \lambda)$ -SEDFs are known

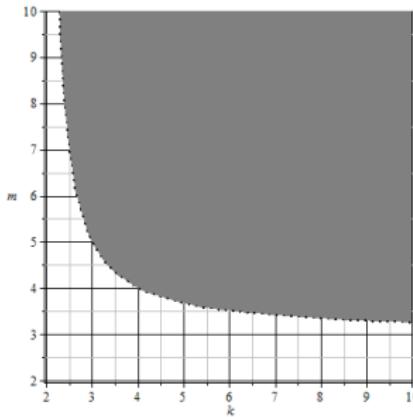
- ▶  $(n, m, k, \lambda) = (k^2 + 1, 2, k, 1)$  and  $G = \mathbb{Z}_{k^2+1}$
- ▶  $(n, m, k, \lambda) = (n, 2, \frac{n-1}{2}, \frac{n-1}{4})$ ,  $n \equiv 1 \pmod{4}$  is a prime power  
[Bao, Ji, Wei, Zhang '18]
- ▶  $(n, m, k, \lambda) = (q, 2, \frac{q-1}{4}, \frac{q-1}{16})$ , where  $q = 16t^2 + 1$  is a prime power and  $t \in \mathbb{Z}$
- ▶  $(n, m, k, \lambda) = (p, 2, \frac{p-1}{6}, \frac{p-1}{36})$ , where  $p = 108t^2 + 1$  is a prime and  $t \in \mathbb{Z}$

# Nonexistence when $\lambda > 1$

## Theorem ([Huczynska, P. '18])

Let  $\lambda \geq 2$ . Suppose there exists an  $(n, m, k, \lambda)$ -SEDF with  $m \geq 3$  and  $k \geq \lambda + 1$ . Then the following inequality must hold:

$$\frac{\lambda(k-1)(m-2)}{(\lambda-1)k(m-1)} \leq 1.$$



# Character theoretic restrictions

[Martin, Stinson '17]

- ▶  $m \neq 3, 4$
- ▶ No SEDF exists with  $n$  is prime,  $m > 2$ ,  $k > 2$ .

# Character theoretic restrictions

[Martin, Stinson '17]

- ▶  $m \neq 3, 4$
- ▶ No SEDF exists with  $n$  is prime,  $m > 2$ ,  $k > 2$ .

**Question:** Does there exist a strong  $(n, m, k, \lambda)$  external difference family with  $k > 1$  and  $m \geq 5$  for some  $\lambda > 1$ ?

# Yes!

[Jedwab, Li '19] [Wen, Yang, Feng '16]

## Theorem

*There exists a (243, 11, 22, 20)-SEDF in  $\mathbb{Z}_3^5$ .*

# Yes!

[Jedwab, Li '19] [Wen, Yang, Feng '16]

## Theorem

*There exists a  $(243, 11, 22, 20)$ -SEDF in  $\mathbb{Z}_3^5$ .*

Only known example with  $m > 2$ !

# Remaining parameters with $m > 2$ and $n \leq 10^4$

[Leung, Li, Prabowo '21]

**Table 3**

Plausible parameter sets for  $(v, m, k, \lambda)$ -SEDFs with  $m > 2$  and  $v \leq 10^4$ .

| $v$  | $m$ | $k$ | $\lambda$ | $v$  | $m$ | $k$ | $\lambda$ | $v$  | $m$ | $k$ | $\lambda$ |
|------|-----|-----|-----------|------|-----|-----|-----------|------|-----|-----|-----------|
| 540  | 12  | 42  | 36        | 2646 | 16  | 138 | 108       | 4375 | 37  | 108 | 96        |
| 1701 | 35  | 40  | 32        | 3888 | 24  | 156 | 144       | 5376 | 44  | 100 | 80        |
| 2058 | 86  | 22  | 20        | 3888 | 47  | 78  | 72        | 5832 | 18  | 294 | 252       |
| 2401 | 7   | 280 | 196       | 3969 | 32  | 112 | 98        | 8625 | 23  | 280 | 200       |
| 2401 | 9   | 240 | 192       | 4375 | 7   | 540 | 400       | 8960 | 32  | 238 | 196       |
| 2500 | 18  | 105 | 75        | 4375 | 9   | 405 | 300       | 9801 | 26  | 308 | 242       |
| 2601 | 53  | 40  | 32        | 4375 | 16  | 270 | 250       |      |     |     |           |

# SEDFs in non-abelian groups

## Definition (modified)

We require

$$\begin{aligned} & \{a_j a_i^{-1} \mid a_j \in A_j, a_i \in A_i \text{ with } i \neq j\} \\ &= \lambda(G \setminus \{e\}) \end{aligned}$$

for  $j = 1, 2, 3, \dots, m$ .

# SEDFs in non-abelian groups

## Definition (modified)

We require

$$\begin{aligned} & \{a_j a_i^{-1} \mid a_j \in A_j, a_i \in A_i \text{ with } i \neq j\} \\ &= \lambda(G \setminus \{e\}) \end{aligned}$$

for  $j = 1, 2, 3, \dots, m$ .

[Huczynska, Jefferson, Nepšínská '21]

## Theorem

For  $k$  odd there is a  $(k^2 + 1, 2, k, 1)$ -SEDF in the dihedral group of order  $k^2 + 1$ .

# Comment on the $m = 2$ case

If

$$\{a_1 a_2^{-1} \mid a_1 \in A_1, a_2 \in A_2\} = \lambda(G \setminus \{e\}),$$

then

$$\{a_2 a_1^{-1} \mid a_1 \in A_1, a_2 \in A_2\} = \lambda(G \setminus \{e\}).$$

## Comment on the $m = 2$ case

If

$$\{a_1 a_2^{-1} \mid a_1 \in A_1, a_2 \in A_2\} = \lambda(G \setminus \{e\}),$$

then

$$\{a_2 a_1^{-1} \mid a_1 \in A_1, a_2 \in A_2\} = \lambda(G \setminus \{e\}).$$

Conclusion: when  $m = 2$  we only need to check one set of conditions.

# Relation to Near-Factorizations

## Definition (Near-Factorization)

- ▶  $G$  finite group
- ▶  $A_1, A_2 \subset G$

$(A_1, A_2)$  is a  $(k, k)$ -near-factorization of  $G$  if

- ▶  $|A_1| = |A_2| = k$ ,  $|G| = k^2 + 1$
- ▶  $G \setminus \{e\} = A_1 A_2$ .

# Relation to Near-Factorizations

## Definition (Near-Factorization)

- ▶  $G$  finite group
- ▶  $A_1, A_2 \subset G$

$(A_1, A_2)$  is a  $(k, k)$ -near-factorization of  $G$  if

- ▶  $|A_1| = |A_2| = k$ ,  $|G| = k^2 + 1$
- ▶  $G \setminus \{e\} = A_1 A_2$ .

Observation:  $A_1, A_2$  form a  $(k^2 + 1, 2, k, 1)$ -SEDF in  $G$  if and only if  $(A_1, A_2^{-1})$  is a  $(k, k)$ -near-factorization of  $G$ .

# A useful property

## Definition

- ▶ A subset  $S$  of a group is *symmetric* if  $S = S^{-1}$ .
- ▶ A near-factorization  $(A, B)$  is symmetric if  $A$  and  $B$  are symmetric.
- ▶ An SEDF  $A_1, A_2$  is symmetric if  $A_1$  and  $A_2$  are symmetric.

# Proof by pretty picture...

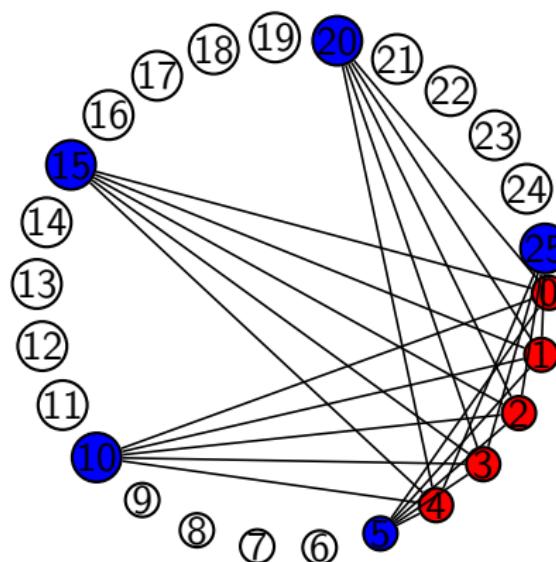
## Theorem

If  $A_1, A_2$  is an  $(n, m, k, 1)$  – SEDF in an abelian group  $G$ , then there exists  $g \in G$  for which  $g + A_1, g + A_2$  is a symmetric  $(n, m, k, 1)$  – SEDF.

# Proof by pretty picture...

## Theorem

If  $A_1, A_2$  is an  $(n, m, k, 1)$  – SEDF in an abelian group  $G$ , then there exists  $g \in G$  for which  $g + A_1, g + A_2$  is a symmetric  $(n, m, k, 1)$  – SEDF.



# SEDFs in cyclic groups give SEDFs in dihedral groups

[Pêcher '04] [Kreher, P. Stinson '24]

- ▶ For  $k$  odd there is a correspondence between symmetric  $(k^2 + 1, 2, k, 1)$ -SEDFs in  $\mathbb{Z}_{k^2+1}$  and those in the dihedral group

$$D_{(k^2+1)/2} = \langle a, b : a^2 = b^{(k^2+1)/2} = abab = e \rangle.$$

$$x \in \mathbb{Z}_{k^2+1} \mapsto a^{(x \bmod 2)} b^{(x \bmod (k^2+1)/2)}.$$

# SEDFs in cyclic groups give SEDFs in dihedral groups

[Pêcher '04] [Kreher, P. Stinson '24]

- ▶ For  $k$  odd there is a correspondence between symmetric  $(k^2 + 1, 2, k, 1)$ -SEDFs in  $\mathbb{Z}_{k^2+1}$  and those in the dihedral group

$$D_{(k^2+1)/2} = \langle a, b : a^2 = b^{(k^2+1)/2} = abab = e \rangle.$$

$$x \in \mathbb{Z}_{k^2+1} \mapsto a^{(x \mod 2)} b^{(x \mod (k^2+1)/2)}.$$

- ▶ The SEDFs in  $\mathbb{Z}_{k^2+1}$  are *equivalent* iff the corresponding SEDFs in  $D_{k^2+1}$  are equivalent.

# Other nonabelian groups

- ▶ There are two nonequivalent  $(50, 2, 7, 1)$ -SEDFs in  $D_5 \times C_5$ .
- ▶ There are two nonequivalent  $(50, 2, 7, 1)$ -SEDFs in  $C_5^2 \rtimes_2 C_2$ .

# $\alpha$ -valuations

## Definition (Graceful labelling)

Let  $\mathcal{G}$  be a graph with  $e$  edges. A **labelling** of the vertices with elements of the set  $\{0, 1, \dots, e\}$  is **graceful** if the set of absolute values of the differences between the labels on the vertices adjacent to each edge is precisely  $\{1, 2, \dots, e\}$ .

# $\alpha$ -valuations

## Definition (Graceful labelling)

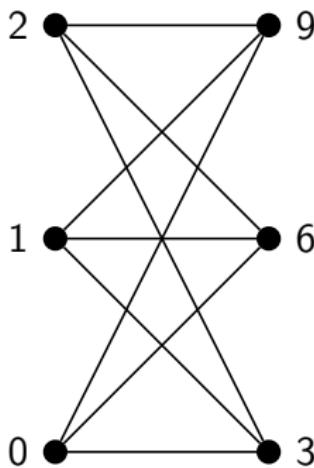
Let  $\mathcal{G}$  be a graph with  $e$  edges. A **labelling** of the vertices with elements of the set  $\{0, 1, \dots, e\}$  is **graceful** if the set of absolute values of the differences between the labels on the vertices adjacent to each edge is precisely  $\{1, 2, \dots, e\}$ .

[Rosa '67]

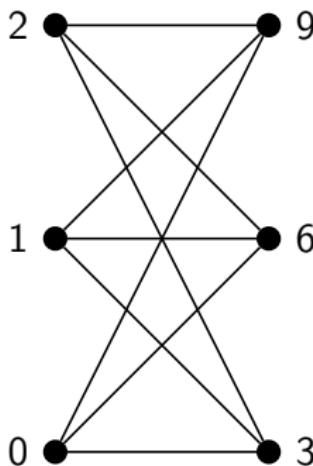
## Definition ( $\alpha$ -valuation)

A graceful labelling of a graph  $\mathcal{G}$  be a graph with  $e$  edges is an  **$\alpha$ -valuation** if there exists  $x$  with  $0 < x < e$  such that each edge is incident with one vertex of label at most  $x$ , and one vertex of label greater than  $x$ .

# Example



# Example



## Theorem ([P., Stinson '24])

An  $\alpha$ -valuation of the complete bipartite graph  $K_{k,k}$  implies the existence of a  $(k^2 + 1, 2, k, 1)$ -SEDF in  $\mathbb{Z}_{k^2+1}$ .

## α-valuations via blowups

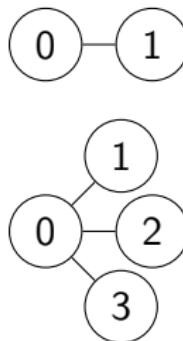
- ▶ Start with an  $\alpha$ -valuation of a bipartite graph with vertex sets  $V^{\text{small}}$  and  $V^{\text{large}}$ .
- ▶ Multiply each label by  $\ell$ .
- ▶ Replace each vertex of  $V^{\text{small}}$  with label  $\ell i$  by an independent set of size  $\ell$  whose vertices are adjacent to the neighbours of original vertex and have labels  $\ell i, \ell i + 1, \dots, \ell i + (\ell - 1)$ .

(Similar process can be applied to blow up the vertices of  $V^{\text{large}}$ .)  
This process yields an  $\alpha$ -valuation of the resulting graph.

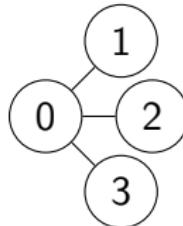
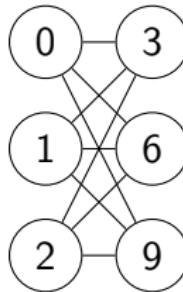
## example



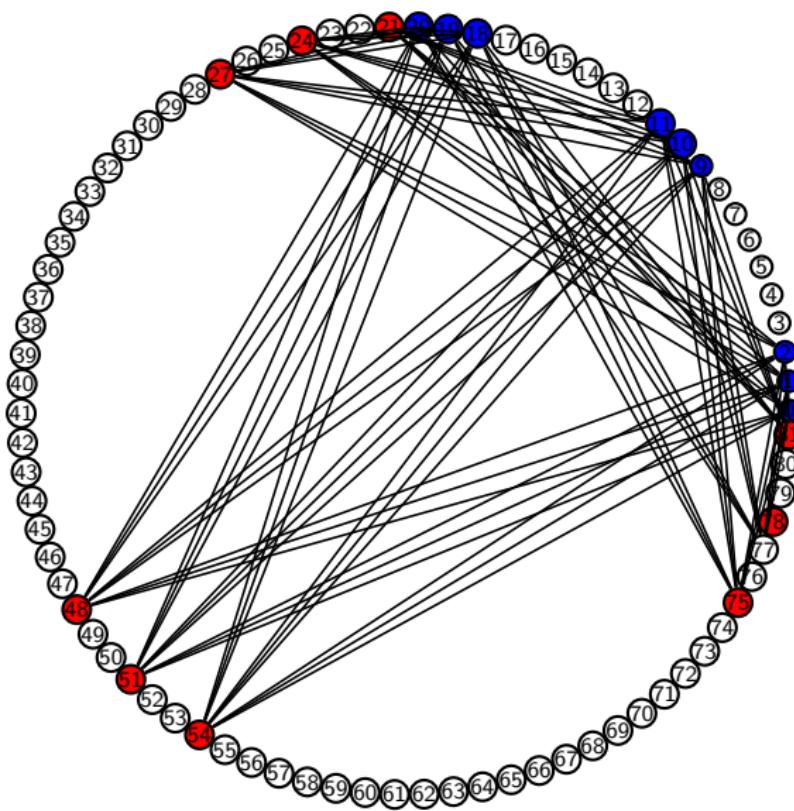
# example



# example



## example



# Classification of $\alpha$ -valuations of complete bipartite graphs

## Theorem ([Kreher, P., Stinson '25])

*Every  $\alpha$ -valuation of a complete bipartite graph can be obtained by starting with  $K_{1,1}$  with labels 0 and 1, then applying a sequence of blow-up operations.*

# Classification of $\alpha$ -valuations of complete bipartite graphs

## Theorem ([Kreher, P., Stinson '25])

*Every  $\alpha$ -valuation of a complete bipartite graph can be obtained by starting with  $K_{1,1}$  with labels 0 and 1, then applying a sequence of blow-up operations.*

[de Bruijn '56]

# Classifying SEDFs with $m = 2, \lambda = 1$ in cyclic groups.

- ▶ Does every SEDF with  $m = 2$  and  $\lambda = 1$  arise from an  $\alpha$ -valuation of a complete bipartite graph?

# Classifying SEDFs with $m = 2, \lambda = 1$ in cyclic groups.

- ▶ Does every SEDF with  $m = 2$  and  $\lambda = 1$  arise from an  $\alpha$ -valuation of a complete bipartite graph?
- ▶ No!  $\{1, 4, 13, 16\}, \{2, 8, 9, 15\}$   
[Huczynska, Jefferson, Nepšinská '21]

# Classifying SEDFs with $m = 2, \lambda = 1$ in cyclic groups.

- ▶ Does every SEDF with  $m = 2$  and  $\lambda = 1$  arise from an  $\alpha$ -valuation of a complete bipartite graph?
- ▶ No!  $\{1, 4, 13, 16\}, \{2, 8, 9, 15\}$   
[Huczynska, Jefferson, Nepšinská '21]
- ▶ Is every SEDF with  $m = 2$  and  $\lambda = 1$  equivalent to one that arises from an  $\alpha$ -valuation of a complete bipartite graph?

# Classifying SEDFs with $m = 2, \lambda = 1$ in cyclic groups.

- ▶ Does every SEDF with  $m = 2$  and  $\lambda = 1$  arise from an  $\alpha$ -valuation of a complete bipartite graph?
- ▶ No!  $\{1, 4, 13, 16\}, \{2, 8, 9, 15\}$   
[Huczynska, Jefferson, Nepšinská '21]
- ▶ Is every SEDF with  $m = 2$  and  $\lambda = 1$  equivalent to one that arises from an  $\alpha$ -valuation of a complete bipartite graph?
- ▶ True for  $k \leq 14$ .

# Thanks for listening!

-  Maura B. Paterson and Douglas R. Stinson. Combinatorial characterizations of algebraic manipulation detection codes involving generalized difference families. *Discrete Mathematics*, 339(12):2891-2906, 2016.
-  Cramer, Dodis, Fehr, Padró, Wichs. Detection of algebraic manipulation with applications to robust secret sharing and fuzzy extractors. *Eurocrypt* 2008.
-  J. Bao, L. Ji, R. Wei, Y. Zhang. New existence and nonexistence results for strong external difference families. *Discrete Mathematics* 341 (6) 1798–1805 (2018).
-  S. Huczynska and M.B. Paterson. Existence and non-existence results for strong external difference families. *Discrete Mathematics*, 341(1):87-95, 2018.
-  W.J. Martin, D.R. Stinson. Some nonexistence results for strong external difference families using character theory. *Bulletin of the ICA*, 80:79–92, (2017).
-  J. Jedwab, S. Li. Construction and nonexistence of strong external difference families. *J. Algebraic Combin.* 49(1) 21–48 (2019)
-  J. Wen, M. Yang, K. Feng. The  $(n, m, k, \lambda)$  strong external difference family with  $m \geq 5$  exists.  
<https://arxiv.org/abs/1612.09495> (2016)

-  K.H. Leung, S. Li, T.F. Prabowo. Nonexistence of strong external difference families in abelian groups of order being product of at most three primes. *JCT A*, (178) 105338, (2021)
-  S. Huczynska, C. Jefferson and S. Nepšínská. Strong external difference families in abelian and non-abelian groups. *Cryptography and Communications* 13, 331–341 (2021).
-  A. Pêcher. Cayley partitionable graphs and near-factorizations of finite groups. *Discrete Mathematics* 276, 95–311 (2004).
-  Donald L. Kreher, Maura B. Paterson, Douglas R. Stinson. Near-factorizations of dihedral groups. <https://arxiv.org/abs/2411.15884> (2024).
-  A. Rosa. On certain valuations of the vertices of a graph. P. Rosenstiehl (Ed.), *Theory of Graphs*, International Symposium, Rome, 1966, 349–355 (1967)
-  M.B. Paterson and D.R. Stinson. Circular external difference families, graceful labellings and cyclotomy. *Discrete Mathematics*, 347(10), 2024.
-  D.L. Kreher, M.B. Paterson and D.R. Stinson. Strong External Difference Families and Classification of  $\alpha$ -valuations. *Journal of Combinatorial Designs* (to appear).
-  N.G. de Bruijn. On number systems. *Nieuw Archief voor Wiskunde* 3, 15–17. (1956)