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(n,m, k , λ)-Strong External Difference Family

[P., Stinson ’16]

▶ G abelian group with |G | = n

▶ A1,A2, . . . ,Am disjoint k-subsets of G

▶ require

{a1 − ai |a1 ∈ A1, ai ∈ Ai with i ̸= 1}
= λ(G \ {0})

▶ similarly require

{aj − ai |aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {0})

for j = 2, 3, . . . ,m.

...

A1

A2

Am

G

a1

a2

M.B. Paterson SEDFs 2/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

(n,m, k , λ)-Strong External Difference Family

[P., Stinson ’16]

▶ G abelian group with |G | = n

▶ A1,A2, . . . ,Am disjoint k-subsets of G

▶ require

{a1 − ai |a1 ∈ A1, ai ∈ Ai with i ̸= 1}
= λ(G \ {0})

▶ similarly require

{aj − ai |aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {0})

for j = 2, 3, . . . ,m.

...

A1

A2

Am

G

a1

a2

M.B. Paterson SEDFs 2/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

(n,m, k , λ)-Strong External Difference Family

[P., Stinson ’16]

▶ G abelian group with |G | = n

▶ A1,A2, . . . ,Am disjoint k-subsets of G

▶ require

{a1 − ai |a1 ∈ A1, ai ∈ Ai with i ̸= 1}
= λ(G \ {0})

▶ similarly require

{aj − ai |aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {0})

for j = 2, 3, . . . ,m.

...

A1

A2

Am

Ga1

a2

M.B. Paterson SEDFs 2/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

(n,m, k , λ)-Strong External Difference Family

[P., Stinson ’16]

▶ G abelian group with |G | = n

▶ A1,A2, . . . ,Am disjoint k-subsets of G

▶ require

{a1 − ai |a1 ∈ A1, ai ∈ Ai with i ̸= 1}
= λ(G \ {0})

▶ similarly require

{aj − ai |aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {0})

for j = 2, 3, . . . ,m.

...

A1

A2

Am

Ga1

a2

M.B. Paterson SEDFs 2/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

Example: (10, 2, 3, 1)-SEDF

▶ G = Z10

▶ A1 = {0, 1, 2}, A2 = {3, 6, 9}

M.B. Paterson SEDFs 3/26
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Motivation: strong algebraic manipulation
detection code

[Cramer, Dodis, Fehr, Padró, Wichs ’08]
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Limitations when λ = 1

Theorem ([P., Stinson ’16])

A (n,m, k , 1)-SEDF exists if and only if m = 2 and n = k2 + 1 or
k = 1 and m = n.

Question: Does there exist a strong (n,m, k, λ) external difference
family with k > 1 and m > 2 for some λ > 1?
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Parameters where constructions of
(n, 2, k , λ)-SEDFs are known

▶ (n,m, k, λ) = (k2 + 1, 2, k, 1) and G = Zk2+1

▶ (n,m, k, λ) = (n, 2, n−1
2 , n−1

4 ), n ≡ 1 (mod 4) is a prime
power
[Bao, Ji, Wei, Zhang ’18]

▶ (n,m, k, λ) = (q, 2, q−1
4 , q−1

16 ), where q = 16t2 + 1 is a prime
power and t ∈ Z

▶ (n,m, k, λ) = (p, 2, p−1
6 , p−1

36 ), where p = 108t2 + 1 is a prime
and t ∈ Z
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definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

Nonexistence when λ > 1

Theorem ([Huczynska, P. ’18])

Let λ ≥ 2. Suppose there exists an (n,m, k , λ)-SEDF with m ≥ 3
and k ≥ λ+ 1. Then the following inequality must hold:

λ(k − 1)(m − 2)

(λ− 1)k(m − 1)
≤ 1.

J. Bao, L. Ji, R. Wei, Y. Zhang, New existence and nonexistence
results for strong external difference families, Discrete Math. 341
(6) 1798–1805 (2018).
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Character theoretic restrictions

[Martin, Stinson ’17]

▶ m ̸= 3, 4

▶ No SEDF exists with n is prime, m > 2, k > 2.

Question: Does there exist a strong (n,m, k, λ) external difference
family with k > 1 and m ≥ 5 for some λ > 1?
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Yes!

[Jedwab, Li ’19] [Wen, Yang, Feng ’16]

Theorem

There exists a (243, 11, 22, 20)-SEDF in Z5
3.

Only known example with m > 2!
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Remaining parameters with m > 2 and n ≤ 104

[Leung, Li, Prabowo ’21]
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SEDFs in non-abelian groups

Definition (modified)

We require

{ajai−1|aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {e})

for j = 1, 2, 3, . . . ,m.

[Huczynska, Jefferson, Nepšinská ’21]

Theorem

For k odd there is a (k2 + 1, 2, k , 1)-SEDF in the dihedral group of
order k2 + 1.

M.B. Paterson SEDFs 11/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

SEDFs in non-abelian groups

Definition (modified)

We require

{ajai−1|aj ∈ Aj , ai ∈ Ai with i ̸= j}
= λ(G \ {e})

for j = 1, 2, 3, . . . ,m.

[Huczynska, Jefferson, Nepšinská ’21]
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Comment on the m = 2 case

If

{a1a2−1|a1 ∈ A1, a2 ∈ A2} = λ(G \ {e}),

then

{a2a1−1|a1 ∈ A1, a2 ∈ A2} = λ(G \ {e}).

Conclusion: when m = 2 we only need to check one set of
conditions.

M.B. Paterson SEDFs 12/26
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Relation to Near-Factorizations

Definition (Near-Factorization)

▶ G finite group

▶ A1,A2 ⊂ G

(A1,A2) is a (k, k)-near-factorization of G if

▶ |A1| = |A2| = k, |G | = k2 + 1

▶ G \ {e} = A1A2.

Observation: A1,A2 form a (k2 + 1, 2, k, 1)-SEDF in G if and only
if (A1,A2

−1) is a (k, k)-near-factorization of G .

M.B. Paterson SEDFs 13/26
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A useful property

Definition

▶ A subset S of a group is symmetric if S = S−1.

▶ A near-factorization (A,B) is symmetric if A and B are
symmetric.

▶ An SEDF A1,A2 is symmetric if A1 and A2 are symmetric.

M.B. Paterson SEDFs 14/26
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Proof by pretty picture. . .

Theorem

If A1,A2 is an (n,m, k , 1)− SEDF in an abelian group G, then
there exists g ∈ G for which g + A1, g + A2 is a symmetric
(n,m, k, 1)− SEDF .

0

1

2
3

4
5678

9
10

11

12

13

14

15
16

17
18 19 20 21

22
23

24

25

M.B. Paterson SEDFs 15/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

Proof by pretty picture. . .

Theorem

If A1,A2 is an (n,m, k , 1)− SEDF in an abelian group G, then
there exists g ∈ G for which g + A1, g + A2 is a symmetric
(n,m, k, 1)− SEDF .

0

1

2
3

4
5678

9
10

11

12

13

14

15
16

17
18 19 20 21

22
23

24

25

M.B. Paterson SEDFs 15/26



definitions existence and nonexistence m = 2 m = 2, λ = 1, cyclic groups

SEDFs in cyclic groups give SEDFs in dihedral
groups

[Pêcher ’04] [Kreher, P. Stinson ’24]

▶ For k odd there is a correspondence between symmetric
(k2 + 1, 2, k, 1)-SEDFs in Zk2+1 and those in the dihedral
group

D(k2+1)/2 = ⟨a, b : a2 = b(k
2+1)/2 = abab = e⟩.

x ∈ Zk2+1 7→ a(x mod 2)b(x mod (k2+1)/2).

▶ The SEDFs in Zk2+1 are equivalent iff the corresponding
SEDFs in Dk2+1 are equivalent.

M.B. Paterson SEDFs 16/26
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Other nonabelian groups

▶ There are two nonequivalent (50, 2, 7, 1)-SEDFs in D5 × C5.

▶ There are two nonequivalent (50, 2, 7, 1)-SEDFs in C 2
5 ⋊2 C2.

M.B. Paterson SEDFs 17/26
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α-valuations

Definition (Graceful labelling)

Let G be a graph with e edges. A labelling of the vertices with
elements of the set {0, 1, . . . , e} is graceful if the set of absolute
values of the differences between the labels on the vertices
adjacent to each edge is precisely {1, 2, . . . , e}.

[Rosa ’67]

Definition (α-valuation)

A graceful labelling of a graph G be a graph with e edges is an
α-valuation if there exists x with 0 < x < e such that each edge is
incident with one vertex of label at most x , and one vertex of label
greater than x .

M.B. Paterson SEDFs 18/26
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Example
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Theorem ([P., Stinson ’24])

An α-valuation of the complete bipartite graph Kk,k implies the
existence of a (k2 + 1, 2, k , 1)-SEDF in Zk2+1.
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α-valuations via blowups

▶ Start with an α-valuation of a bipartite graph with vertex sets
V small and V large.

▶ Multiply each label by ℓ.

▶ Replace each vertex of V small with label ℓi by an independent
set of size ℓ whose vertices are adjacent to the neighbours of
original vertex and have labels ℓi , ℓi + 1, . . . , ℓi + (ℓ− 1).

(Similar process can be applied to blow up the vertices of V large.)
This process yields an α-valuation of the resulting graph.

M.B. Paterson SEDFs 20/26
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Classification of α-valuations of complete
bipartite graphs

Theorem ([Kreher, P., Stinson ’25])

Every α-valuation of a complete bipartite graph can be obtained by
starting with K1,1 with labels 0 and 1, then applying a sequence of
blow-up operations.

[de Bruijn ’56]

M.B. Paterson SEDFs 23/26
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Classifying SEDFs with m = 2, λ = 1 in cyclic
groups.

▶ Does every SEDF with m = 2 and λ = 1 arise from an
α-valuation of a complete bipartite graph?

▶ No! {1, 4, 13, 16}, {2, 8, 9, 15}
[Huczynska, Jefferson, Nepšinská ’21]

▶ Is every SEDF with m = 2 and λ = 1 equivalent to one that
arises from an α-valuation of a complete bipartite graph?

▶ True for k ≤ 14.

M.B. Paterson SEDFs 24/26
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Thanks for listening!
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