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(n, m, k, \)-Strong External Difference Family

[P., Stinson '16]
» G abelian group with |G| = n
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(n, m, k, \)-Strong External Difference Family

[P., Stinson '16]
» G abelian group with |G| = n
> A1, Ao, ..., A, disjoint k-subsets of G

» require

{a1 — aj|a1 € A1, a; € A; with [ # 1}
= MG\ {0})
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(n, m, k, \)-Strong External Difference Family

[P., Stinson '16]
» G abelian group with |G| = n
> Aj, Ao, ..., An disjoint k-subsets of G
» require
{a1 — aj|a1 € A1, a; € A; with [ # 1}
= A6\ {0})

» similarly require

{aj — a,~|aj S Aj,a,- € A; with 175_/}

= A6\ {0})

forj=2,3,...,m.
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Example: (10,2,3,1)-SEDF

> G =710
> A = {0, 1,2}, Ay = {37679}
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Motivation: strong algebraic manipulation
detection code

[Cramer, Dodis, Fehr, Padrd, Wichs '08]
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Limitations when \ =1

Theorem ([P., Stinson ’16])

A (n, m, k,1)-SEDF exists if and only if m =2 and n = k? +1 or
k=1 and m = n.

Question: Does there exist a strong (n, m, k, \) external difference
family with k > 1 and m > 2 for some A > 17
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Parameters where constructions of
(n,2, k, \)-SEDFs are known

> (n,m k,\) = (k> +1,2,k,1) and G = Zjo,4

> (n,m, k,\) = (n,2,25%, 21
power
[Bao, Ji, Wei, Zhang '18]

> (n,m, k,\) = (q,2, qT_l, q1;61), where g = 16t% + 1 is a prime
power and t € Z

» (n,m, k,\) = (p,2, p61, p3_6 ), where p = 108t% + 1 is a prime
and t € Z

), n = 1 (mod 4) is a prime
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Nonexistence when )\ > 1

Theorem ([Huczynska, P. '18])

Let \ > 2. Suppose there exists an (n, m, k, \)-SEDF with m > 3
and k > A+ 1. Then the following inequality must hold:

Ak — 1)(m —2)
O = Dk(m—1) =&
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definitions existence and nonexistence m=2 m =2, A = 1, cyclic groups
foYete) 00000 0000000 000000000

Character theoretic restrictions

[Martin, Stinson '17]
> m+#3,4
» No SEDF exists with n is prime, m > 2, k > 2.
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Character theoretic restrictions

[Martin, Stinson '17]
> m+#3.4
» No SEDF exists with n is prime, m > 2, k > 2.

Question: Does there exist a strong (n, m, k, \) external difference
family with k > 1 and m > 5 for some A > 17
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Yes!

[Jedwab, Li '19] [Wen, Yang, Feng '16]

Theorem
There exists a (243,11,22,20)-SEDF in Zg.
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Yes!

[Jedwab, Li '19] [Wen, Yang, Feng '16]

Theorem
There exists a (243,11,22,20)-SEDF in Zg.

Only known example with m > 2!

M.B. Paterson SEDFs 9/26



definitions existence and nonexistence m=2 m = 2, A =1, cyclic groups
foYete) oooo0e 0000000 000000000

Remaining parameters with m > 2 and n < 10*

[Leung, Li, Prabowo '21]

Table 3

Plausible parameter sets for (v, m, k, \)-SEDFs with m > 2 and v < 10%.
v m k A v m k A v m k A
540 12 42 36 2646 16 138 108 4375 37 108 96
1701 35 40 32 3888 24 156 144 5376 44 100 80
2058 86 22 20 3888 47 78 72 5832 18 294 252
2401 7 280 196 3969 32 112 98 8625 23 280 200
2401 9 240 192 4375 7 540 400 8960 32 238 196
2500 18 105 75 4375 9 405 300 9801 26 308 242
2601 53 40 32 4375 16 270 250
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SEDFs in non-abelian groups

Definition (modified)

We require

{aja,-_1|aj € Aj,a,- € A; with i # j}

=A(G\{e})

forj=1,2,3,....,m.
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SEDFs in non-abelian groups

Definition (modified)
We require
{ajai Y aj € Aj,a; € A; with i # j}
= AMG \ {e})
forj=1,2,3,....,m.
[Huczynska, Jefferson, Nep3inskd '21]

Theorem

For k odd there is a (k? 4+ 1,2, k, 1)-SEDF in the dihedral group of
order k? + 1.

M.B. Paterson SEDFs 11/26
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Comment on the m = 2 case

{ala2_1|a1 € A, a € Axt = MG \ {e}),
then

{apa1 a1 € A1 a0 € Axt = A\(G \ {e}).
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Comment on the m = 2 case

{ala2_1|a1 € A, a € Axt = MG \ {e}),
then

{apa1 a1 € A1 a0 € Axt = A\(G \ {e}).

Conclusion: when m = 2 we only need to check one set of
conditions.
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Relation to Near-Factorizations

Definition (Near-Factorization)

» G finite group
> A, AbC G
(A1, A2) is a (k, k)-near-factorization of G if
> |All = |As] =k, |G| = K>+ 1
> G\ {e} =AA.
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Relation to Near-Factorizations

Definition (Near-Factorization)

» G finite group
> A, AbC G
(A1, A2) is a (k, k)-near-factorization of G if
> |All = |As] =k, |G| = K>+ 1
> G\ {e} =AA.

Observation: Aj, Ay form a (k? + 1,2, k,1)-SEDF in G if and only
if (A1, A2~ 1) is a (k, k)-near-factorization of G.
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A useful property

Definition
» A subset S of a group is symmetricif S = S™!.

» A near-factorization (A, B) is symmetric if A and B are
symmetric.

» An SEDF Ai, As is symmetric if A; and Ay are symmetric.

M.B. Paterson SEDFs 14/26
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Theorem

If A1, Az is an (n,m, k,1) — SEDF in an abelian group G, then
there exists g € G for which g + A1, g + Ay is a symmetric
(n,m, k,1) — SEDF.
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SEDFs in cyclic groups give SEDFs in dihedral
groups

[Pécher '04] [Kreher, P. Stinson '24]

» For k odd there is a correspondence between symmetric
(k? +1,2, k,1)-SEDFs in Z,2,; and those in the dihedral

group

Dieq1y2 = (a, b a2 = p(K*HD/2 = apap = e).

x € Zk2+1 — a(x mod 2)b(x mod (k2+1)/2).

M.B. Paterson SEDFs 16/26
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SEDFs in cycllc groups give SEDFs in dlhedral
groups

[Pécher '04] [Kreher, P. Stinson '24]

» For k odd there is a correspondence between symmetric
(k? +1,2, k,1)-SEDFs in Z,2,; and those in the dihedral

group

Dieq1y2 = (a, b a2 = p(K*HD/2 = apap = e).

x € Zk2+1 — a(x mod 2)b(x mod (k2+1)/2).

» The SEDFs in Z2; are equivalent iff the corresponding
SEDFs in Dy2. 4 are equivalent.
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Other nonabelian groups

» There are two nonequivalent (50,2,7,1)-SEDFs in Ds x Cs.
» There are two nonequivalent (50,2,7,1)-SEDFs in C2 x5 G.
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a-valuations

Definition (Graceful labelling)

Let G be a graph with e edges. A labelling of the vertices with
elements of the set {0,1,..., e} is graceful if the set of absolute
values of the differences between the labels on the vertices
adjacent to each edge is precisely {1,2,.... e}.
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a-valuations

Definition (Graceful labelling)

Let G be a graph with e edges. A labelling of the vertices with
elements of the set {0,1,..., e} is graceful if the set of absolute
values of the differences between the labels on the vertices
adjacent to each edge is precisely {1,2,.... e}.

[Rosa '67]

Definition (a-valuation)

A graceful labelling of a graph G be a graph with e edges is an
a-valuation if there exists x with 0 < x < e such that each edge is
incident with one vertex of label at most x, and one vertex of label
greater than x.
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Example
2 9
1 6
0 3

Theorem ([P., Stinson ’'24])

An a-valuation of the complete bipartite graph Ky x implies the
existence of a (k? + 1,2, k,1)-SEDF in Zy2_;.
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a-valuations via blowups

» Start with an a-valuation of a bipartite graph with vertex sets
Vsmall and Vlarge_

» Multiply each label by £.

> Replace each vertex of Vs™! with label £i by an independent
set of size £ whose vertices are adjacent to the neighbours of
original vertex and have labels ¢i, ¢i +1,...,0i 4+ (£ —1).

(Similar process can be applied to blow up the vertices of V/'2'8¢))
This process yields an a-valuation of the resulting graph.

M.B. Paterson SEDFs 20/26
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example
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Classification of a-valuations of complete
bipartite graphs

Theorem ([Kreher, P., Stinson '25])

Every a-valuation of a complete bipartite graph can be obtained by
starting with K11 with labels 0 and 1, then applying a sequence of
blow-up operations.

M.B. Paterson SEDFs 23/26



definitions existence and nonexistence m=2 m = 2, A = 1, cyclic groups
foYete) 000000 0000000 000008000

Classification of a-valuations of complete
bipartite graphs

Theorem ([Kreher, P., Stinson '25])

Every a-valuation of a complete bipartite graph can be obtained by
starting with K11 with labels 0 and 1, then applying a sequence of
blow-up operations.

[de Bruijn '56]
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Classifying SEDFs with m =2, A =1 in cyclic
groups.

» Does every SEDF with m =2 and A\ = 1 arise from an
a-valuation of a complete bipartite graph?

M.B. Paterson SEDFs 24/26
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Classifying SEDFs with m =2, A =1 in cyclic
groups.

» Does every SEDF with m =2 and A\ = 1 arise from an
a-valuation of a complete bipartite graph?

> No! {1,4,13,16},{2,8,9,15}
[Huczynska, Jefferson, Nepsinska '21]
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CIassnfymg SEDFs with m — 2, A=1in cyclic
groups.

» Does every SEDF with m =2 and A = 1 arise from an
a-valuation of a complete bipartite graph?

» No! {1,4,13,16},{2,8,9,15}
[Huczynska, Jefferson, Nepginska '21]

» |s every SEDF with m =2 and A = 1 equivalent to one that
arises from an a-valuation of a complete bipartite graph?
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CIassnfymg SEDFs with m — 2, A=1in cyclic
groups.

» Does every SEDF with m =2 and A = 1 arise from an
a-valuation of a complete bipartite graph?

» No! {1,4,13,16},{2,8,9,15}
[Huczynska, Jefferson, Nepginska '21]

» |s every SEDF with m =2 and A = 1 equivalent to one that
arises from an a-valuation of a complete bipartite graph?

» True for k < 14.

M.B. Paterson SEDFs 24/26
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Thanks for listening!

1, cyclic groups
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