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Introduction: Definitions

o A simple geometric t — [q", k, \] design is a collection B of
k-dimensional subspaces of vector space V = 7, called
blocks, over the finite field of order g, such that any

t-dimensional subspace of V' appears in exactly A blocks.
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Introduction: Definitions

o A simple geometric t — [q", k, A] design is a collection B of
k-dimensional subspaces of vector space V = 7, called
blocks, over the finite field of order g, such that any
t-dimensional subspace of V appears in exactly A blocks.

o A geometric LS[N][t, k, q"] large set is a partitioning of all
k-subspaces of V = F¢ into N disjoint collections of blocks,
such that each collection is a t — [q", k, \] design.
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Introduction: Problems

@ Can we design efficient algorithms to find nontrivial
LS[N][t, k, q"] large sets?
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@ Can we design efficient algorithms to find nontrivial
LS[N][t, k, q"] large sets?

@ To create our large sets, we use group actions to fuse
subspaces together into orbits, and collect blocks by collecting

orbits in one of two ways.
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Introduction: Problems

@ Can we design efficient algorithms to find nontrivial
LS[N][t, k, q"] large sets?

@ To create our large sets, we use group actions to fuse
subspaces together into orbits, and collect blocks by collecting
orbits in one of two ways.

@ Our first method, Lattice Basis Reduction, creates a lattice
basis B from these orbits and constructs a very short basis B’,
which may vyield a solution.
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Introduction: Problems

@ Can we design efficient algorithms to find nontrivial
LS[N][t, k, q"] large sets?

@ To create our large sets, we use group actions to fuse
subspaces together into orbits, and collect blocks by collecting
orbits in one of two ways.

@ Our first method, Lattice Basis Reduction, creates a lattice
basis B from these orbits and constructs a very short basis B’,
which may vyield a solution.

@ Our second method, Integer Linear Programming, creates a
series of constraint equations out of these orbits and tries to
optimize an objective function while satisfying all constraints
simultaneously.
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Preliminaries: The Gaussian Coefficient

Given a natural number n and a prime power g, define:

[O]q — [O]q! —

[n]q:(l—l—q—i—q2—|—...—|—q”_1)
[nlg! = [1]g[2]q - - - [n]q

The Gaussian Coefficient for a vector space V' = I is defined as:

IZL - H - [qu![[z]ci! Klg!”

which counts the number of k subspaces in an n-space over F.

y
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Preliminaries: Necessary Conditions for a Geometric Design

o If V = Fg, then [\ﬂq Is the collection of all k-subspaces in V.
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Preliminaries: Necessary Conditions for a Geometric Design

o If V = Fg, then [\ﬂq Is the collection of all k-subspaces in V.

o Any t-[q", k, \] design is also an s-[q", k, As] design, where,
for every 0 < s < t:

e

Michael Robert Hurley New Large Sets of Geometric Designs



Preliminaries: Necessary Conditions for a Geometric Design

o If V = Fg, then [\ﬂq Is the collection of all k-subspaces in V.

o Any t-[q", k, \] design is also an s-[q", k, As|] design, where,
for every 0 < s < t:

e

@ The parameters of an LS[N][t, k, q"] large set £ imply that
the constituent designs are t-[q", k, [} _;|/N] geometric
designs.
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Incidence and Fusion: Kramer-Mesner Matrix

@ The action of G on V* induces actions on [\ﬂ and [\/ﬂ and

partitions these sets into p(t), p(k) orbits respectively:

V
[t] :A1—|—A2—|—...—|—Ap(t)

V
[k] :F1+I'2+...+Fp(k)
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Incidence and Fusion: Kramer-Mesner Matrix

@ The action of G on V* induces actions on [\ﬂ and [\/ﬂ and

partitions these sets into p(t), p(k) orbits respectively:

V
[t] :A1—|—A2—|—...—|—Ap(t)

V
[k] :F1+I'2+...+Fp(k)

o The p(t) x p(k) Kramer-Mesner matrix A;x = (arx(i,)))
is defined by:

3t,k(iaj) = |{w € [j:u<w, for afixed u € A}
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Incidence and Fusion: Theorems

Let V' be a vector space of dimension n over the field F,, and let
G <TL,(q) act on V*, then there is a G-invariant, simple

t-q", k, \| design if and only if there is a p(k) x 1 {0, 1}-vector
u which is a solution to the matrix equation:

Atjku = \J (31)

where J is the p(t) x 1 vector of all 1's.

v

(Cusack, Magliveras, 1999) There is a large set LS[N][t, k, q"] of
G-invariant geometric designs if and only if there exists N distinct
{0,1} vector solutions uy, up, ..., up, to (3.1), whose sum is the
p(k) x 1 all 1's vector.

N
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Finding New Large Sets: Lattice Basis Reduction

Finding a solution X to the matrix equation AX = B, where B is a
column vector, is equivalent to finding an X that satisfies the
following matrix equation:

~ (4.1)

where [, is the identity matrix of order n, and 0 is the zero
column vector of length s.
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Finding New Large Sets: The Lattice Matrix

@ We form this lattice matrix of rank p(k) + 1:

lo(ky  Op(k)

At,k —>\J
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Finding New Large Sets: The Lattice Matrix

@ We form this lattice matrix of rank p(k) + 1:

—

lo(k)  Op(k)

At,k —>\J

@ The set of all integer linear combinations of the columns of M
forms a lattice £ in Re(K)+o(t),
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Finding New Large Sets: The Lattice Matrix

@ We form this lattice matrix of rank p(k) + 1:

lo(ky  Op(k)

At,k —)\J

@ The set of all integer linear combinations of the columns of M
forms a lattice £ in RP(K)+e(t),

o If x = (x1, X2, .+, Xp(k)41) € 7P+ with x; € {0,1} for
1 <i < p(k), and x,x)4+1 = 1 such that:

Mx " = (u1, ...\ Upryrpn) |

where u; € {0,1} for 1 < < p(k) and u; =0 for i > p(k),
then u is a short vector in £ spanned by the columns of M.
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Finding New Large Sets: LLL

@ The program we use to execute lattice basis reduction on M is
a variation on LLL reduction, which turns the lattice basis M

Into a short basis M*.
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Finding New Large Sets: LLL

@ The program we use to execute lattice basis reduction on M is
a variation on LLL reduction, which turns the lattice basis M

Into a short basis M*.

@ If a short vector u appears as a column in M*, then the
indices of the 1's in u can form a t-[q", k, \] design D;.
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Finding New Large Sets: LLL

@ The program we use to execute lattice basis reduction on M is
a variation on LLL reduction, which turns the lattice basis M

Into a short basis M*.

@ If a short vector u appears as a column in M*, then the
indices of the 1's in u can form a t-[q", k, \] design D;.

@ The process is repeated on a new M, formed from Q: «, the
columns of A; x not chosen by our short vector u, with a new
short vector u corresponding to another t-[q", k, A] design D5,
disjoint from D;.
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Finding New Large Sets: LLL

@ The program we use to execute lattice basis reduction on M is
a variation on LLL reduction, which turns the lattice basis M

Into a short basis M*.

@ If a short vector u appears as a column in M*, then the
indices of the 1's in u can form a t-[q", k, \] design D;.

@ The process is repeated on a new M, formed from Q: «, the
columns of A; , not chosen by our short vector u, with a new
short vector u corresponding to another t-[q", k, A] design D5,
disjoint from D;.

@ The process repeats until we find the resulting collection
{D1,D,,..., Dy} a geometric large set.
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Finding New Large Sets: Linear Programming

Our {0,1} Integer Linear Programming problem (/LP) is the

search for a vector x € {0,1}7(K) that maximizes a function f(x)
while satisfying a series of linear restraints expressed below as a
matrix equation:

(i) maximize: f(x)=c' x

(ii) subject to: Ax" +s= B,
(4.2)
(iii) where : s >0,

(iv) and: x € {0,1}"

Michael Robert Hurley New Large Sets of Geometric Designs



Kramer-Mesner Matrices: The Singer Cycle

Both solution methods generate G-invariant designs, and require
an A; , so we construct our Ay 3 matrix from a Singer subgroup

G = («), generated by a Singer cycle a € GLg(2) that acts
regularly on the non-zero vectors of V = F$.

o 0 o0 O o o0 0 1

1 0o 0 o0 o O o0 O
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The New Large Sets: Lattice-Basis Reduction

@ Our Singer subgroup is the same one used by Braun et al. to
find the first LS[3][2, 3, 28].
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The New Large Sets: Lattice-Basis Reduction

@ Our Singer subgroup is the same one used by Braun et al. to
find the first LS[3][2, 3, 28].

e With As 3 constructed, we create our lattice basis matrix M
with A = 21.
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The New Large Sets: Lattice-Basis Reduction

@ Our Singer subgroup is the same one used by Braun et al. to
find the first LS[3][2, 3, 28].

e With A3 constructed, we create our lattice basis matrix M
with A = 21.

@ We have 3 different ways of permuting the columns of M
after each LLL lattice-basis reduction, and each returns a
solution to (3.1) from M.
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The New Large Sets: Lattice-Basis Reduction

@ Our Singer subgroup is the same one used by Braun et al. to
find the first LS[3][2, 3, 28].

e With As 3 constructed, we create our lattice basis matrix M
with A = 21.

@ We have 3 different ways of permuting the columns of M
after each LLL lattice-basis reduction, and each returns a
solution to (3.1) from M.

e 1) By increasing weight
2) By alternating between the chronologically first and
chronologically last columns of M*
3) By alternating between small weight and large weight
columns.
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The New Large Sets: Lattice-Basis Reduction

@ Our Singer subgroup is the same one used by Braun et al. to
find the first LS[3][2, 3, 28].

e With As 3 constructed, we create our lattice basis matrix M
with A = 21.

@ We have 3 different ways of permuting the columns of M
after each LLL lattice-basis reduction, and each returns a
solution to (3.1) from M.

e 1) By increasing weight
2) By alternating between the chronologically first and
chronologically last columns of M*
3) By alternating between small weight and large weight
columns.

@ This results in 9 large sets found with lattice basis reduction.
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The New Large Sets: Linear Programming

@ To find large sets using linear programming, we create the
following version of (4.2):

(i) maximize f(x)=JT - x
(i) subject to Axsx! +s=21J,
(5.1)

(iii) where s =0,

(iv) and x €{0,1}"
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The New Large Sets: Linear Programming

@ To find large sets using linear programming, we create the
following version of (4.2):

(i) maximize f(x)=JT - x
(i) subject to Axsx! +s=21J,

(5.1)
(iii) where s =0,

(iv) and x € {0,1}"

@ We found two solutions to (3.1) using the above ILP, one
using Az 3, another by permuting the columns of A; 3 first.
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Proving Non-lIsomorphism: The Normalizer of G in GLg(2)

@ The normalizer of a Singer subgroup in GL,(q) has order
n(q" — 1) and is the extension of {a) by (, the Frobenius
automorphism of GLg(2).
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Proving Non-lIsomorphism: The Normalizer of G in GLg(2)

@ The normalizer of a Singer subgroup in GL,(q) has order

n(q" — 1) and is the extension of {«) by (, the Frobenius
automorphism of GLg(2).

o Let A={Ly,L1,...,L11} be our large sets found, with Lo
the large set found by Braun et al.
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Proving Non-lIsomorphism: The Normalizer of G in GLg(2)

@ The normalizer of a Singer subgroup in GL,(q) has order

n(q” — 1) and is the extension of {a) by (, the Frobenius
automorphism of GLg(2).

o Let A={Ly,L1,...,L11} be our large sets found, with L
the large set found by Braun et al.

@ G = () is in the automorphism group of every one of these

large sets and designs, while exhaustive search showed that ¢
IS not.
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Proving Non-lsomorphism: The Stabilizers of the Large

Set Designs

o Let M < GLg(2) be the only maximal subgroup up to
conjugacy that contains G, and by extension the
automorphism groups of these designs.
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Proving Non-lsomorphism: The Stabilizers of the Large

Set Designs

o Let M < GLg(2) be the only maximal subgroup up to
conjugacy that contains G, and by extension the
automorphism groups of these designs.

@ If M is the stabilizer in M of vector 1, M; is a complete
collection of left coset representatives of G in M
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Proving Non-lsomorphism: The Stabilizers of the Large

Set Designs

o Let M < GLg(2) be the only maximal subgroup up to
conjugacy that contains G, and by extension the
automorphism groups of these designs.

@ If M is the stabilizer in M of vector 1, M; is a complete
collection of left coset representatives of G in M

@ Exhaustive search reveals that no non-identity coset

representative is an automorphism of any design in any of
these large sets.
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Proving Non-Isomorphism: Design Permutation

o Let £L ={D;1,D,, D3} be one of our large sets and Q be the
subgroup of A=Aut(L) that fixes each design.
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Proving Non-Isomorphism: Design Permutation

o Let L ={D;1,D,,D3} be one of our large sets and Q be the
subgroup of A=Aut(L) that fixes each design.

@ G = Q is a normal subgroup of A, and A/Q is a subgroup
T <8s;.
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Proving Non-Isomorphism: Design Permutation

o Let L ={D;1,D,, D3} be one of our large sets and Q be the
subgroup of A=Aut(L) that fixes each design.

@ G = Q is a normal subgroup of A, and A/Q is a subgroup
T <8s;.

@ Since QN T = {1} € 83, A is a split extension of Q by T.
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Proving Non-Isomorphism: Design Permutation

o Let L ={D;1,D,, D3} be one of our large sets and Q be the
subgroup of A=Aut(L) that fixes each design.

@ G = Q is a normal subgroup of A, and A/Q is a subgroup
T <8s;.

@ Since QN T = {1} € 83, A is a split extension of Q by T.

@ However, an element of order 2 in T would have to fix one of
the three designs, but the only automorphisms that fix any of
these designs are in G, which has odd order.
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Proving Non-Isomorphism: Design Permutation

o Let L ={D;1,D,, D3} be one of our large sets and Q be the
subgroup of A=Aut(L) that fixes each design.

@ G = Q is a normal subgroup of A, and A/Q is a subgroup
T <8s;.

@ Since QN T = {1} € 83, A is a split extension of Q by T.

@ However, an element of order 2 in T would have to fix one of
the three designs, but the only automorphisms that fix any of
these designs are in G, which has odd order.

@ Also, an element of order 3 in T cannot normalize ) as the
only elements of order 3 in Ng;,2)(Q) are in Q = (), which
fixes the designs instead of permuting them.
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Proving Non-Isomorphism: Design Permutation

Let £ = {D1, D>, D3} be one of our large sets and @ be the
subgroup of A=Aut(L) that fixes each design.

G = Q is a normal subgroup of A, and A/Q is a subgroup
T <8s;.

Since QN T = {1} € 83, Ais a split extension of Q by T.

However, an element of order 2 in T would have to fix one of
the three designs, but the only automorphisms that fix any of
these designs are in G, which has odd order.

Also, an element of order 3 in T cannot normalize ) as the
only elements of order 3 in Ngi,2)(@) are in @ = (), which
fixes the designs instead of permuting them.

Therefore, the automorphism groups of these large sets are all

G.
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Proving Non-Isomorphism: An Important Theorem

(Betten, Laue, and Wasserman, 2015) Let G be a finite group
acting on a set X. Suppose that x1,xp; € X and g € G such that
xf = xp. Moreover, suppose that a Sylow p-subgroup P € G is
contained in both stabilizers G, and Gx,. Then x{! = x» for some

n c NG(P).
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Proving Non-lsomorphism: The Result

All 12 of the large sets found are non-isomorphic. \
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Proving Non-lIsomorphism: The Result

All 12 of the large sets found are non-isomorphic. \

o Let X be the collection of all large sets of type LS[3][2, 3, 28].
GLg(2) acts on X and the stabilizer of any A € X is the full
automorphism group of .
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Proving Non-lIsomorphism: The Result

All 12 of the large sets found are non-isomorphic. \

o Let X be the collection of all large sets of type LS[3][2, 3, 28].
GLg(2) acts on X and the stabilizer of any A € X is the full

automorphism group of \.

e We have (a!®) = P, a Sylow 17-subgroup in the stabilizer of
every one of our large sets in A, so if A\, u € A are isomorphic,
there is n € Ngi2)(P) = Ngiy2)(G) where A" = pu.
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Proving Non-lIsomorphism: The Result

All 12 of the large sets found are non-isomorphic. \

o Let X be the collection of all large sets of type LS[3][2, 3, 28].
GLg(2) acts on X and the stabilizer of any A € X is the full

automorphism group of .

e We have (a!®) = P, a Sylow 17-subgroup in the stabilizer of
every one of our large sets in A, so if A\, u € A are isomorphic,
there is n € NGL8(2)(P) = NGL8(2)(G) where A" = .

) NGLS(Q)(G) contains no element that sends any large set in A
to another. Thus, all 12 of these large sets are non-isomorphic.
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Future Problems: Constructing More Large Sets

@ Kiermaier and Laue's work on recursive constructions of
geometric large sets can confirm the admissibility of the
parameters of different LS[N][t, k, g"].
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Future Problems: Constructing More Large Sets

@ Kiermaier and Laue's work on recursive constructions of
geometric large sets can confirm the admissibility of the
parameters of different LS[N][t, k, q"].

@ Braun, Kiermaier, and Kohnert devised a recursive
construction method for proving the existence of geometric
halvings, large sets where N = 2. Constructing these infinite
families of geometric large sets is still being worked on.

Michael Robert Hurley New Large Sets of Geometric Designs



Thank You

Thanks to all of you for listening!
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