

New Large Sets of Geometric Designs

Michael Robert Hurley
SUNY Oswego, michael.hurley@oswego.edu

June 4th, 2025

Introduction: Definitions

- A simple **geometric** $t - [q^n, k, \lambda]$ design is a collection \mathcal{B} of k -dimensional subspaces of vector space $V = \mathbb{F}_q^n$, called blocks, over the finite field of order q , such that any t -dimensional subspace of V appears in exactly λ blocks.

Introduction: Definitions

- A simple **geometric** $t - [q^n, k, \lambda]$ design is a collection \mathcal{B} of k -dimensional subspaces of vector space $V = \mathbb{F}_q^n$, called blocks, over the finite field of order q , such that any t -dimensional subspace of V appears in exactly λ blocks.
- A geometric $LS[N][t, k, q^n]$ **large set** is a partitioning of all k -subspaces of $V = \mathbb{F}_q^n$ into N disjoint collections of blocks, such that each collection is a $t - [q^n, k, \lambda]$ design.

Introduction: Problems

- Can we design efficient algorithms to find nontrivial $LS[N][t, k, q^n]$ large sets?

Introduction: Problems

- Can we design efficient algorithms to find nontrivial $LS[N][t, k, q^n]$ large sets?
- To create our large sets, we use group actions to fuse subspaces together into orbits, and collect blocks by collecting orbits in one of two ways.

Introduction: Problems

- Can we design efficient algorithms to find nontrivial $LS[N][t, k, q^n]$ large sets?
- To create our large sets, we use group actions to fuse subspaces together into orbits, and collect blocks by collecting orbits in one of two ways.
- Our first method, Lattice Basis Reduction, creates a lattice basis B from these orbits and constructs a very short basis B' , which may yield a solution.

Introduction: Problems

- Can we design efficient algorithms to find nontrivial $LS[N][t, k, q^n]$ large sets?
- To create our large sets, we use group actions to fuse subspaces together into orbits, and collect blocks by collecting orbits in one of two ways.
- Our first method, Lattice Basis Reduction, creates a lattice basis B from these orbits and constructs a very short basis B' , which may yield a solution.
- Our second method, Integer Linear Programming, creates a series of constraint equations out of these orbits and tries to optimize an objective function while satisfying all constraints simultaneously.

Preliminaries: The Gaussian Coefficient

Given a natural number n and a prime power q , define:

$$[0]_q = [0]_q! = 1$$

$$[n]_q = (1 + q + q^2 + \dots + q^{n-1})$$

$$[n]_q! = [1]_q [2]_q \dots [n]_q$$

Definition

The Gaussian Coefficient for a vector space $V = \mathbb{F}_q$ is defined as:

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{bmatrix} n \\ k \end{bmatrix} = \frac{[n]_q!}{[k]_q! [n-k]_q!},$$

which counts the number of k subspaces in an n -space over \mathbb{F}_q .

Preliminaries: Necessary Conditions for a Geometric Design

- If $V = \mathbb{F}_q^n$, then $\binom{V}{k}_q$ is the collection of all k -subspaces in V .

Preliminaries: Necessary Conditions for a Geometric Design

- If $V = \mathbb{F}_q^n$, then $\binom{V}{k}_q$ is the collection of all k -subspaces in V .
- Any t - $[\mathbb{F}_q^n, k, \lambda]$ design is also an s - $[\mathbb{F}_q^n, k, \lambda_s]$ design, where, for every $0 \leq s \leq t$:

$$\lambda_s = \lambda \cdot \binom{n-s}{t-s} / \binom{k-s}{t-s}$$

Preliminaries: Necessary Conditions for a Geometric Design

- If $V = \mathbb{F}_q^n$, then $\binom{V}{k}_q$ is the collection of all k -subspaces in V .
- Any t - $[\mathbb{F}_q^n, k, \lambda]$ design is also an s - $[\mathbb{F}_q^n, k, \lambda_s]$ design, where, for every $0 \leq s \leq t$:

$$\lambda_s = \lambda \cdot \binom{n-s}{t-s} / \binom{k-s}{t-s}$$

- The parameters of an $LS[N][t, k, \mathbb{F}_q^n]$ large set \mathcal{L} imply that the constituent designs are t - $[\mathbb{F}_q^n, k, \binom{n-t}{k-t} / N]$ geometric designs.

Incidence and Fusion: Kramer-Mesner Matrix

- The action of G on V^* induces actions on $\begin{bmatrix} V \\ t \end{bmatrix}$ and $\begin{bmatrix} V \\ k \end{bmatrix}$ and partitions these sets into $\rho(t)$, $\rho(k)$ orbits respectively:

$$\begin{bmatrix} V \\ t \end{bmatrix} = \Delta_1 + \Delta_2 + \dots + \Delta_{\rho(t)}$$

$$\begin{bmatrix} V \\ k \end{bmatrix} = \Gamma_1 + \Gamma_2 + \dots + \Gamma_{\rho(k)}$$

Incidence and Fusion: Kramer-Mesner Matrix

- The action of G on V^* induces actions on $\binom{V}{t}$ and $\binom{V}{k}$ and partitions these sets into $\rho(t)$, $\rho(k)$ orbits respectively:

$$\binom{V}{t} = \Delta_1 + \Delta_2 + \dots + \Delta_{\rho(t)}$$

$$\binom{V}{k} = \Gamma_1 + \Gamma_2 + \dots + \Gamma_{\rho(k)}$$

- The $\rho(t) \times \rho(k)$ Kramer-Mesner matrix $A_{t,k} = (a_{t,k}(i,j))$ is defined by:

$$a_{t,k}(i,j) = |\{w \in \Gamma_j : u \leq w \text{ , for a fixed } u \in \Delta_i\}|$$

Incidence and Fusion: Theorems

Theorem

Let V be a vector space of dimension n over the field \mathbb{F}_q , and let $G \leq \Gamma L_n(q)$ act on V^* , then there is a G -invariant, simple t - $[q^n, k, \lambda]$ design if and only if there is a $\rho(k) \times 1$ $\{0, 1\}$ -vector u which is a solution to the matrix equation:

$$A_{t,k}u = \lambda J \quad (3.1)$$

where J is the $\rho(t) \times 1$ vector of all 1's.

Theorem

(Cusack, Magliveras, 1999) There is a large set $LS[N][t, k, q^n]$ of G -invariant geometric designs if and only if there exists N distinct $\{0, 1\}$ vector solutions u_1, u_2, \dots, u_N , to (3.1), whose sum is the $\rho(k) \times 1$ all 1's vector.

Finding New Large Sets: Lattice Basis Reduction

Finding a solution X to the matrix equation $AX = B$, where B is a column vector, is equivalent to finding an X that satisfies the following matrix equation:

$$\begin{bmatrix} I_n & \vec{0}_n \\ A & -B \end{bmatrix} \begin{bmatrix} X \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ \vec{0}_m \end{bmatrix} \quad (4.1)$$

where I_n is the identity matrix of order n , and $\vec{0}_s$ is the zero column vector of length s .

Finding New Large Sets: The Lattice Matrix

- We form this lattice matrix of rank $\rho(k) + 1$:

$$M = \begin{bmatrix} I_{\rho(k)} & \vec{0}_{\rho(k)} \\ A_{t,k} & -\lambda J \end{bmatrix}$$

Finding New Large Sets: The Lattice Matrix

- We form this lattice matrix of rank $\rho(k) + 1$:

$$M = \begin{bmatrix} I_{\rho(k)} & \vec{0}_{\rho(k)} \\ A_{t,k} & -\lambda J \end{bmatrix}$$

- The set of all integer linear combinations of the columns of M forms a lattice \mathcal{L} in $\mathbb{R}^{\rho(k)+\rho(t)}$.

Finding New Large Sets: The Lattice Matrix

- We form this lattice matrix of rank $\rho(k) + 1$:

$$M = \begin{bmatrix} I_{\rho(k)} & \vec{0}_{\rho(k)} \\ A_{t,k} & -\lambda J \end{bmatrix}$$

- The set of all integer linear combinations of the columns of M forms a lattice \mathcal{L} in $\mathbb{R}^{\rho(k)+\rho(t)}$.
- If $x = (x_1, x_2, \dots, x_{\rho(k)+1}) \in \mathbb{Z}^{\rho(k)+1}$ with $x_i \in \{0, 1\}$ for $1 \leq i \leq \rho(k)$, and $x_{\rho(k)+1} = 1$ such that:

$$Mx^T = (u_1, \dots, u_{\rho(k)+\rho(t)})^T$$

where $u_i \in \{0, 1\}$ for $1 \leq i \leq \rho(k)$ and $u_i = 0$ for $i > \rho(k)$, then u is a **short vector** in \mathcal{L} spanned by the columns of M .

Finding New Large Sets: LLL

- The program we use to execute lattice basis reduction on M is a variation on LLL reduction, which turns the lattice basis M into a short basis M^* .

Finding New Large Sets: LLL

- The program we use to execute lattice basis reduction on M is a variation on LLL reduction, which turns the lattice basis M into a short basis M^* .
- If a short vector u appears as a column in M^* , then the indices of the 1's in u can form a t - $[q^n, k, \lambda]$ design D_1 .

Finding New Large Sets: LLL

- The program we use to execute lattice basis reduction on M is a variation on LLL reduction, which turns the lattice basis M into a short basis M^* .
- If a short vector u appears as a column in M^* , then the indices of the 1's in u can form a t - $[q^n, k, \lambda]$ design D_1 .
- The process is repeated on a new M , formed from $Q_{t,k}$, the columns of $A_{t,k}$ not chosen by our short vector u , with a new short vector u corresponding to another t - $[q^n, k, \lambda]$ design D_2 , disjoint from D_1 .

Finding New Large Sets: LLL

- The program we use to execute lattice basis reduction on M is a variation on LLL reduction, which turns the lattice basis M into a short basis M^* .
- If a short vector u appears as a column in M^* , then the indices of the 1's in u can form a t - $[q^n, k, \lambda]$ design D_1 .
- The process is repeated on a new M , formed from $Q_{t,k}$, the columns of $A_{t,k}$ not chosen by our short vector u , with a new short vector u corresponding to another t - $[q^n, k, \lambda]$ design D_2 , disjoint from D_1 .
- The process repeats until we find the resulting collection $\{D_1, D_2, \dots, D_N\}$ a geometric large set.

Finding New Large Sets: Linear Programming

Our $\{0, 1\}$ Integer Linear Programming problem (*ILP*) is the search for a vector $x \in \{0, 1\}^{\rho(k)}$ that maximizes a function $f(x)$ while satisfying a series of linear restraints expressed below as a matrix equation:

- (i) maximize : $f(x) = c^T \cdot x$
- (ii) subject to : $Ax^T + s = B,$ (4.2)
- (iii) where : $s \geq 0,$
- (iv) and : $x \in \{0, 1\}^n$

Kramer-Mesner Matrices: The Singer Cycle

Both solution methods generate G -invariant designs, and require an $A_{t,k}$, so we construct our $A_{2,3}$ matrix from a Singer subgroup $G = \langle \alpha \rangle$, generated by a Singer cycle $\alpha \in GL_8(2)$ that acts regularly on the non-zero vectors of $V = \mathbb{F}_2^8$.

$$\alpha = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The New Large Sets: Lattice-Basis Reduction

- Our Singer subgroup is the same one used by Braun et al. to find the first $LS[3][2, 3, 2^8]$.

The New Large Sets: Lattice-Basis Reduction

- Our Singer subgroup is the same one used by Braun et al. to find the first $LS[3][2, 3, 2^8]$.
- With $A_{2,3}$ constructed, we create our lattice basis matrix M with $\lambda = 21$.

The New Large Sets: Lattice-Basis Reduction

- Our Singer subgroup is the same one used by Braun et al. to find the first $LS[3][2, 3, 2^8]$.
- With $A_{2,3}$ constructed, we create our lattice basis matrix M with $\lambda = 21$.
- We have 3 different ways of permuting the columns of M after each LLL lattice-basis reduction, and each returns a solution to (3.1) from M .

The New Large Sets: Lattice-Basis Reduction

- Our Singer subgroup is the same one used by Braun et al. to find the first $LS[3][2, 3, 2^8]$.
- With $A_{2,3}$ constructed, we create our lattice basis matrix M with $\lambda = 21$.
- We have 3 different ways of permuting the columns of M after each LLL lattice-basis reduction, and each returns a solution to (3.1) from M .
 - 1) By increasing weight
 - 2) By alternating between the chronologically first and chronologically last columns of M^*
 - 3) By alternating between small weight and large weight columns.

The New Large Sets: Lattice-Basis Reduction

- Our Singer subgroup is the same one used by Braun et al. to find the first $LS[3][2, 3, 2^8]$.
- With $A_{2,3}$ constructed, we create our lattice basis matrix M with $\lambda = 21$.
- We have 3 different ways of permuting the columns of M after each LLL lattice-basis reduction, and each returns a solution to (3.1) from M .
- - 1) By increasing weight
 - 2) By alternating between the chronologically first and chronologically last columns of M^*
 - 3) By alternating between small weight and large weight columns.
- This results in 9 large sets found with lattice basis reduction.

The New Large Sets: Linear Programming

- To find large sets using linear programming, we create the following version of (4.2):

$$(i) \quad \text{maximize} \quad f(x) = J^T \cdot x$$

$$(ii) \quad \text{subject to} \quad A_{2,3}x^T + s = 21J, \quad (5.1)$$

$$(iii) \quad \text{where} \quad s = 0,$$

$$(iv) \quad \text{and} \quad x \in \{0, 1\}^n$$

The New Large Sets: Linear Programming

- To find large sets using linear programming, we create the following version of (4.2):

$$(i) \quad \text{maximize} \quad f(x) = J^T \cdot x$$

$$(ii) \quad \text{subject to} \quad A_{2,3}x^T + s = 21J, \quad (5.1)$$

$$(iii) \quad \text{where} \quad s = 0,$$

$$(iv) \quad \text{and} \quad x \in \{0, 1\}^n$$

- We found two solutions to (3.1) using the above *ILP*, one using $A_{2,3}$, another by permuting the columns of $A_{2,3}$ first.

Proving Non-Isomorphism: The Normalizer of G in $GL_8(2)$

- The normalizer of a Singer subgroup in $GL_n(q)$ has order $n(q^n - 1)$ and is the extension of $\langle \alpha \rangle$ by ζ , the Frobenius automorphism of $GL_8(2)$.

Proving Non-Isomorphism: The Normalizer of G in $GL_8(2)$

- The normalizer of a Singer subgroup in $GL_n(q)$ has order $n(q^n - 1)$ and is the extension of $\langle \alpha \rangle$ by ζ , the Frobenius automorphism of $GL_8(2)$.
- Let $\Lambda = \{\mathcal{L}_0, \mathcal{L}_1, \dots, \mathcal{L}_{11}\}$ be our large sets found, with \mathcal{L}_0 the large set found by Braun et al.

Proving Non-Isomorphism: The Normalizer of G in $GL_8(2)$

- The normalizer of a Singer subgroup in $GL_n(q)$ has order $n(q^n - 1)$ and is the extension of $\langle \alpha \rangle$ by ζ , the Frobenius automorphism of $GL_8(2)$.
- Let $\Lambda = \{\mathcal{L}_0, \mathcal{L}_1, \dots, \mathcal{L}_{11}\}$ be our large sets found, with \mathcal{L}_0 the large set found by Braun et al.
- $G = \langle \alpha \rangle$ is in the automorphism group of every one of these large sets and designs, while exhaustive search showed that ζ is not.

Proving Non-Isomorphism: The Stabilizers of the Large Set Designs

- Let $M \leq GL_8(2)$ be the only maximal subgroup up to conjugacy that contains G , and by extension the automorphism groups of these designs.

Proving Non-Isomorphism: The Stabilizers of the Large Set Designs

- Let $M \leq GL_8(2)$ be the only maximal subgroup up to conjugacy that contains G , and by extension the automorphism groups of these designs.
- If M_1 is the stabilizer in M of vector 1, M_1 is a complete collection of left coset representatives of G in M

Proving Non-Isomorphism: The Stabilizers of the Large Set Designs

- Let $M \leq GL_8(2)$ be the only maximal subgroup up to conjugacy that contains G , and by extension the automorphism groups of these designs.
- If M_1 is the stabilizer in M of vector 1, M_1 is a complete collection of left coset representatives of G in M
- Exhaustive search reveals that no non-identity coset representative is an automorphism of any design in any of these large sets.

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.
- Q is a normal subgroup of A , and A/Q is a subgroup $T \leq S_3$.

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.
- $G = Q$ is a normal subgroup of A , and A/Q is a subgroup $T \leq S_3$.
- Since $Q \cap T = \{1\} \in S_3$, A is a split extension of Q by T .

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.
- $G = Q$ is a normal subgroup of A , and A/Q is a subgroup $T \leq S_3$.
- Since $Q \cap T = \{1\} \in S_3$, A is a split extension of Q by T .
- However, an element of order 2 in T would have to fix one of the three designs, but the only automorphisms that fix any of these designs are in G , which has odd order.

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.
- $G = Q$ is a normal subgroup of A , and A/Q is a subgroup $T \leq S_3$.
- Since $Q \cap T = \{1\} \in S_3$, A is a split extension of Q by T .
- However, an element of order 2 in T would have to fix one of the three designs, but the only automorphisms that fix any of these designs are in G , which has odd order.
- Also, an element of order 3 in T cannot normalize Q as the only elements of order 3 in $N_{GL_8(2)}(Q)$ are in $Q = \langle \alpha \rangle$, which fixes the designs instead of permuting them.

Proving Non-Isomorphism: Design Permutation

- Let $\mathcal{L} = \{\mathcal{D}_1, \mathcal{D}_2, \mathcal{D}_3\}$ be one of our large sets and Q be the subgroup of $A = \text{Aut}(\mathcal{L})$ that fixes each design.
- $G = Q$ is a normal subgroup of A , and A/Q is a subgroup $T \leq S_3$.
- Since $Q \cap T = \{1\} \in S_3$, A is a split extension of Q by T .
- However, an element of order 2 in T would have to fix one of the three designs, but the only automorphisms that fix any of these designs are in G , which has odd order.
- Also, an element of order 3 in T cannot normalize Q as the only elements of order 3 in $N_{GL_8(2)}(Q)$ are in $Q = \langle \alpha \rangle$, which fixes the designs instead of permuting them.
- Therefore, the automorphism groups of these large sets are all G .

Theorem

(Betten, Laue, and Wasserman, 2015) *Let G be a finite group acting on a set X . Suppose that $x_1, x_2 \in X$ and $g \in G$ such that $x_1^g = x_2$. Moreover, suppose that a Sylow p -subgroup $P \in G$ is contained in both stabilizers G_{x_1} and G_{x_2} . Then $x_1^n = x_2$ for some $n \in N_G(P)$.*

Proving Non-Isomorphism: The Result

Theorem

All 12 of the large sets found are non-isomorphic.

Proving Non-Isomorphism: The Result

Theorem

All 12 of the large sets found are non-isomorphic.

- Let X be the collection of all large sets of type $LS[3][2, 3, 2^8]$. $GL_8(2)$ acts on X and the stabilizer of any $\lambda \in X$ is the full automorphism group of λ .

Proving Non-Isomorphism: The Result

Theorem

All 12 of the large sets found are non-isomorphic.

- Let X be the collection of all large sets of type $LS[3][2, 3, 2^8]$. $GL_8(2)$ acts on X and the stabilizer of any $\lambda \in X$ is the full automorphism group of λ .
- We have $\langle \alpha^{15} \rangle = P$, a Sylow 17-subgroup in the stabilizer of every one of our large sets in Λ , so if $\lambda, \mu \in \Lambda$ are isomorphic, there is $n \in N_{GL_8(2)}(P) = N_{GL_8(2)}(G)$ where $\lambda^n = \mu$.

Proving Non-Isomorphism: The Result

Theorem

All 12 of the large sets found are non-isomorphic.

- Let X be the collection of all large sets of type $LS[3][2, 3, 2^8]$. $GL_8(2)$ acts on X and the stabilizer of any $\lambda \in X$ is the full automorphism group of λ .
- We have $\langle \alpha^{15} \rangle = P$, a Sylow 17-subgroup in the stabilizer of every one of our large sets in Λ , so if $\lambda, \mu \in \Lambda$ are isomorphic, there is $n \in N_{GL_8(2)}(P) = N_{GL_8(2)}(G)$ where $\lambda^n = \mu$.
- $N_{GL_8(2)}(G)$ contains no element that sends any large set in Λ to another. Thus, all 12 of these large sets are non-isomorphic.

Future Problems: Constructing More Large Sets

- Kiermaier and Laue's work on recursive constructions of geometric large sets can confirm the admissibility of the parameters of different $LS[N][t, k, q^n]$.

Future Problems: Constructing More Large Sets

- Kiermaier and Laue's work on recursive constructions of geometric large sets can confirm the admissibility of the parameters of different $LS[N][t, k, q^n]$.
- Braun, Kiermaier, and Kohnert devised a recursive construction method for proving the existence of geometric halvings, large sets where $N = 2$. Constructing these infinite families of geometric large sets is still being worked on.

Thank You

Thanks to all of you for listening!