

Pursuit-evasion on graphs arising from combinatorial designs

Nancy E. Clarke

Acadia University

Joint work with:

Andrea Burgess (UNBSJ)

Rosalind Cameron (Canterbury)

Peter Danziger (TMU)

Stephen Finbow (StFX)

Caleb Jones (MUN)

David Pike (MUN)

Rules of the Game

- two opposing sides, $k > 0$ cops and a single robber
- both sides play with perfect information
- cops begin the game by each choosing a vertex to occupy then robber chooses a vertex
- opposing sides move alternately
- cops win if at least one of them occupies the same vertex as the robber after a finite number of moves
- the **copnumber** $c(G)$ is the minimum number of cops that suffice to guarantee a win on G
- a graph with copnumber 1 is **copwin**

Rules of the Surrounding Cops game

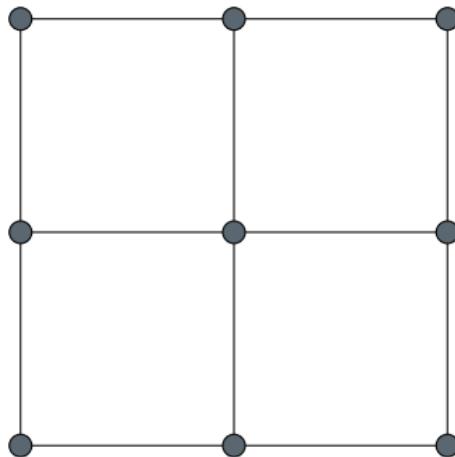
- two opposing sides, $k > 0$ cops and a single robber
- both sides play with perfect information
- cops begin the game by each choosing a vertex to occupy then robber chooses a vertex
- opposing sides move alternately

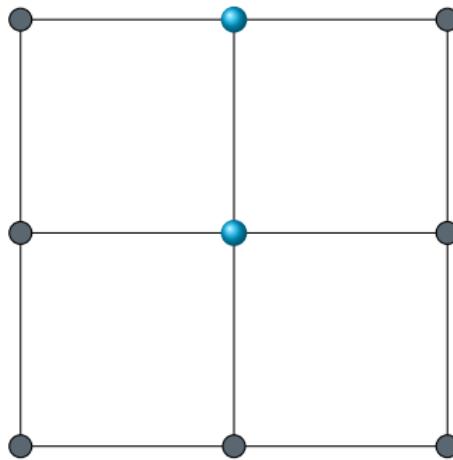
Rules of the Surrounding Cops game

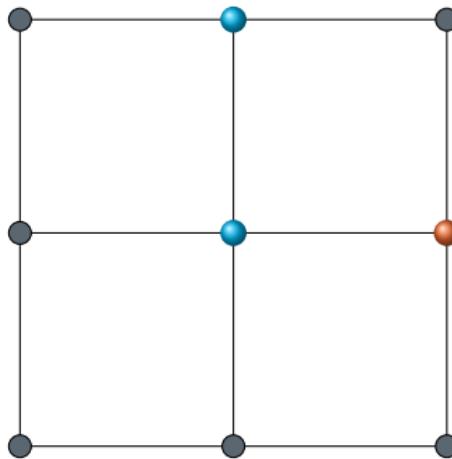
- two opposing sides, $k > 0$ cops and a single robber
- both sides play with perfect information
- cops begin the game by each choosing a vertex to occupy then robber chooses a vertex
- opposing sides move alternately
- the robber cannot start on or move to a vertex occupied by a cop
- the cops win if, at any time, each of the neighbours of the robber's vertex is occupied by a cop

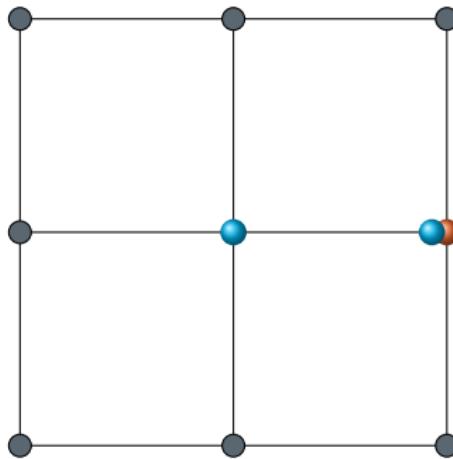
Rules of the Surrounding Cops game

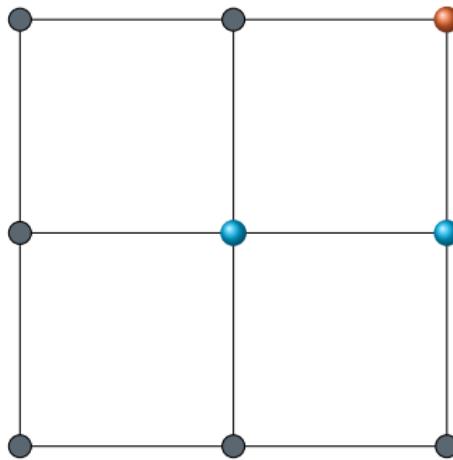
- two opposing sides, $k > 0$ cops and a single robber
- both sides play with perfect information
- cops begin the game by each choosing a vertex to occupy then robber chooses a vertex
- opposing sides move alternately
- the robber cannot start on or move to a vertex occupied by a cop
- the cops win if, at any time, each of the neighbours of the robber's vertex is occupied by a cop
- the **surrounding copnumber** $\sigma(G)$ is the minimum number of cops that suffice to guarantee a win







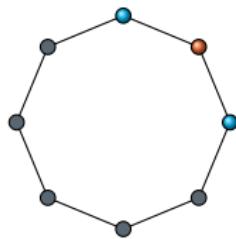




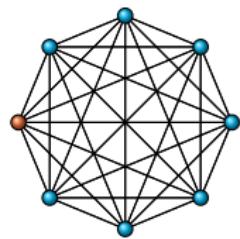


Lower bounds on $\sigma(G)$

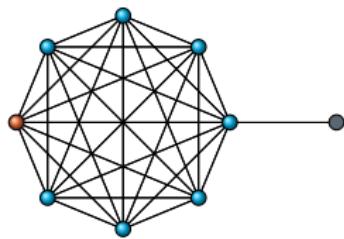
Lemma For any graph G , $\sigma(G) \geq \min\{\delta(G), c(G), \omega(G) - 1\}$.



$$\begin{aligned}c(C_n) &= 2 \\ \delta(C_n) &= 2 \\ \omega(C_n) &= 2 \\ \sigma(C_n) &= 2\end{aligned}$$



$$\begin{aligned}c(K_n) &= 1 \\ \delta(K_n) &= n-1 \\ \omega(K_n) &= n \\ \sigma(K_n) &= n-1\end{aligned}$$



$$\begin{aligned}c(K_n + e) &= 1 \\ \delta(K_n + e) &= 1 \\ \omega(K_n + e) &= n \\ \sigma(K_n + e) &= n-1\end{aligned}$$

More Bounds

Theorem If G has girth $g \geq 7$ and minimum degree $\delta \geq 3$, then $\sigma(G) \geq \delta + 1$.

More Bounds

Theorem If G has girth $g \geq 7$ and minimum degree $\delta \geq 3$, then $\sigma(G) \geq \delta + 1$.

Theorem If H is a retract of G , then $\sigma(H) \leq \sigma(G)$.

More Bounds

Theorem If G has girth $g \geq 7$ and minimum degree $\delta \geq 3$, then $\sigma(G) \geq \delta + 1$.

Theorem If H is a retract of G , then $\sigma(H) \leq \sigma(G)$.

Lemma For any graph G , $\sigma(G) \leq |V(G)| - \alpha(G)$.

Corollary For any graph G , $\alpha(G) + \omega(G) \leq |V(G)| + 1$.

More Bounds

Theorem If G has girth $g \geq 7$ and minimum degree $\delta \geq 3$, then $\sigma(G) \geq \delta + 1$.

Theorem If H is a retract of G , then $\sigma(H) \leq \sigma(G)$.

Lemma For any graph G , $\sigma(G) \leq |V(G)| - \alpha(G)$.

Corollary For any graph G , $\alpha(G) + \omega(G) \leq |V(G)| + 1$.

Theorem For any graph G , $\sigma(G) \leq \text{tw}(G) + 1$.

Corollary If G is a chordal graph then $\sigma(G) \in \{\omega(G) - 1, \omega(G)\}$.

Can we characterize those graphs G with $\sigma(G) = n$?

- $\sigma(G) = 1$: the only graphs are K_1 and $K_{1,n}$

Can we characterize those graphs G with $\sigma(G) = n$?

- $\sigma(G) = 1$: the only graphs are K_1 and $K_{1,n}$
- $\sigma(G) = 2$: paths of length at least 3, cycles, cycles with a chord, most trees

Can we characterize those graphs G with $\sigma(G) = n$?

- $\sigma(G) = 1$: the only graphs are K_1 and $K_{1,n}$
- $\sigma(G) = 2$: paths of length at least 3, cycles, cycles with a chord, most trees
- $\sigma(G) = 3$: wheels

Graph products

We define 3 graph products in terms of edge matrices:

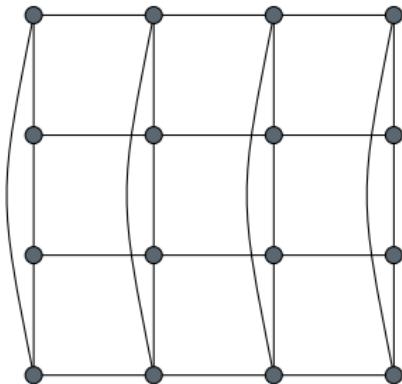
$$\begin{matrix} & E & \Delta & N \\ E & \begin{pmatrix} - & - & - \\ - & \Delta & - \\ - & - & - \end{pmatrix} \\ \Delta & & & \\ N & & & \end{matrix}.$$

Cartesian: $G \square H \quad \begin{pmatrix} N & E & N \\ E & \Delta & N \\ N & N & N \end{pmatrix}$; Strong: $G \boxtimes H \quad \begin{pmatrix} E & E & N \\ E & \Delta & N \\ N & N & N \end{pmatrix}$

Lexicographic: $G \bullet H \quad \begin{pmatrix} E & E & E \\ E & \Delta & N \\ N & N & N \end{pmatrix}$

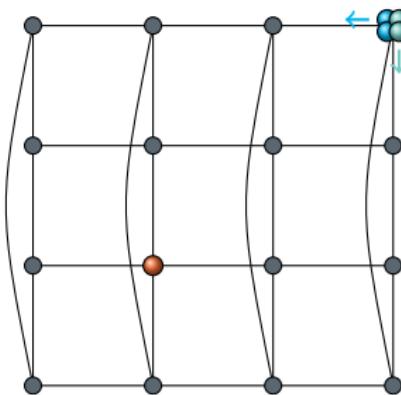
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



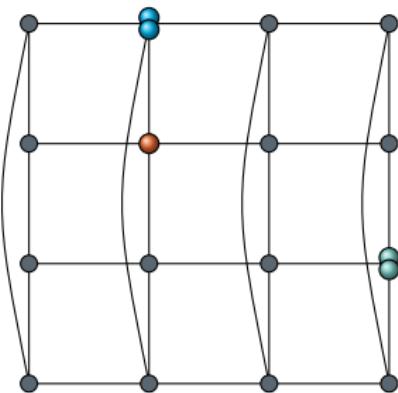
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



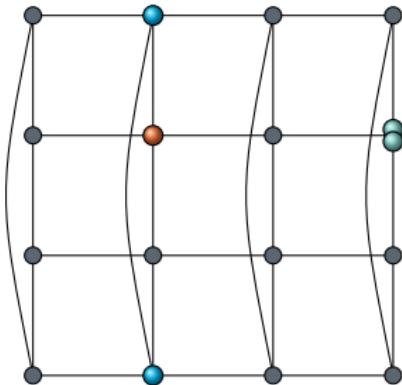
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



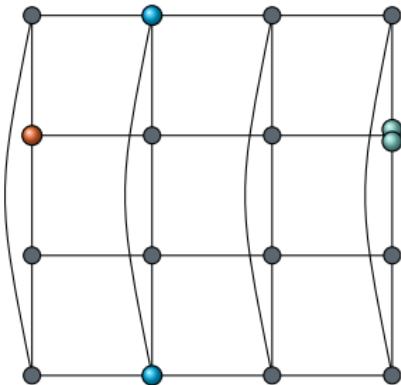
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



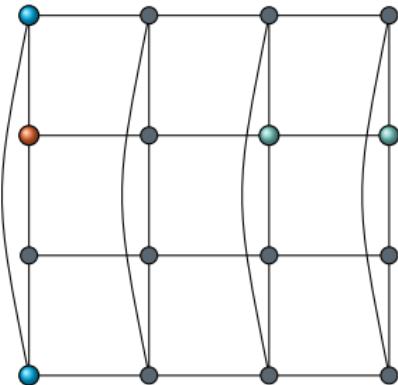
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



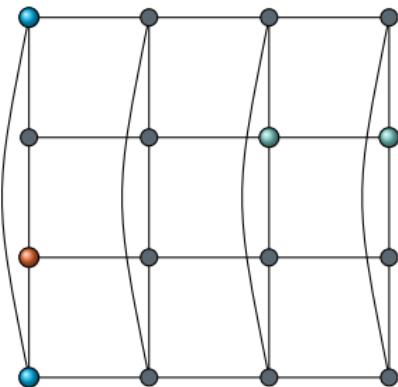
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



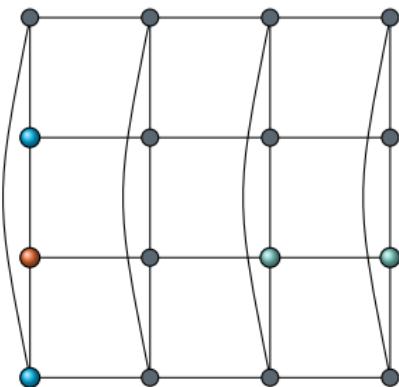
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



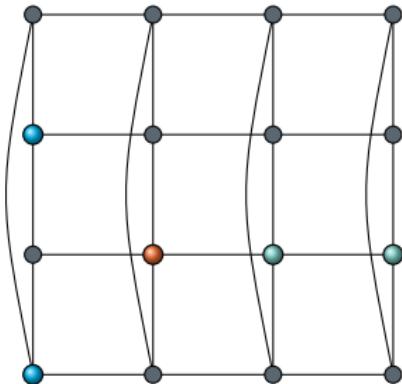
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



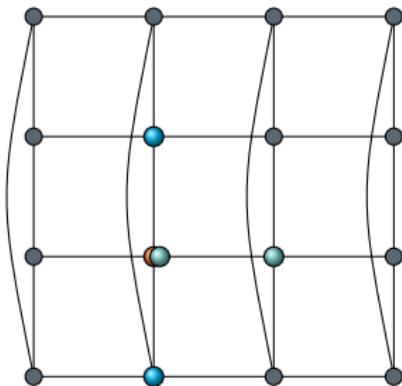
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



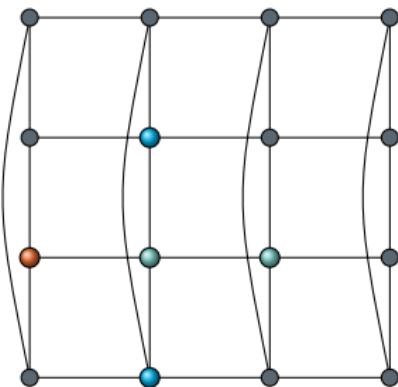
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



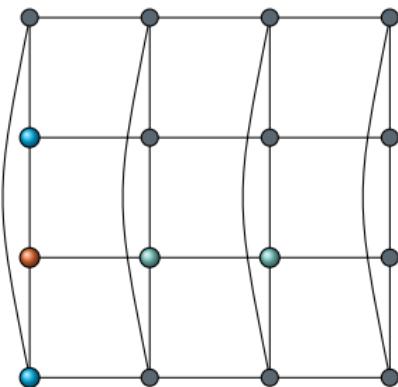
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



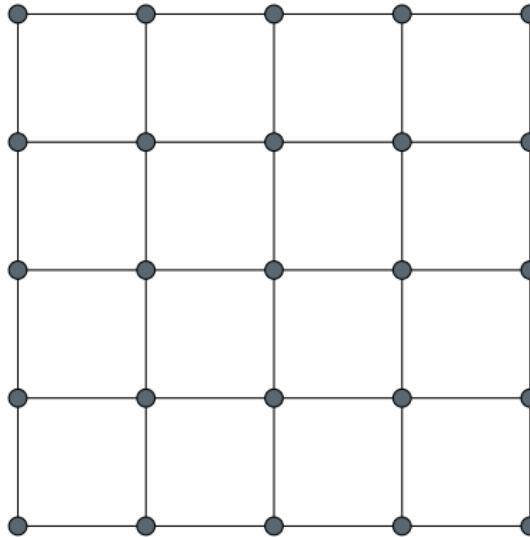
Cartesian product

Theorem For connected graphs G and H , $\sigma(G \square H) \leq \sigma(G) + \sigma(H)$.



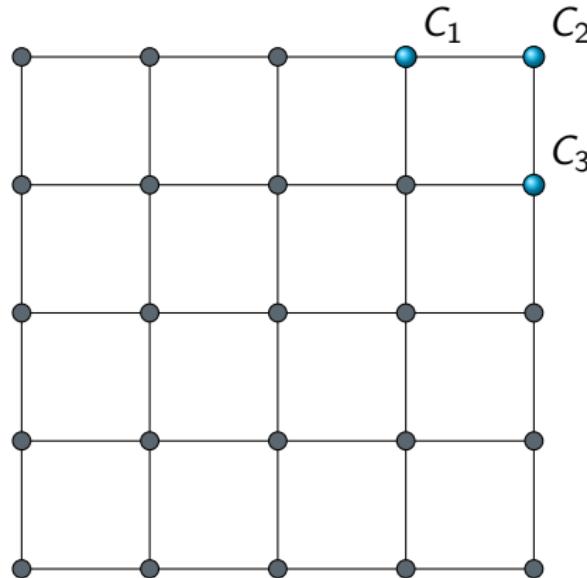
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



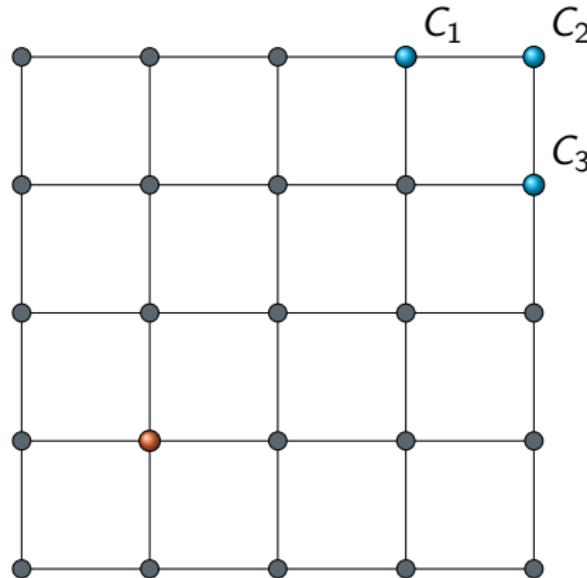
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



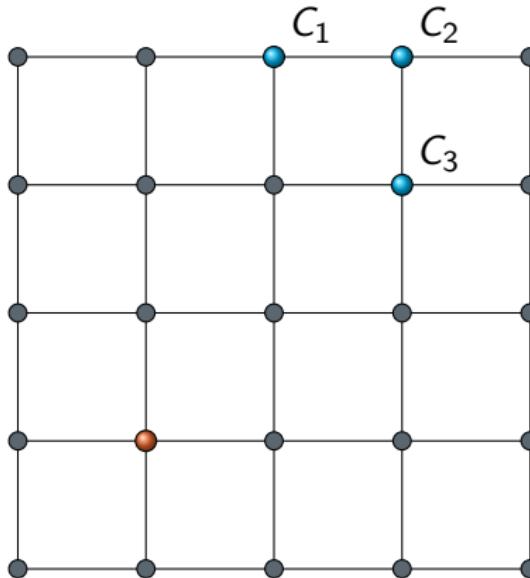
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



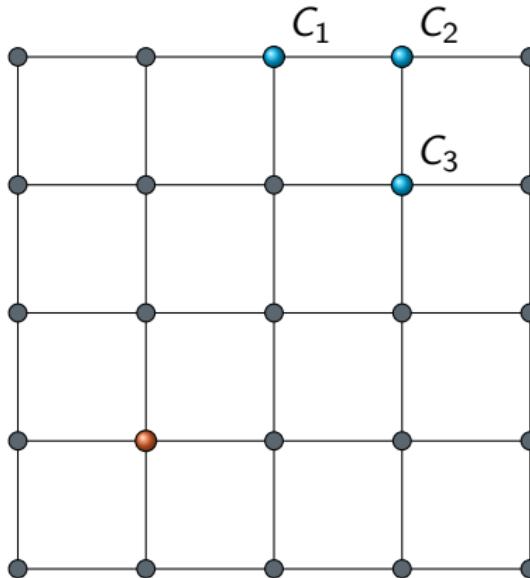
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



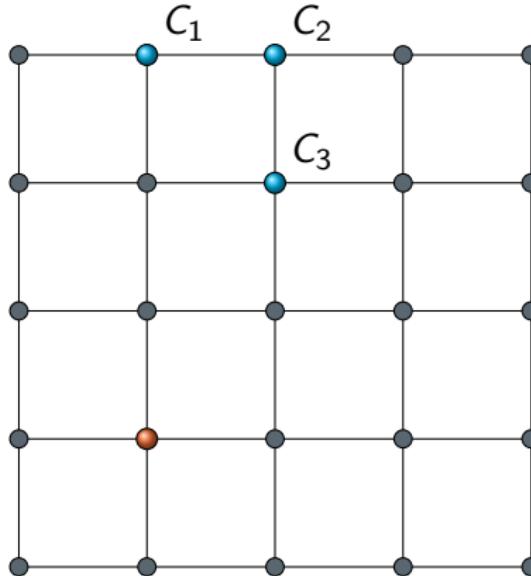
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



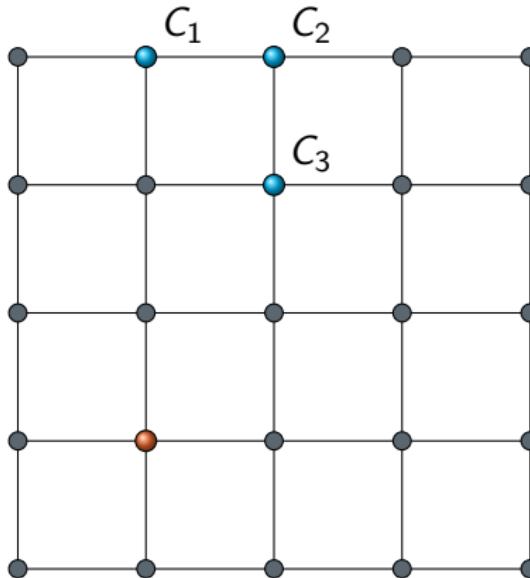
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



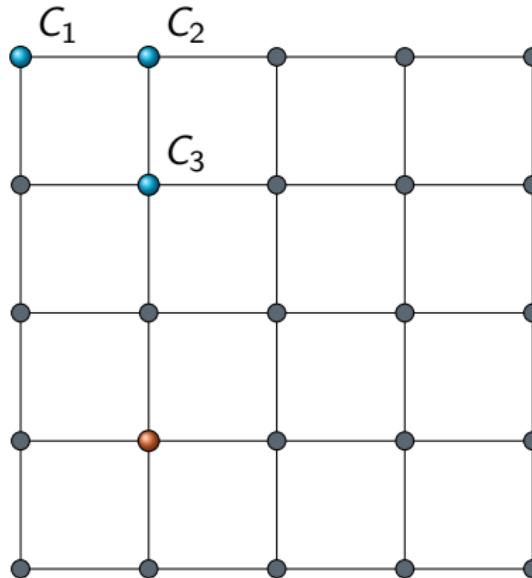
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



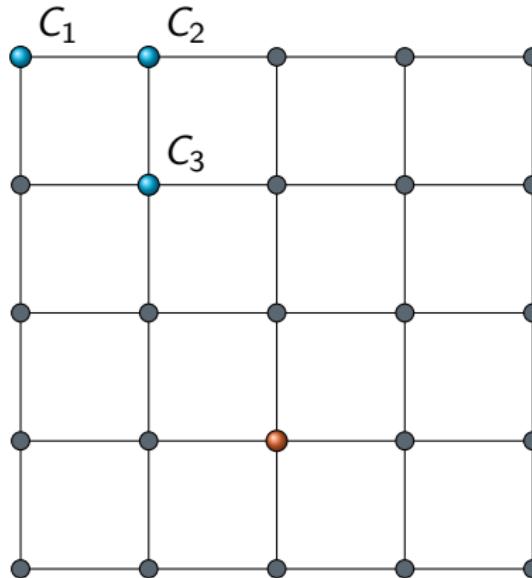
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



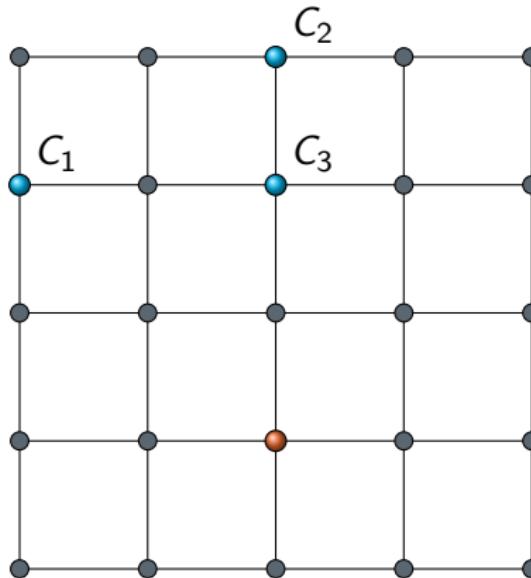
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



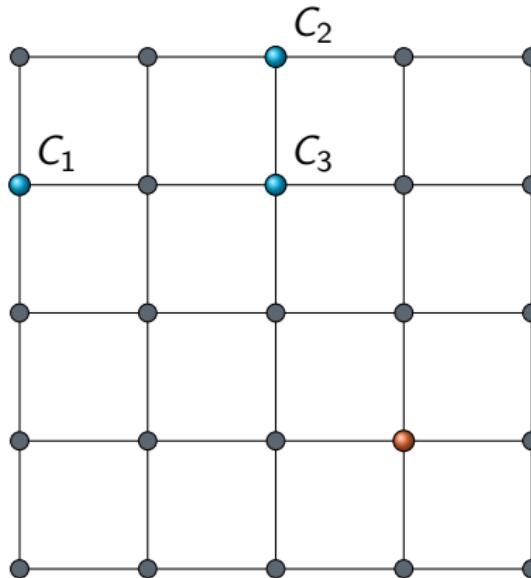
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



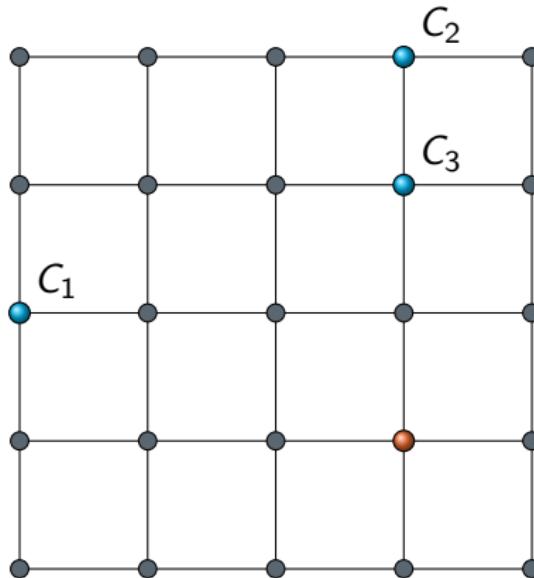
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



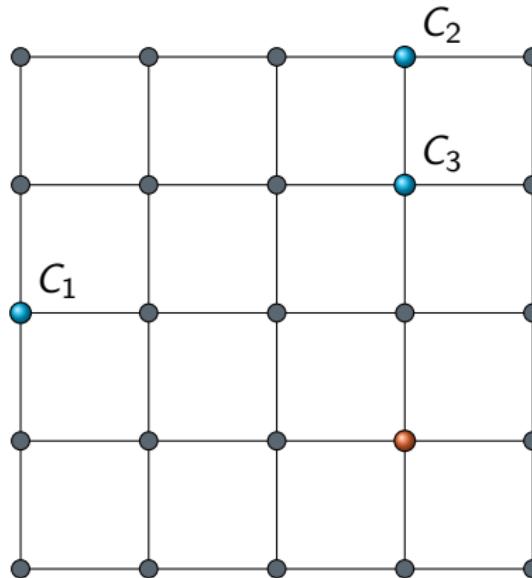
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



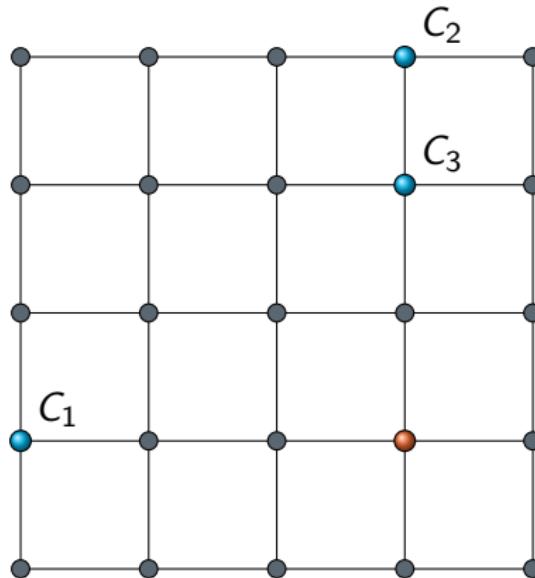
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



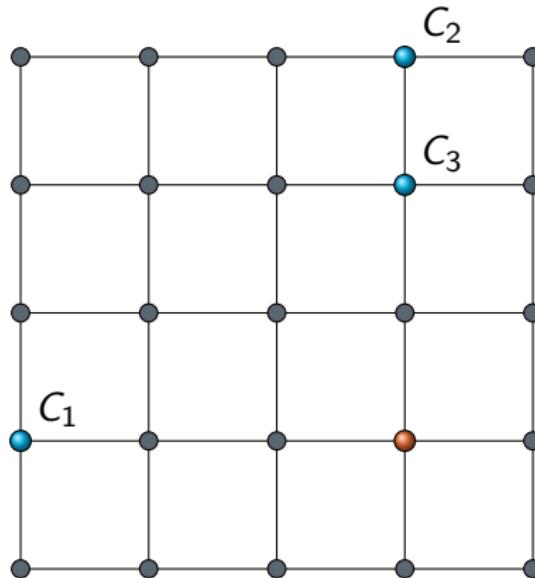
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



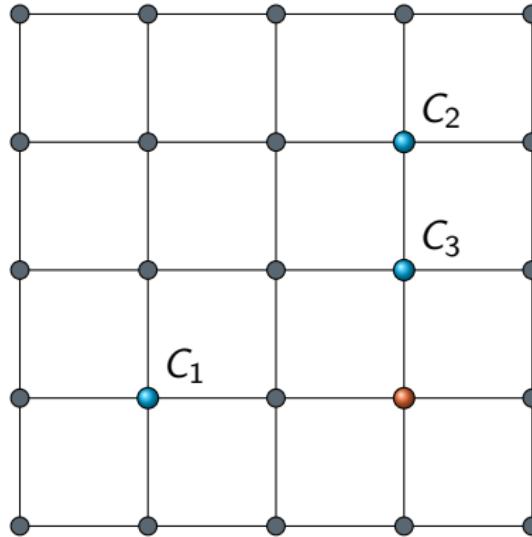
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



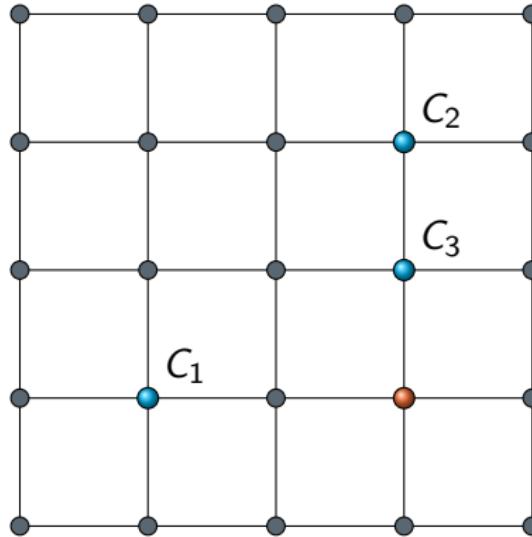
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



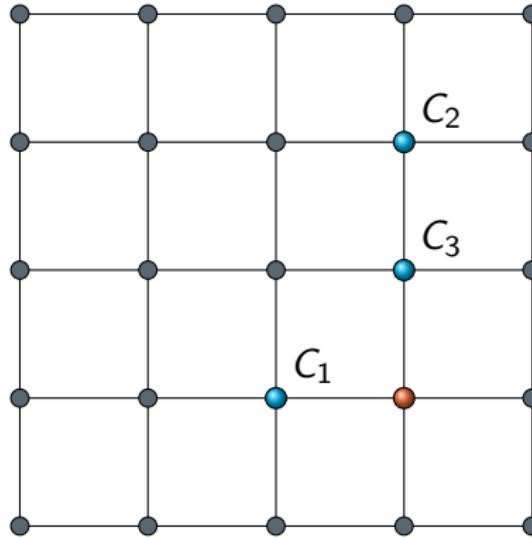
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



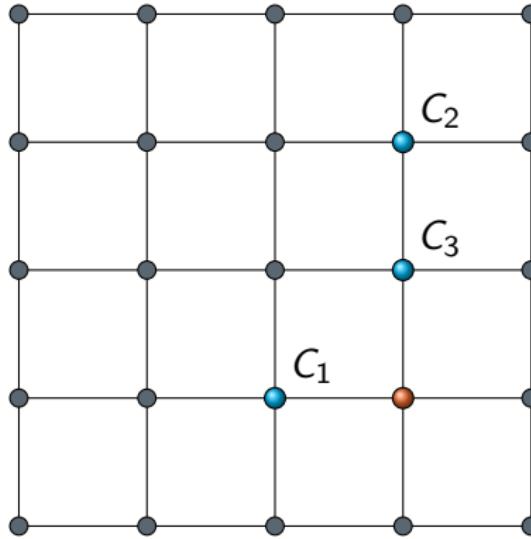
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



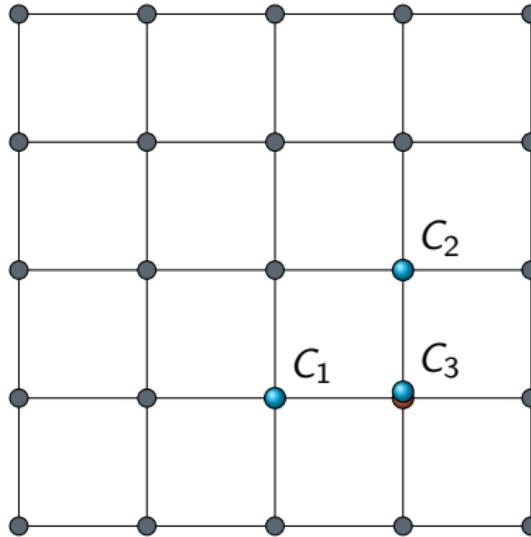
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



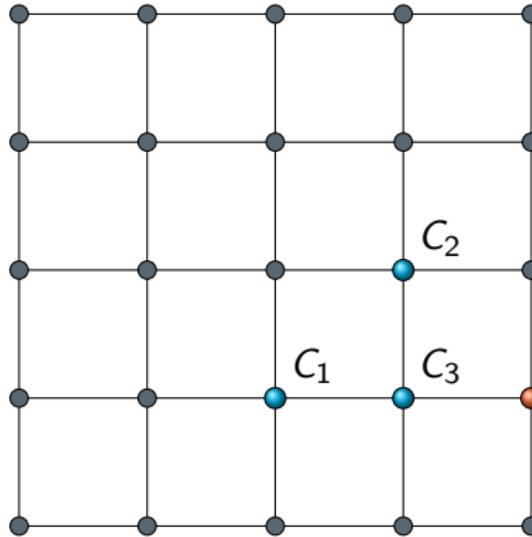
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



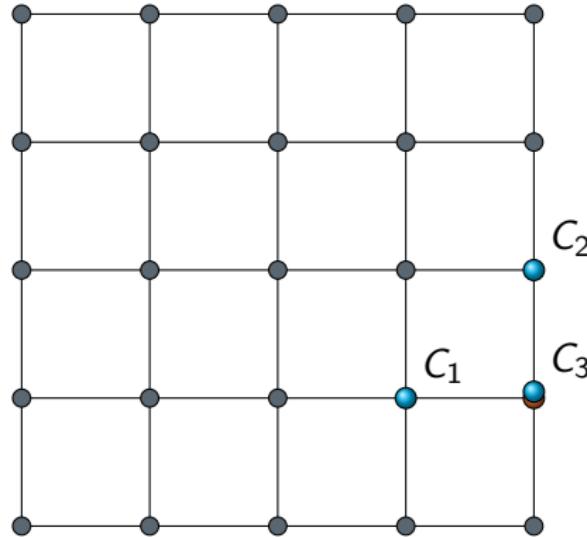
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



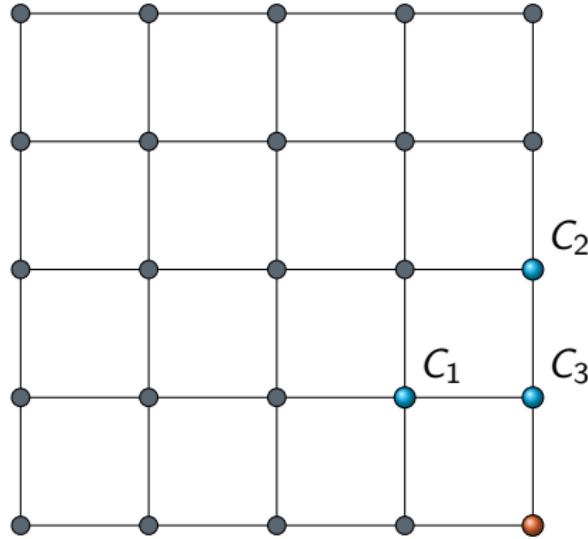
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



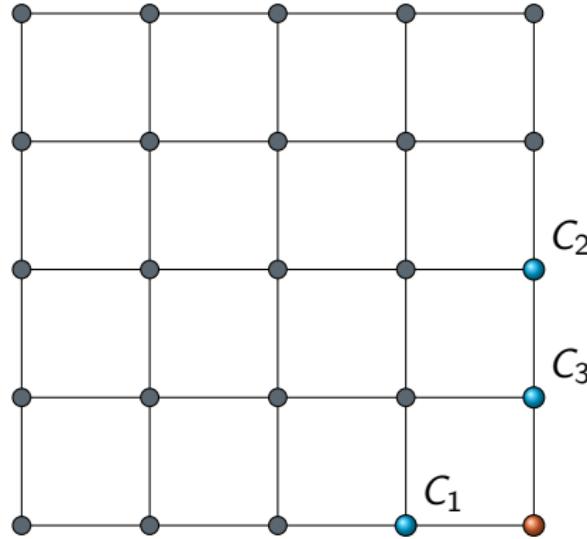
Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



Cartesian products of paths

Theorem Let $2 \leq m \leq n$ be integers. If $m, n \leq 3$ then $\sigma(P_m \square P_n) = 2$; otherwise $\sigma(P_m \square P_n) = 3$.



Strong Products

Theorem Let $2 \leq m \leq n$ be integers. Then

$$\sigma(P_m \boxtimes P_n) = \begin{cases} 5, & \text{if } m \geq 4 \\ 4, & \text{if } m = 3, \text{ or } m = 2 \text{ and } n \geq 4 \\ 3, & \text{if } m = 2 \text{ and } n \leq 3. \end{cases}$$

Strong Products

Theorem Let $2 \leq m \leq n$ be integers. Then

$$\sigma(P_m \boxtimes P_n) = \begin{cases} 5, & \text{if } m \geq 4 \\ 4, & \text{if } m = 3, \text{ or } m = 2 \text{ and } n \geq 4 \\ 3, & \text{if } m = 2 \text{ and } n \leq 3. \end{cases}$$

Theorem (Neufeld and Nowakowski) If G and H are each connected, then $c(G \boxtimes H) \leq c(G) + c(H) - 1$.

Theorem For $n \geq 1$, $\sigma(K_{1,n} \boxtimes K_{1,n}) \geq n + 1$.

Theorem If $a, b \geq 1$ then $\sigma(K_{a,b} \boxtimes K_{a,b}) \geq ab$.

Lexicographic Products

Theorem If G and H are connected then $\sigma(G \circ H) \leq \sigma(G)|V(H)| + \sigma(H)$.

We note that $\delta(G \circ H) = \delta(G)|V(H)| + \delta(H)$, and so the bound given above is tight whenever $\sigma(G) = \delta(G)$ and $\sigma(H) = \delta(H)$.

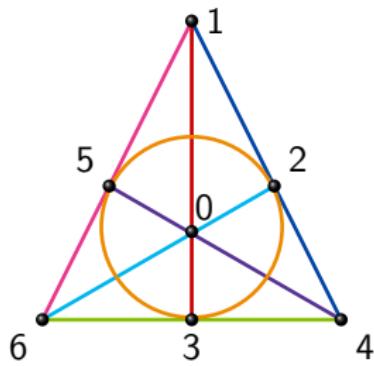
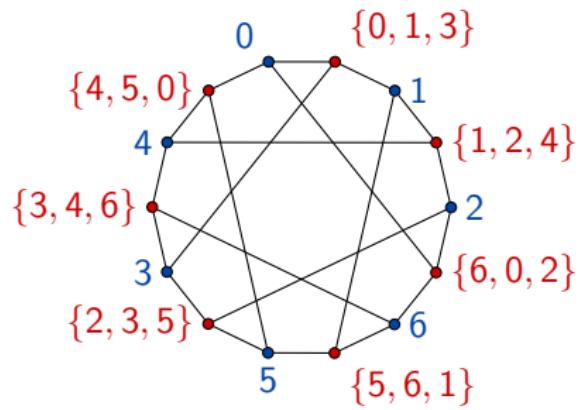
Graphs Arising from Designs

A BIBD(v, k, λ) is a pair (X, \mathcal{B}) where X is a v -set and \mathcal{B} is a collection of k -subsets of X called **blocks** such that each 2-subset of X is contained within exactly λ of the elements of \mathcal{B} .

A BIBD($n^2 + n + 1, n + 1, 1$) is known as a **projective plane of order n** .

The **incidence graph** of a BIBD(v, k, λ) (X, \mathcal{B}) has vertex set $X \cup \mathcal{B}$ with $x \in X$ is adjacent to $B \in \mathcal{B}$ if and only if $x \in B$.

Example



Theorem If G is the incidence graph of a projective plane with block size k , then $\sigma(G) = k + 1$.

Theorem If G is the incidence graph of a projective plane with block size k , then $\sigma(G) = k + 1$.

Theorem Let $v > k \geq 2$ be integers such that $v \equiv 0 \pmod{k}$. If G is the incidence graph of a resolvable BIBD($v, k, 1$), then $\sigma(G) = \frac{v}{k} + 1$.

Given a BIBD(v, k, λ), say (X, \mathcal{B}) , its **block-intersection graph** is the graph having \mathcal{B} as its vertex set, and two vertices are adjacent if (as blocks) they have non-empty intersection.

Given a BIBD(v, k, λ), say (X, \mathcal{B}) , its **block-intersection graph** is the graph having \mathcal{B} as its vertex set, and two vertices are adjacent if (as blocks) they have non-empty intersection.

Theorem If G is the block-intersection graph of a BIBD($v, k, 1$), then $\sigma(G) = k(r - 1)$.

Proof idea:

Relabel the BIBD so that it has blocks $\{1, 2, \dots, k\}$, $\{k+1, k+2, \dots, 2k\}$.

Initially place the $k(r-1)$ cops on all blocks adjacent to $\{1, 2, \dots, k\}$.

Let A be the set of blocks adjacent to $\{1, 2, \dots, k\}$ in G , and similarly for B . Each $x \in A$ contains exactly one element in $\{1, 2, \dots, k\}$ and each $y \in B$ contains exactly one element in $\{k+1, k+2, \dots, 2k\}$; thus $|A \cap B| = k^2$.

Construct bipartite graph G' : $A' = \{x_A : x \in A\}$ and $B' = \{y_B : y \in B\}$. Let $x_A y_B$ be an edge in G' if $x_A \in A'$, $y_B \in B'$ and $x \simeq y$ in G .

Define $H \subseteq G'$: for each $i \in \{1, 2, \dots, k\}$ include $x_A y_B \in E(G')$ such that $i \in x$, $i+k \notin x$, and $i+k \in y$. Also include $x_A y_B$ where $\{i, i+k\} \subseteq x$ and $\{i+k, j\} \subseteq y$ for $j \in \{1, 2, \dots, k\} \setminus \{i\}$.

Clearly, G' is a $(k-1)$ -regular bipartite graph so \exists a 1-factor \mathcal{F} of G' .

For each edge $x_A y_B$ in \mathcal{F} , the cops move from x to y in G thereby surrounding the robber.

Generalized Petersen Graphs

Let $A = \{a_0, \dots, a_{n-1}\}$ and $B = \{b_0, \dots, b_{n-1}\}$. For positive integers n and k such that $n > 2k$, the **generalised Petersen graph** $GP(n, k)$ has vertex set $A \cup B$ and three types of edges: for each $i \in \{0, \dots, n-1\}$,

- a_i, a_{i+1} ,
- a_i, b_i , and
- b_i, b_{i+k} ,

with subscripts computed modulo n .

Observe that the well known Petersen graph is $GP(5, 2)$.

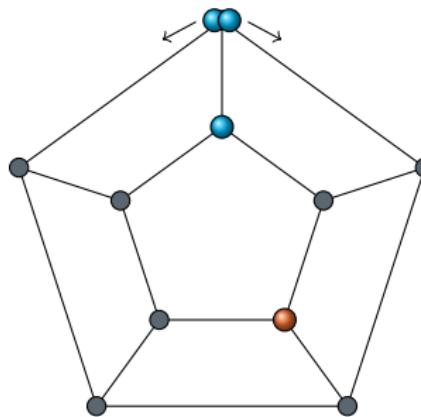
$\sigma(GP(n, k))$		k								
		1	2	3	4	5	6	7	8	9
n	3	3								
	4	3								
	5	3	3							
	6	3	3							
	7	3	4	4						
	8	3	3	3						
	9	3	4	3	4					
	10	3	4	4	4					
	11	3	4	4	4	4				
	12	3	4	3	4	4				
	13	3	4	4	4	4	4			
	14	3	4	4	4	4	4			
	15	3	4	4	4	4	4	4		
	16	3	4	4	4	4	4	4		
	17	3	4	4	4	4	4	4	4	
	18	3	4	4	4	4	4	4	4	
	19	3	4	4	4	4	4	4	4	4
	20	3	4	4	4	4	4	4	4	4

Table: Surrounding Copnumbers of Generalised Petersen Graphs, $\sigma(GP(n, k))$

Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

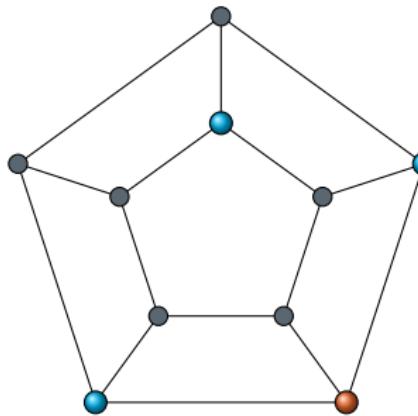
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



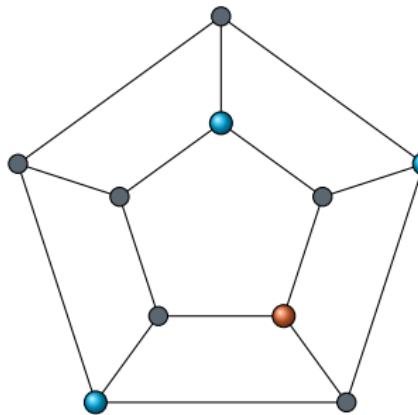
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



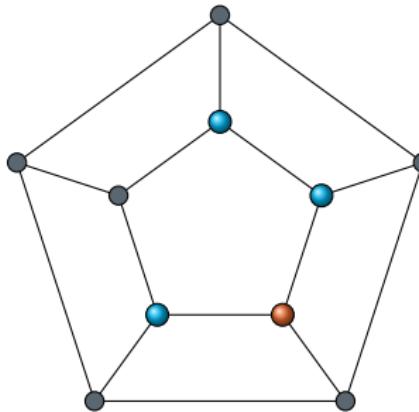
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



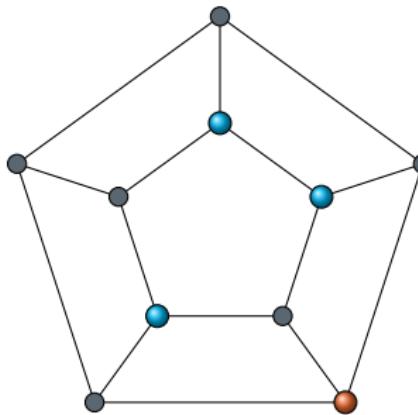
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



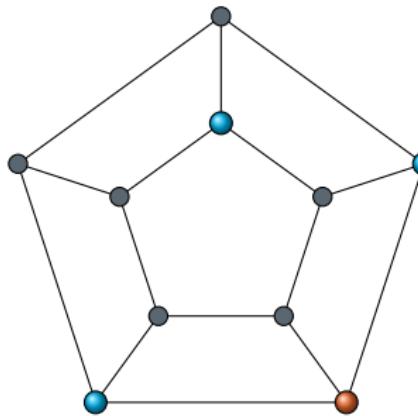
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



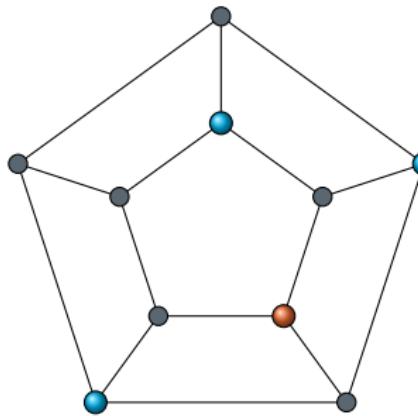
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



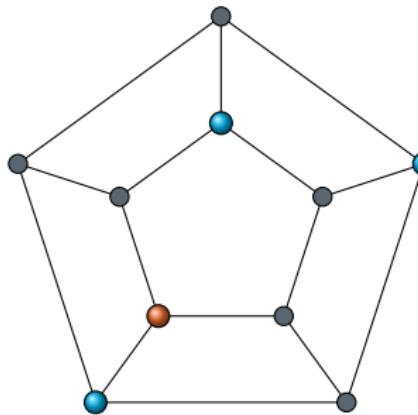
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



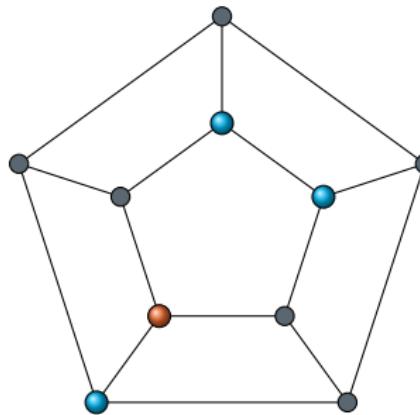
Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



Theorem For all integers $n \geq 5$ and $k \geq 2$, $\sigma(GP(n, k)) \leq 4$.

Theorem For all $n \geq 3$, $\sigma(GP(n, 1)) = 3$.



Meyniel's Conjecture

Meyniel's Conjecture Let G be a graph. Then $c(G) \in O(\sqrt{n})$, where n denotes the order of G .

It is clear that there is no analogy of this conjecture that would apply to the surrounding copnumber: $\sigma(K_n) = n - 1$.

Do graphs with high surrounding copnumber inherently possess some property which in turn implies that the copnumber is low?

Open Problems

- ① Our empirical results suggest that $\sigma(GP(n, k)) = 4$ whenever $n > 12$ and $k > 1$. True? Proof?

Open Problems

- ➊ Our empirical results suggest that $\sigma(GP(n, k)) = 4$ whenever $n > 12$ and $k > 1$. True? Proof?
- ➋ We know that $\sigma(G) > \delta(G)$ whenever $\delta(G) \geq 3$ and $g \geq 7$. Does a generalisation of this theorem, similar to the result of Frankl, hold?

Open Problems

- ➊ Our empirical results suggest that $\sigma(GP(n, k)) = 4$ whenever $n > 12$ and $k > 1$. True? Proof?
- ➋ We know that $\sigma(G) > \delta(G)$ whenever $\delta(G) \geq 3$ and $g \geq 7$. Does a generalisation of this theorem, similar to the result of Frankl, hold?
- ➌ Characterise graphs G such that $\sigma(G) = k$.

Open Problems

- ➊ Our empirical results suggest that $\sigma(GP(n, k)) = 4$ whenever $n > 12$ and $k > 1$. True? Proof?
- ➋ We know that $\sigma(G) > \delta(G)$ whenever $\delta(G) \geq 3$ and $g \geq 7$. Does a generalisation of this theorem, similar to the result of Frankl, hold?
- ➌ Characterise graphs G such that $\sigma(G) = k$.

It is not true that G being a connected subgraph of a connected graph H implies that $\sigma(G) \leq \sigma(H)$.

- ➎ Under what conditions on G and e is $\sigma(G - e) \leq \sigma(G)$?

Open Problems

- ➊ Our empirical results suggest that $\sigma(GP(n, k)) = 4$ whenever $n > 12$ and $k > 1$. True? Proof?
- ➋ We know that $\sigma(G) > \delta(G)$ whenever $\delta(G) \geq 3$ and $g \geq 7$. Does a generalisation of this theorem, similar to the result of Frankl, hold?
- ➌ Characterise graphs G such that $\sigma(G) = k$.

It is not true that G being a connected subgraph of a connected graph H implies that $\sigma(G) \leq \sigma(H)$.

- ➎ Under what conditions on G and e is $\sigma(G - e) \leq \sigma(G)$?
- ➏ Let G/e be the graph obtained by contracting the edge e . Under what conditions on G and e is $\sigma(G/e) \leq \sigma(G)$?

Thanks

Natural Sciences and Engineering
Research Council of Canada

Conseil de recherches en sciences
naturelles et en génie du Canada

Thanks to my co-author Andrea Burgess, who drew many of the graphs!