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Rules of the Game

two opposing sides, k > 0 cops and a single robber

both sides play with perfect information

cops begin the game by each choosing a vertex to occupy then robber
chooses a vertex

opposing sides move alternately

cops win if at least one of them occupies the same vertex as the
robber after a finite number of moves

the copnumber c(G ) is the minimum number of cops that suffice to
guarantee a win on G

a graph with copnumber 1 is copwin
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Lower bounds on σ(G )

Lemma For any graph G , σ(G ) ≥ min{δ(G ), c(G ), ω(G )− 1}.

c(Cn) = 2
δ(Cn) = 2
ω(Cn) = 2
σ(Cn) = 2

c(Kn) = 1
δ(Kn) = n − 1
ω(Kn) = n

σ(Kn) = n − 1

c(Kn + e) = 1
δ(Kn + e) = 1
ω(Kn + e) = n

σ(Kn + e) = n − 1
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More Bounds

Theorem If G has girth g ≥ 7 and minimum degree δ ≥ 3, then
σ(G ) ≥ δ + 1.

Theorem If H is a retract of G , then σ(H) ≤ σ(G ).

Lemma For any graph G , σ(G ) ≤ |V (G )| − α(G ).

Corollary For any graph G , α(G ) + ω(G ) ≤ |V (G )|+ 1.

Theorem For any graph G , σ(G ) ≤ tw(G ) + 1.

Corollary If G is a chordal graph then σ(G ) ∈ {ω(G )− 1, ω(G )}.
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Can we characterize those graphs G with σ(G ) = n?

σ(G ) = 1: the only graphs are K1 and K1,n

σ(G ) = 2: paths of length at least 3, cycles, cycles with a chord,
most trees

σ(G ) = 3: wheels
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Graph products

We define 3 graph products in terms of edge matrices:


E ∆ N

E − − −
∆ − ∆ −
N − − −

.

Cartesian: G H

N E N
E ∆ N
N N N

 ; Strong: G × H

 E E N
E ∆ N
N N N



Lexicographic: G • H

 E E E
E ∆ N
N N N


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Cartesian product

Theorem For connected graphs G and H, σ(G□H) ≤ σ(G ) + σ(H).
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Cartesian products of paths

Theorem Let 2 ≤ m ≤ n be integers. If m, n ≤ 3 then σ(Pm□Pn) = 2;
otherwise σ(Pm□Pn) = 3.
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Strong Products

Theorem Let 2 ≤ m ≤ n be integers. Then

σ(Pm ⊠ Pn) =


5, if m ≥ 4
4, if m = 3, or m = 2 and n ≥ 4
3, if m = 2 and n ≤ 3.

Theorem (Neufeld and Nowakowski) If G and H are each connected,
then c(G ⊠ H) ≤ c(G ) + c(H)− 1.

Theorem For n ≥ 1, σ(K1,n ⊠ K1,n) ≥ n + 1.

Theorem If a, b ≥ 1 then σ(Ka,b ⊠ Ka,b) ≥ ab.
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Lexicographic Products

Theorem If G and H are connected then σ(G ◦H) ≤ σ(G )|V (H)|+σ(H).

We note that δ(G ◦H) = δ(G )|V (H)|+δ(H), and so the bound given above
is tight whenever σ(G ) = δ(G ) and σ(H) = δ(H).
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Graphs Arising from Designs

A BIBD(v , k , λ) is a pair (X ,B) where X is a v -set and B is a collection
of k-subsets of X called blocks such that each 2-subset of X is contained
within exactly λ of the elements of B.

A BIBD(n2 + n + 1, n + 1, 1) is known as a projective plane of order n.

The incidence graph of a BIBD(v , k , λ) (X ,B) has vertex set X ∪ B with
x ∈ X is adjacent to B ∈ B if and only if x ∈ B.
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Example

1

2

436

5

0

0 {0, 1, 3}
{4, 5, 0}

{6, 0, 2}

1

{1, 2, 4}4

2

6

{3, 4, 6}

3

{2, 3, 5}
5 {5, 6, 1}
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Theorem If G is the incidence graph of a projective plane with block size
k , then σ(G ) = k + 1.

Theorem Let v > k ≥ 2 be integers such that v ≡ 0 (mod k). If G is the
incidence graph of a resolvable BIBD(v , k , 1), then σ(G ) = v

k + 1.
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Given a BIBD(v , k , λ), say (X ,B), its block-intersection graph is the graph
having B as its vertex set, and two vertices are adjacent if (as blocks) they
have non-empty intersection.

Theorem If G is the block-intersection graph of a BIBD(v , k , 1), then
σ(G ) = k(r − 1).
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Proof idea:

Relabel the BIBD so that it has blocks {1, 2, . . . , k}, {k+1, k+2, . . . , 2k}.

Initially place the k(r − 1) cops on all blocks adjacent to {1, 2, . . . , k}.

Let A be the set of blocks adjacent to {1, 2, . . . , k} in G , and similarly for B.
Each x ∈ A contains exactly one element in {1, 2, . . . , k} and each y ∈ B
contains exactly one element in {k + 1, k + 2, . . . , 2k}; thus |A ∩ B| = k2.

Construct bipartite graph G ′: A′ = {xA : x ∈ A} and B ′ = {yB : y ∈ B}.
Let xAyB be an edge in G ′ if xA ∈ A′, yB ∈ B ′ and x ≃ y in G .

Define H ⊆ G ′: for each i ∈ {1, 2, . . . , k} include xAyB ∈ E (G ′) such that
i ∈ x , i + k /∈ x , and i + k ∈ y . Also include xAyB where {i , i + k} ⊆ x
and {i + k , j} ⊆ y for j ∈ {1, 2, . . . , k} \ {i}.

Clearly, G ′ is a (k − 1)-regular bipartite graph so ∃ a 1-factor F of G ′.

For each edge xAyB in F , the cops move from x to y in G thereby sur-
rounding the robber.
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Generalized Petersen Graphs

Let A = {a0, . . . , an−1} and B = {b0, . . . , bn−1}. For positive integers n
and k such that n > 2k , the generalised Petersen graph GP(n, k) has vertex
set A ∪ B and three types of edges: for each i ∈ {0, . . . , n − 1},

ai , ai+1,

ai , bi , and

bi , bi+k ,

with subscripts computed modulo n.

Observe that the well known Petersen graph is GP(5, 2).
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σ(GP(n, k))
k

1 2 3 4 5 6 7 8 9

n

3 3
4 3
5 3 3
6 3 3
7 3 4 4
8 3 3 3
9 3 4 3 4
10 3 4 4 4
11 3 4 4 4 4
12 3 4 3 4 4
13 3 4 4 4 4 4
14 3 4 4 4 4 4
15 3 4 4 4 4 4 4
16 3 4 4 4 4 4 4
17 3 4 4 4 4 4 4 4
18 3 4 4 4 4 4 4 4
19 3 4 4 4 4 4 4 4 4
20 3 4 4 4 4 4 4 4 4

Table: Surrounding Copnumbers of Generalised Petersen Graphs, σ(GP(n, k))
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Theorem For all integers n ≥ 5 and k ≥ 2, σ(GP(n, k)) ≤ 4.

Theorem For all n ≥ 3, σ(GP(n, 1)) = 3.
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Meyniel’s Conjecture

Meyniel’s Conjecture Let G be a graph. Then c(G ) ∈ O(
√
n), where n

denotes the order of G .

It is clear that there is no analogy of this conjecture that would apply to the
surrounding copnumber: σ(Kn) = n − 1.

Do graphs with high surrounding copnumber inherently possess some prop-
erty which in turn implies that the copnumber is low?
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Open Problems

1 Our empirical results suggest that σ(GP(n, k)) = 4 whenever n > 12
and k > 1. True? Proof?

2 We know that σ(G ) > δ(G ) whenever δ(G ) ≥ 3 and g ≥ 7. Does a
generalisation of this theorem, similar to the result of Frankl, hold?

3 Characterise graphs G such that σ(G ) = k .

It is not true that G being a connected subgraph of a connected graph H
implies that σ(G ) ≤ σ(H).

5 Under what conditions on G and e is σ(G − e) ≤ σ(G )?

6 Let G/e be the graph obtained by contracting the edge e. Under
what conditions on G and e is σ(G/e) ≤ σ(G )?
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what conditions on G and e is σ(G/e) ≤ σ(G )?
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Thanks

Thanks to my co-author Andrea Burgess, who drew many of the graphs!
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