

COADJOINT MATROIDS AND DEPENDENCIES ON HYPERGRAPHS

Ragnar Freij-Hollanti, Patricija Šapokaitė

June 6, 2025

Kalamata, Greece

TABLE OF CONTENTS

- ▶ Prerequisites and Known Results
- ▶ Closures and Matroidal Closures
- ▶ THE Goal and Main Results

PREREQUISITES AND KNOWN RESULTS

FOUNDATIONS AND PREVIOUS WORK

We continue to research dependencies on matroids using the terminology defined here:

Freij-Hollanti, Ragnar and Šapokaitė, Patricija. Matroidal Cycles and Hypergraph Families, arXiv:2410.23932

The preprint is based on the definition of combinatorial derived matroids that was presented here:

Freij-Hollanti, Ragnar and Jurrius, Relinde and Kuznetsova, Olga. Combinatorial Derived Matroids, The Electronic Journal of Combinatorics, 30:P2.8, 28pp

HYPERGRAPHS

Definition 1.1. A **hypergraph** is a pair (V, \mathcal{E}) , where V is a set of vertices and $\mathcal{E} \subseteq \mathcal{P}(V)$ is a set of hyperedges. A hypergraph is simple if there are not two edges $e, f \in \mathcal{E}$ with $e \subseteq f$. A hypergraph is **k -regular** if $|e| = k$ for all $e \in \mathcal{E}$.

MATROIDS VIA DEPENDENT SETS

Definition 1.2. A **matroid** is a pair (E, \mathcal{D}) , where E denotes a finite set and \mathcal{D} is a family of subsets of E satisfying the following conditions:

- ▶ $\emptyset \notin \mathcal{D}$;
- ▶ $D \in \mathcal{D}$ and $D \subseteq D' \Rightarrow D' \in \mathcal{D}$;
- ▶ $D_1, D_2 \in \mathcal{D}$ and $D_1 \cap D_2 \notin \mathcal{D} \rightarrow (D_1 \cup D_2) \setminus \{e\} \in \mathcal{D}$ for all $e \in D_1 \cap D_2$.

The minimal dependent sets are called **circuits**.

MATROIDS VIA CIRCUITS

Theorem 1.3. A *simple hypergraph* $M = (V, \mathcal{E})$ is a circuit hypergraph of a matroid if for every $C_1, C_2 \in \mathcal{E}$ with $C_1 \neq C_2$, and every $v \in C_1 \cap C_2$, there exists $C_3 \in \mathcal{E}$ such that $C_3 \subseteq C_1 \cup C_2 \setminus \{v\}$. The set \mathcal{E} is the circuit set of M .

A 2-graph is the circuit hypergraph of a matroid if and only if it is a disjoint union of cliques.

MATROIDAL HYPERGRAPH CYCLES

Definition 1.4. *A collection of edges $\{e_1, \dots, e_k\}$ in a hypergraph H is **doubly covering** if*

$$e_i \subseteq \bigcup_{\substack{1 \leq j \leq k \\ j \neq i}} e_j$$

for all $i = 1, \dots, k$.

Definition 1.5. *We will call a doubly covering set that does not have any doubly covering proper subset a **matroidal cycle**.*

NATURAL MATROIDS

Here we will use the notion of *naturality* as describing dependencies that feel the most *natural* when thinking about dependent pieces of information - doubly covering the vertices.

The definitions of **natural cycle**, **natural matroid** or **natural hypergraph**, will refer to the matroidal cycles satisfying the double covering.

Definition 1.6. *If a hypergraph does not contain a cycle, we will call it a **natural tree**.*

ϵ OPERATION

Definition 1.7. Let \mathcal{E} be the edge set of a hypergraph $H = (V, \mathcal{E})$. Denote by

$$\epsilon(\mathcal{E}) := \mathcal{E} \cup \{(A_1 \cup A_2) \setminus \{v\} :$$

$$A_1, A_2 \in \mathcal{E}, A_1 \cap A_2 \notin \mathcal{E}, v \in A_1 \cap A_2\},$$

$$\min \mathcal{E} := \{A \in \mathcal{E} : \nexists A' \in \mathcal{E} : A' \subsetneq A\},$$

and

$$\uparrow \mathcal{E} := \{A \in \mathcal{E} : \exists A' \in \mathcal{E} : A' \subseteq A\}.$$

DERIVED MATROID

Definition 1.8. Consider a matroid M with a collection of circuits \mathcal{C} . Then the **combinatorial derived matroid** δM is a matroid, represented by the closure of the hypergraph with $E = \mathcal{C}$.

RANK

Definition 1.9. *The rank of a matroidal hypergraph is the largest set of vertices such that there are no edges containing only those vertices. We will call the vertices in said set a **basis**.*

CLOSURES AND COADJOINTS

CLOSURES

Definition 2.1. Let r be the rank function of a matroid M with ground set V . We call the set $\text{cl}(S) = \text{cl}_M(S)$ the **closure** of S in M if

$$\text{cl}(S) = \{x \in V : r(S \cup x) = r(S)\}.$$

MATROIDAL CLOSURES

Definition 2.2. Let $H = (V, E)$ be a hypergraph. Let $\mathcal{E}_0 = \mathcal{E}$, $\mathcal{E}_{i+1} = \min \epsilon \mathcal{E}_i$ for $i \in \mathbb{N}$ and $\mathcal{E}' = \min (\cup_i E_i)$. Moreover, let $\mathcal{F}_0 = \mathcal{E}$, $\mathcal{F}_{i+1} = \uparrow \epsilon \mathcal{F}_i$ for $i \in \mathbb{N}$ and $\mathcal{F} = (\cup_i F_i)$. Then $\min \mathcal{F} = \mathcal{E}'$, and $\bar{H} = (V, \mathcal{E}')$ is a matroid. We call this the **matroidal closure** of H .

\mathcal{U} AND \mathcal{F}

For a matroid M with circuit set $\mathcal{C}(M)$ and rank function r , we denote its lattice of cyclic sets by $\mathcal{U}(M)$ and its lattice of flats by $\mathcal{F}(M)$. This means that

$$\mathcal{F}(M) = \{F \subseteq E(M) : \text{cl}(F) = F\}$$

and

$$\begin{aligned}\mathcal{U}(M) &= \{U \subseteq E(M) : r(U - x) = r(U) \text{ for all } x \in U\} = \\ &= \left\{ \bigcup_{C \in \mathcal{C}} C : S \subseteq \mathcal{C}(M) \right\}\end{aligned}$$

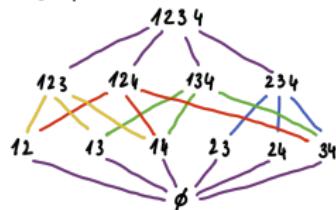
It is well known that $\mathcal{F}(M)$ is a geometric lattice and that $\mathcal{U}(M)$ is cogeometric, as its dual is isomorphic to $\mathcal{F}(M^*)$.

EXAMPLES

Take a complete graph on 4 vertices, K_4 . Then its lattice of flats and geometric lattice look as follows:

$$\mathcal{F}(K_4): \begin{matrix} 1234 \\ \downarrow \\ \emptyset \end{matrix}$$

$\mathcal{U}(K_4)$:



SOME RESULTS

Proposition 2.3. *Let $\mathcal{H} = (V, E)$ and $\delta\mathcal{H} = (E, \mathcal{C})$. For every $S \in E$,*

$$\text{cl}_{\delta M} (\{e \in E(\mathcal{H}) : e \in S\}) \supseteq \overline{S(\mathcal{H})} \cap \mathcal{H}.$$

Proposition 2.4. *Let $\mathcal{H} = (V, E)$ be a matroid. Then*

$$E(\text{cl}(S)) \supseteq \overline{E(S)} \cap E(\mathcal{H})$$

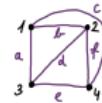
THE GOAL AND MAIN RESULTS

OUR GOAL

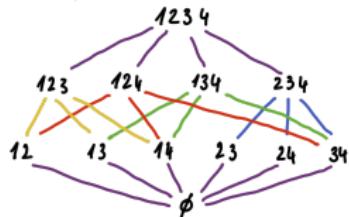
Conjecture 3.1. *Let M be a matroid. If M has a coadjoint N , then δM is a coadjoint of M .*

MOTIVATION

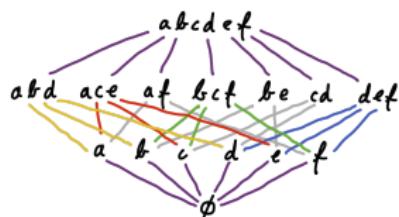
We again look at a complete graph K_4 . Its derived matroid $\delta(K_4)$ consists of the edges $\{abd, abef, acdf, ace, bcde, bef, def\}$ and all of the 5-vertex sets. Therefore $\mathcal{F}(\delta(K_4))$ looks like the one on the right.



$\mathcal{U}(K_4)$:



$\mathcal{F}(\delta(K_4))$:



THE MAIN RESULT

Theorem 3.2. *Let M be a *natural* matroid. If M has a coadjoint N , then δM is a coadjoint of M .*

PROOF STEPS

Lemma 3.3. *The map*

$$\Phi : U \mapsto \text{cl}_{\delta M} (\{C \in \mathcal{C}(M) : C \subseteq U\})$$

is an order-preserving map $\mathcal{U}(M) \rightarrow \mathcal{F}(\delta M)$.

Lemma 3.4. *If M is a natural matroid, the map*

$$\Phi : U \mapsto \text{cl}_{\delta M} (\{C \in \mathcal{C}(M) : C \subseteq U\})$$

is injective.

REFERENCES

- ▶ Freij-Hollanti, Ragnar and Jurrius, Relinde and Kuznetsova, Olga. Combinatorial Derived Matroids, The Electronic Journal of Combinatorics, P2.8, 28pp, 2023.
- ▶ Freij-Hollanti, Ragnar and Šapokaitė, Patricija, Matroidal Cycles and Hypergraph Families, ArXiv, <https://arxiv.org/abs/2410.23932>, 2024.
- ▶ Main, Roger Anthony. Hypergraphic Matroids, The Open University, 1978.