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The EKR problem

Figure: Star-shaped EKR-set '

&

"https://upload.wikimedia.org/wikipedia/commons/8/86/
Intersecting_set_families_2-o0of-4.svg
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Figure: The Kneser graph K(5,2) 2
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Kneser graphs
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Figure: The Kneser graph K(5,2) 2

EKR-sets are cocliques of the Kneser graph.

2https ://en.wikipedia.org/wiki/File:Knesern—-5-2.svg
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The finite classical polar space PS(n, e, q)

Consider IFg and a bilinear form f on Fg that is nondegenerate and
sesquilinear or quadratic.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 5/16



The finite classical polar space PS(n, e, q)

Consider IFg and a bilinear form f on Fg that is nondegenerate and
sesquilinear or quadratic.

A subspace U C Fg’ is called totally isotropic if f(u,u") = 0 for all
u,u e U.
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The finite classical polar space PS(n, e, q)

Consider IFg’ and a bilinear form f on Fg that is nondegenerate and
sesquilinear or quadratic.

A subspace U C Fg’ is called totally isotropic if f(u,u") = 0 for all
u,u e U.

Two totally isotropic points are collinear if they are contained in a
totally isotropic line.
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The finite classical polar space PS(n, e, q)

Consider IFg’ and a bilinear form f on Fg that is nondegenerate and
sesquilinear or quadratic.

A subspace U C Fg’ is called totally isotropic if f(u,u") = 0 for all
u,u e U.

Two totally isotropic points are collinear if they are contained in a
totally isotropic line.

For a totally isotopic subspace U, we have
Ut ={veFy|f(v.u)=0foralluc U}
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e, q).
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e, q).
A chamber of PS(n, e, q) is an ordered set

(C'Iw"acn)

where C; C ... C G,
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e, q).
A chamber of PS(n, e, q) is an ordered set

(C'Iw"acn)

where ¢; C ... C C, and dim(G) = i.
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Chambers of polar spaces
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C; is a point.
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e, q).
A chamber of PS(n, e, q) is an ordered set

(C1 PR Cn)
where ¢; C ... C C, and dim(G) = i.

C; is a point.
Cy is a generator.
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Opposition of chambers

Two subspaces S and T of PS(n, e, q) are opposite, if St N T = {0}.
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Opposition of chambers

Two subspaces S and T of PS(n, e, q) are opposite, if St N T = {0}.

Two chambers (C4,...,Cy) and (By, ..., By) are opposite, if
G+ nB; = {0} forall .
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Opposition of chambers

Two subspaces S and T of PS(n, e, q) are opposite, if St N T = {0}.

Two chambers (C4,...,Cy) and (By, ..., By) are opposite, if
G+ nB; = {0} forall .

The EKR-problem on chambers of PS(n, e, q) is the following:

Let F be a set of pairwise non-opposite chambers.
How big can F be?

What is the structure of F?
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The Hoffman ratio-bound

Let I = (X, E) be a regular graph of degree d and smallest
eigenvalue Apn.
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The Hoffman ratio-bound

Let I = (X, E) be a regular graph of degree d and smallest
eigenvalue Apn.

Theorem (Hoffman ratio-bound)

o) < 22
1,
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EKR-size for chambers of PS(n, e, q)

Let I'(n, e, q) be the graph whose vertices are the chambers of
PS(n,e,q).
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Let I'(n, e, q) be the graph whose vertices are the chambers of
PS(n, e, q). Two vertices are adjacent if the chambers are opposite.
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EKR-size for chambers of PS(n, e, q)

Let I'(n, e, q) be the graph whose vertices are the chambers of
PS(n, e, q). Two vertices are adjacent if the chambers are opposite.

Let & be the number of chambers in PS(n, e, q).

Theorem [De Beule, Mattheus, Metsch 2022]

Consider PS(n, e, q) with e > 1 or n even.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 9/16



EKR-size for chambers of PS(n, e, q)

Let I'(n, e, q) be the graph whose vertices are the chambers of
PS(n, e, q). Two vertices are adjacent if the chambers are opposite.

Let & be the number of chambers in PS(n, e, q).

Theorem [De Beule, Mattheus, Metsch 2022]

Consider PS(n, e, q) with e > 1 or n even.
Let 7 be an EKR-set of chambers. Then
o

Pl s e
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Large maximal examples: Blowups

Take a set F; of pairwise non-opposite points.
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Large maximal examples: Blowups

Take a set F; of pairwise non-opposite points.
Let 7 be the set of all chambers that have a point in F;.
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Large maximal examples: Blowups

Take a set F; of pairwise non-opposite points.
Let 7 be the set of all chambers that have a point in F;.

Take a set F, of pairwise non-opposite lines.
Let F be the set of all chambers that have a line in 7.

Take a set F, of pairwise non-opposite generators.
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Large maximal examples: Blowups

Take a set F; of pairwise non-opposite points.
Let 7 be the set of all chambers that have a point in F;.

Take a set F, of pairwise non-opposite lines.
Let F be the set of all chambers that have a line in 7.

Take a set F, of pairwise non-opposite generators.
Let F be the set of all chambers that have a generator in F,.
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Antidesigns

fore > 1 orneven

Consider the vector space R where the entries are indexed by the
chambers of PS(n, e, q).
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Antidesigns
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Antidesigns
fore > 1 orneven

Consider the vector space R where the entries are indexed by the
chambers of PS(n, e, q).

Let 7 be a largest coclique of I'(n, e, q).
Let V; be the eigenspace for A\pyp.

1re )+ Wy
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Antidesigns
fore > 1 orneven

Consider the vector space R where the entries are indexed by the
chambers of PS(n, e, q).

Let 7 be a largest coclique of I'(n, e, q).
Let V; be the eigenspace for A\pyp.

1re )+ Wy

An antidesign is a vector w such that viw = 0 for all v € V.
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Antidesigns
fore > 1 orneven

Consider the vector space R where the entries are indexed by the
chambers of PS(n, e, q).

Let 7 be a largest coclique of I'(n, e, q).
Let V; be the eigenspace for A\pyp.

1re )+ Wy

An antidesign is a vector w such that viw = 0 for all v € V.

1w
T oy —
1w = qn_1+e 41 J
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How to get Antidesigns?
fore > 1 orneven

Let A be the adjacency matrix of I'(n, e, q) and let x be an
eigenvector corresponding to Apin.
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How to get Antidesigns?
fore > 1 orneven

Let A be the adjacency matrix of I'(n, e, q) and let x be an
eigenvector corresponding to Apin.

Every row of A — \p,in/ is an antidesign.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 12/16



How to get Antidesigns?
fore > 1 orneven

Let A be the adjacency matrix of I'(n, e, q) and let x be an
eigenvector corresponding to Apin.

Every row of A — \p,in/ is an antidesign.

For a chamber C = (Cy, ..., Cy) this means
we(B) :== 141 if C and B are opposite,
0 otherwise.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 12/16



How to get Antidesigns? Il
fore > 1 orneven

The eigenspace of A, is the null space of A — A\l
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How to get Antidesigns? Il
fore > 1 orneven

The eigenspace of A, is the null space of A — A\l
The rowspace is its orthogonal complement.

Every antidesign of '(n, e, q) is a linear combination of wc. ]

Let = be a generator. We have the antidesign

_Amln if Bn = 7T,
Wx(B) := Y wc(B) = ¢ ¢q""D/2 if Bynw = {0},
Co=m 0 otherwise.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 13/16



How to get Antidesigns? Il
fore > 1 orneven

The eigenspace of A, is the null space of A — A\l
The rowspace is its orthogonal complement.

Every antidesign of '(n, e, q) is a linear combination of wc. ]

Let = be a generator. We have the antidesign

_Amln if Bn = 7T,
Wx(B) := Y wc(B) = ¢ ¢q""D/2 if Bynw = {0},
Co=m 0 otherwise.

with ]l]T:W7T = —Amin - 9, where ¢’ is the number of chambers with
Cn = T.
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Reduction to S-spaces
via Antidesigns

Let 7 be a maximum EKR-set of chambers of PS(n,e,q) fore > 1 or
n even.
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Reduction to S-spaces
via Antidesigns

Let 7 be a maximum EKR-set of chambers of PS(n,e,q) fore > 1 or
n even.

Then F is a blowup of an EKR-set Fs of s-spaces that meets the
Hoffman ratio-bound.

Philipp Heering (Giel3en) EKR and Uniqueness June 2025 14/16



Reduction to S-spaces
via Antidesigns

Let 7 be a maximum EKR-set of chambers of PS(n,e,q) fore > 1 or
n even.

Then F is a blowup of an EKR-set Fs of s-spaces that meets the

Hoffman ratio-bound.

— only n possibilities left
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Hoffman bound for s-spaces

for1<s<n

Assume that the Hoffman ratio-bound is tight for s-spaces.
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Hoffman bound for s-spaces

for1<s<n

Assume that the Hoffman ratio-bound is tight for s-spaces.

Find antidesigns.
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Hoffman bound for s-spaces

for1<s<n

Assume that the Hoffman ratio-bound is tight for s-spaces.

Find antidesigns.

Play them off against each other and against the geometry.
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Hoffman bound for s-spaces

for1<s<n

Assume that the Hoffman ratio-bound is tight for s-spaces.

Find antidesigns.

Play them off against each other and against the geometry.

Contradiction.
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Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with e > 1 or n even.
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Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with e > 1 or n even.

The largest maximal EKR-sets of chambers of PS(n, e, q) are
blowups of EKR-sets of points or generators

for g large enough.
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Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space PS(n, e, q) with e > 1 or n even.

The largest maximal EKR-sets of chambers of PS(n, e, q) are
blowups of EKR-sets of points or generators

for g large enough.

Thank you for your attention
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