

Erdős-Ko-Rado problems and Uniqueness

Philipp Heering

joint work with

Jan De Beule, Jesse Lansdown, Sam Mattheus and Klaus Metsch

Justus-Liebig-Universität Gießen

philipp.heering@math.uni-giessen.de

5th Pythagorean conference 2025

Overview

1 The EKR problem

2 Chambers in polar spaces

3 Antidesigns

The EKR problem

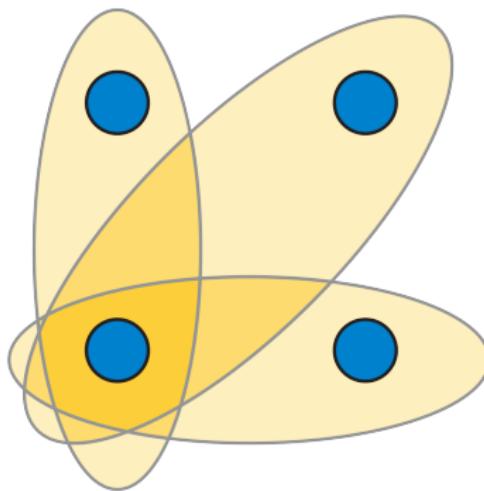


Figure: Star-shaped EKR-set¹

¹https://upload.wikimedia.org/wikipedia/commons/8/86/Intersecting_set_families_2-of-4.svg

Kneser graphs

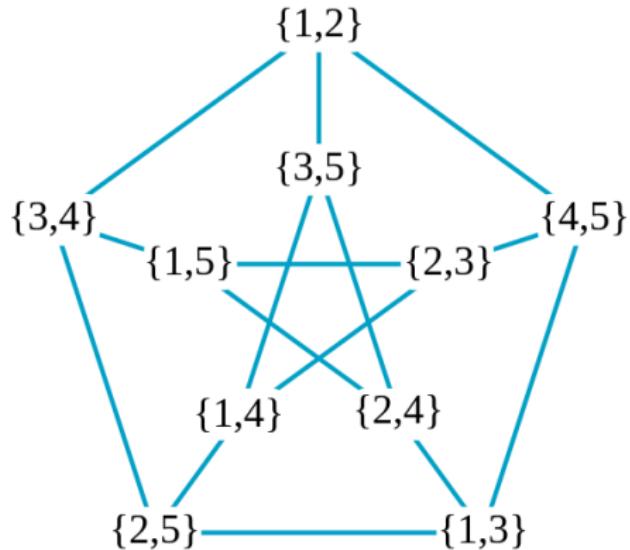


Figure: The Kneser graph $K(5, 2)$ ²

²<https://en.wikipedia.org/wiki/File:Kneser-5-2.svg>

Kneser graphs

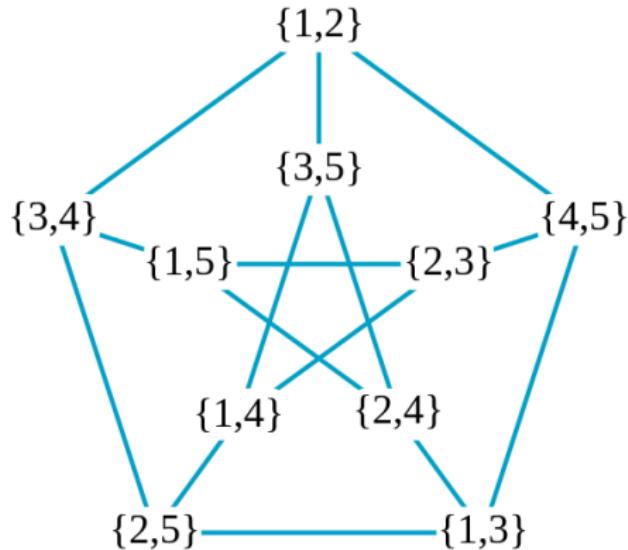


Figure: The Kneser graph $K(5, 2)$ ²

EKR-sets are cocliques of the Kneser graph.

²<https://en.wikipedia.org/wiki/File:Kneser-5-2.svg>

The finite classical polar space $\text{PS}(n, e, q)$

Consider \mathbb{F}_q^d and a bilinear form f on \mathbb{F}_q^d that is nondegenerate and sesquilinear or quadratic.

The finite classical polar space $\text{PS}(n, e, q)$

Consider \mathbb{F}_q^d and a bilinear form f on \mathbb{F}_q^d that is nondegenerate and sesquilinear or quadratic.

A subspace $U \subseteq \mathbb{F}_q^d$ is called totally isotropic if $f(u, u') = 0$ for all $u, u' \in U$.

The finite classical polar space $\text{PS}(n, e, q)$

Consider \mathbb{F}_q^d and a bilinear form f on \mathbb{F}_q^d that is nondegenerate and sesquilinear or quadratic.

A subspace $U \subseteq \mathbb{F}_q^d$ is called totally isotropic if $f(u, u') = 0$ for all $u, u' \in U$.

Two totally isotropic points are collinear if they are contained in a totally isotropic line.

The finite classical polar space $\text{PS}(n, e, q)$

Consider \mathbb{F}_q^d and a bilinear form f on \mathbb{F}_q^d that is nondegenerate and sesquilinear or quadratic.

A subspace $U \subseteq \mathbb{F}_q^d$ is called totally isotropic if $f(u, u') = 0$ for all $u, u' \in U$.

Two totally isotropic points are collinear if they are contained in a totally isotropic line.

For a totally isotropic subspace U , we have

$$U^\perp = \{v \in \mathbb{F}_q^d \mid f(v, u) = 0 \text{ for all } u \in U\}$$

Chambers of polar spaces

Consider a finite classical polar space $PS(n, e, q)$.

Chambers of polar spaces

Consider a finite classical polar space $PS(n, e, q)$.
A chamber of $PS(n, e, q)$ is an ordered set

$$(C_1, \dots, C_n)$$

where $C_1 \subseteq \dots \subseteq C_n$

Chambers of polar spaces

Consider a finite classical polar space $PS(n, e, q)$.
A chamber of $PS(n, e, q)$ is an ordered set

$$(C_1, \dots, C_n)$$

where $C_1 \subseteq \dots \subseteq C_n$ and $\dim(C_i) = i$.

Chambers of polar spaces

Consider a finite classical polar space $PS(n, e, q)$.
A chamber of $PS(n, e, q)$ is an ordered set

$$(C_1, \dots, C_n)$$

where $C_1 \subseteq \dots \subseteq C_n$ and $\dim(C_i) = i$.

C_1 is a point.

Chambers of polar spaces

Consider a finite classical polar space $PS(n, e, q)$.
A chamber of $PS(n, e, q)$ is an ordered set

$$(C_1, \dots, C_n)$$

where $C_1 \subseteq \dots \subseteq C_n$ and $\dim(C_i) = i$.

C_1 is a point.

C_n is a generator.

Opposition of chambers

Two subspaces S and T of $\mathrm{PS}(n, e, q)$ are opposite, if $S^\perp \cap T = \{0\}$.

Opposition of chambers

Two subspaces S and T of $\mathrm{PS}(n, e, q)$ are opposite, if $S^\perp \cap T = \{0\}$.

Two chambers (C_1, \dots, C_n) and (B_1, \dots, B_n) are opposite, if $C_i^\perp \cap B_i = \{0\}$ for all i .

Opposition of chambers

Two subspaces S and T of $\mathrm{PS}(n, e, q)$ are opposite, if $S^\perp \cap T = \{0\}$.

Two chambers (C_1, \dots, C_n) and (B_1, \dots, B_n) are opposite, if $C_i^\perp \cap B_i = \{0\}$ for all i .

The EKR-problem on chambers of $\mathrm{PS}(n, e, q)$ is the following:

Let \mathcal{F} be a set of pairwise non-opposite chambers.

How big can \mathcal{F} be?

What is the structure of \mathcal{F} ?

The Hoffman ratio-bound

Let $\Gamma = (X, E)$ be a regular graph of degree d and smallest eigenvalue λ_{min} .

The Hoffman ratio-bound

Let $\Gamma = (X, E)$ be a regular graph of degree d and smallest eigenvalue λ_{min} .

Theorem (Hoffman ratio-bound)

$$\alpha(\Gamma) \leq |X| \frac{-\lambda_{min}}{d - \lambda_{min}}$$

EKR-size for chambers of $\mathrm{PS}(n, e, q)$

Let $\Gamma(n, e, q)$ be the graph whose vertices are the chambers of $\mathrm{PS}(n, e, q)$.

EKR-size for chambers of $\mathrm{PS}(n, e, q)$

Let $\Gamma(n, e, q)$ be the graph whose vertices are the chambers of $\mathrm{PS}(n, e, q)$. Two vertices are adjacent if the chambers are opposite.

EKR-size for chambers of $\text{PS}(n, e, q)$

Let $\Gamma(n, e, q)$ be the graph whose vertices are the chambers of $\text{PS}(n, e, q)$. Two vertices are adjacent if the chambers are opposite.

Let Φ be the number of chambers in $\text{PS}(n, e, q)$.

EKR-size for chambers of $\text{PS}(n, e, q)$

Let $\Gamma(n, e, q)$ be the graph whose vertices are the chambers of $\text{PS}(n, e, q)$. Two vertices are adjacent if the chambers are opposite.

Let Φ be the number of chambers in $\text{PS}(n, e, q)$.

Theorem [De Beule, Mattheus, Metsch 2022]

Consider $\text{PS}(n, e, q)$ with $e \geq 1$ or n even.

EKR-size for chambers of $\text{PS}(n, e, q)$

Let $\Gamma(n, e, q)$ be the graph whose vertices are the chambers of $\text{PS}(n, e, q)$. Two vertices are adjacent if the chambers are opposite.

Let Φ be the number of chambers in $\text{PS}(n, e, q)$.

Theorem [De Beule, Mattheus, Metsch 2022]

Consider $\text{PS}(n, e, q)$ with $e \geq 1$ or n even.

Let \mathcal{F} be an EKR-set of chambers. Then

$$|\mathcal{F}| \leq \frac{\Phi}{q^{n+e-1} + 1}.$$

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Take a set \mathcal{F}_2 of pairwise non-opposite lines.

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Take a set \mathcal{F}_2 of pairwise non-opposite lines.

Let \mathcal{F} be the set of all chambers that have a line in \mathcal{F}_2 .

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Take a set \mathcal{F}_2 of pairwise non-opposite lines.

Let \mathcal{F} be the set of all chambers that have a line in \mathcal{F}_2 .

...

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Take a set \mathcal{F}_2 of pairwise non-opposite lines.

Let \mathcal{F} be the set of all chambers that have a line in \mathcal{F}_2 .

...

Take a set \mathcal{F}_n of pairwise non-opposite generators.

Large maximal examples: Blowups

Take a set \mathcal{F}_1 of pairwise non-opposite points.

Let \mathcal{F} be the set of all chambers that have a point in \mathcal{F}_1 .

Take a set \mathcal{F}_2 of pairwise non-opposite lines.

Let \mathcal{F} be the set of all chambers that have a line in \mathcal{F}_2 .

...

Take a set \mathcal{F}_n of pairwise non-opposite generators.

Let \mathcal{F} be the set of all chambers that have a generator in \mathcal{F}_n .

Antidesigns

for $e \geq 1$ or n even

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of $\text{PS}(n, e, q)$.

Antidesigns

for $e \geq 1$ or n even

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of $\text{PS}(n, e, q)$.

Let \mathcal{F} be a largest coclique of $\Gamma(n, e, q)$.

Antidesigns

for $e \geq 1$ or n even

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of $\text{PS}(n, e, q)$.

Let \mathcal{F} be a largest coclique of $\Gamma(n, e, q)$.

Let V_1 be the eigenspace for λ_{\min} .

$$\mathbb{1}_{\mathcal{F}} \in \langle \mathbb{1} \rangle + V_1$$

Antidesigns

for $e \geq 1$ or n even

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of $\text{PS}(n, e, q)$.

Let \mathcal{F} be a largest coclique of $\Gamma(n, e, q)$.

Let V_1 be the eigenspace for λ_{\min} .

$$\mathbf{1}_{\mathcal{F}} \in \langle \mathbf{1} \rangle + V_1$$

An *antidesign* is a vector w such that $v^T w = 0$ for all $v \in V_1$.

Antidesigns

for $e \geq 1$ or n even

Consider the vector space \mathbb{R}^d where the entries are indexed by the chambers of $\text{PS}(n, e, q)$.

Let \mathcal{F} be a largest coclique of $\Gamma(n, e, q)$.

Let V_1 be the eigenspace for λ_{\min} .

$$\mathbf{1}_{\mathcal{F}} \in \langle \mathbf{1} \rangle + V_1$$

An *antidesign* is a vector w such that $v^\top w = 0$ for all $v \in V_1$.

$$\mathbf{1}_{\mathcal{F}}^\top w = \frac{\mathbf{1}^\top w}{q^{n-1+e} + 1}$$

How to get Antidesigns?

for $e \geq 1$ or n even

Let A be the adjacency matrix of $\Gamma(n, e, q)$ and let χ be an eigenvector corresponding to λ_{min} .

How to get Antidesigns?

for $e \geq 1$ or n even

Let A be the adjacency matrix of $\Gamma(n, e, q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min}I)\chi = 0$$

How to get Antidesigns?

for $e \geq 1$ or n even

Let A be the adjacency matrix of $\Gamma(n, e, q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min}I)\chi = 0$$

Every row of $A - \lambda_{min}I$ is an antidesign.

How to get Antidesigns?

for $e \geq 1$ or n even

Let A be the adjacency matrix of $\Gamma(n, e, q)$ and let χ be an eigenvector corresponding to λ_{min} .

$$(A - \lambda_{min}I)\chi = 0$$

Every row of $A - \lambda_{min}I$ is an antidesign.

For a chamber $C = (C_1, \dots, C_n)$ this means

$$w_C(B) := \begin{cases} -\lambda_{min} & \text{if } C = B, \\ 1 & \text{if } C \text{ and } B \text{ are opposite,} \\ 0 & \text{otherwise.} \end{cases}$$

How to get Antidesigns? II

for $e \geq 1$ or n even

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.

How to get Antidesigns? II

for $e \geq 1$ or n even

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.
The rowspace is its orthogonal complement.

How to get Antidesigns? II

for $e \geq 1$ or n even

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.
The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n, e, q)$ is a linear combination of w_C .

How to get Antidesigns? II

for $e \geq 1$ or n even

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.
The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n, e, q)$ is a linear combination of w_C .

Let π be a generator. We have the antidesign

$$w_\pi(B) := \sum_{C_n = \pi} w_C(B) = \begin{cases} -\lambda_{min} & \text{if } B_n = \pi, \\ q^{n(n-1)/2} & \text{if } B_n \cap \pi = \{0\}, \\ 0 & \text{otherwise.} \end{cases}$$

How to get Antidesigns? II

for $e \geq 1$ or n even

The eigenspace of λ_{min} is the null space of $A - \lambda_{min}I$.
The rowspace is its orthogonal complement.

Every antidesign of $\Gamma(n, e, q)$ is a linear combination of w_C .

Let π be a generator. We have the antidesign

$$w_\pi(B) := \sum_{C_n = \pi} w_C(B) = \begin{cases} -\lambda_{min} & \text{if } B_n = \pi, \\ q^{n(n-1)/2} & \text{if } B_n \cap \pi = \{0\}, \\ 0 & \text{otherwise.} \end{cases}$$

with $\mathbb{1}_\mathcal{F}^\top w_\pi = -\lambda_{min} \cdot \Phi'$, where Φ' is the number of chambers with $C_n = \pi$.

Reduction to s -spaces

via Antidesigns

Let \mathcal{F} be a maximum EKR-set of chambers of $\text{PS}(n, e, q)$ for $e \geq 1$ or n even.

Reduction to s -spaces

via Antidesigns

Let \mathcal{F} be a maximum EKR-set of chambers of $\text{PS}(n, e, q)$ for $e \geq 1$ or n even.

Then \mathcal{F} is a blowup of an EKR-set \mathcal{F}_s of s -spaces that meets the Hoffman ratio-bound.

Reduction to s -spaces

via Antidesigns

Let \mathcal{F} be a maximum EKR-set of chambers of $\text{PS}(n, e, q)$ for $e \geq 1$ or n even.

Then \mathcal{F} is a blowup of an EKR-set \mathcal{F}_s of s -spaces that meets the Hoffman ratio-bound.

→ only n possibilities left

Hoffman bound for s -spaces

for $1 < s < n$

Assume that the Hoffman ratio-bound is tight for s -spaces.

Hoffman bound for s -spaces

for $1 < s < n$

Assume that the Hoffman ratio-bound is tight for s -spaces.

Find antidesigns.

Hoffman bound for s -spaces

for $1 < s < n$

Assume that the Hoffman ratio-bound is tight for s -spaces.

Find antidesigns.

Play them off against each other and against the geometry.

Hoffman bound for s -spaces

for $1 < s < n$

Assume that the Hoffman ratio-bound is tight for s -spaces.

Find antidesigns.

Play them off against each other and against the geometry.

Contradiction.

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space $PS(n, e, q)$ with $e \geq 1$ or n even.

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space $PS(n, e, q)$ with $e \geq 1$ or n even.

The largest maximal EKR-sets of chambers of $PS(n, e, q)$ are blowups of EKR-sets of points or generators for q large enough.

Theorem [De Beule, H., Mattheus, Metsch 2025+]

Consider a polar space $PS(n, e, q)$ with $e \geq 1$ or n even.

The largest maximal EKR-sets of chambers of $PS(n, e, q)$ are blowups of EKR-sets of points or generators for q large enough.

Thank you for your attention