
Erdős-Ko-Rado problems and Uniqueness

Philipp Heering

joint work with
Jan De Beule, Jesse Lansdown, Sam Mattheus and Klaus Metsch

Justus-Liebig-Universität Gießen
philipp.heering@math.uni-giessen.de

5th Pythagorean conference 2025

Philipp Heering (Gießen) EKR and Uniqueness June 2025 1 / 16



Overview

1 The EKR problem

2 Chambers in polar spaces

3 Antidesigns

Philipp Heering (Gießen) EKR and Uniqueness June 2025 2 / 16



The EKR problem

Figure: Star-shaped EKR-set 1

1https://upload.wikimedia.org/wikipedia/commons/8/86/
Intersecting_set_families_2-of-4.svg
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Kneser graphs

Figure: The Kneser graph K(5,2) 2

2https://en.wikipedia.org/wiki/File:Kneser-5-2.svg
Philipp Heering (Gießen) EKR and Uniqueness June 2025 4 / 16

https://en.wikipedia.org/wiki/File:Kneser-5-2.svg


Kneser graphs

Figure: The Kneser graph K(5,2) 2

EKR-sets are cocliques of the Kneser graph.
2https://en.wikipedia.org/wiki/File:Kneser-5-2.svg
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The finite classical polar space PS(n, e,q)

Consider Fdq and a bilinear form f on Fdq that is nondegenerate and
sesquilinear or quadratic.
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The finite classical polar space PS(n, e,q)

Consider Fdq and a bilinear form f on Fdq that is nondegenerate and
sesquilinear or quadratic.

A subspace U ⊆ Fdq is called totally isotropic if f (u,u′) = 0 for all
u,u′ ∈ U.

Two totally isotropic points are collinear if they are contained in a
totally isotropic line.

For a totally isotopic subspace U, we have
U⊥ = {v ∈ Fdq | f (v,u) = 0 for all u ∈ U}
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e,q).
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Chambers of polar spaces

Consider a finite classical polar space PS(n, e,q).
A chamber of PS(n, e,q) is an ordered set

(C1, . . . ,Cn)

where C1 ⊆ . . . ⊆ Cn and dim(Ci) = i.

C1 is a point.
Cn is a generator.
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Opposition of chambers

Two subspaces S and T of PS(n, e,q) are opposite, if S⊥ ∩ T = {0}.
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Opposition of chambers

Two subspaces S and T of PS(n, e,q) are opposite, if S⊥ ∩ T = {0}.

Two chambers (C1, . . . ,Cn) and (B1, . . . ,Bn) are opposite, if
C⊥
i ∩ Bi = {0} for all i.

The EKR-problem on chambers of PS(n, e,q) is the following:

Let F be a set of pairwise non-opposite chambers.
How big can F be?
What is the structure of F?
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The Hoffman ratio-bound

Let Γ = (X , E) be a regular graph of degree d and smallest
eigenvalue λmin.
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The Hoffman ratio-bound

Let Γ = (X , E) be a regular graph of degree d and smallest
eigenvalue λmin.

Theorem (Hoffman ratio-bound)

α(Γ) ≤ |X | −λmin
d − λmin
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EKR-size for chambers of PS(n, e,q)

Let Γ(n, e,q) be the graph whose vertices are the chambers of
PS(n, e,q).
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Let Γ(n, e,q) be the graph whose vertices are the chambers of
PS(n, e,q). Two vertices are adjacent if the chambers are opposite.

Let Φ be the number of chambers in PS(n, e,q).

Theorem [De Beule, Mattheus, Metsch 2022]
Consider PS(n, e,q) with e ≥ 1 or n even.
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EKR-size for chambers of PS(n, e,q)

Let Γ(n, e,q) be the graph whose vertices are the chambers of
PS(n, e,q). Two vertices are adjacent if the chambers are opposite.

Let Φ be the number of chambers in PS(n, e,q).

Theorem [De Beule, Mattheus, Metsch 2022]
Consider PS(n, e,q) with e ≥ 1 or n even.
Let F be an EKR-set of chambers. Then

|F| ≤ Φ

qn+e−1 + 1
.
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Large maximal examples: Blowups

Take a set F1 of pairwise non-opposite points.
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Large maximal examples: Blowups

Take a set F1 of pairwise non-opposite points.
Let F be the set of all chambers that have a point in F1.

Take a set F2 of pairwise non-opposite lines.
Let F be the set of all chambers that have a line in F2.
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Large maximal examples: Blowups

Take a set F1 of pairwise non-opposite points.
Let F be the set of all chambers that have a point in F1.

Take a set F2 of pairwise non-opposite lines.
Let F be the set of all chambers that have a line in F2.

. . .

Take a set Fn of pairwise non-opposite generators.
Let F be the set of all chambers that have a generator in Fn.
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Antidesigns
for e ≥ 1 or n even

Consider the vector space Rd where the entries are indexed by the
chambers of PS(n, e,q).
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Antidesigns
for e ≥ 1 or n even

Consider the vector space Rd where the entries are indexed by the
chambers of PS(n, e,q).
Let F be a largest coclique of Γ(n, e,q).
Let V1 be the eigenspace for λmin.

1F ∈ 〈1〉+ V1

An antidesign is a vector w such that v⊤w = 0 for all v ∈ V1.

1⊤
Fw =

1⊤w
qn−1+e + 1
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How to get Antidesigns?
for e ≥ 1 or n even

Let A be the adjacency matrix of Γ(n, e,q) and let χ be an
eigenvector corresponding to λmin.
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How to get Antidesigns?
for e ≥ 1 or n even

Let A be the adjacency matrix of Γ(n, e,q) and let χ be an
eigenvector corresponding to λmin.

(A− λminI)χ = 0

Every row of A− λminI is an antidesign.

For a chamber C = (C1, . . . ,Cn) this means

wC(B) :=

!
"#

"$

−λmin if C = B,
1 if C and B are opposite,
0 otherwise.
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How to get Antidesigns? II
for e ≥ 1 or n even

The eigenspace of λmin is the null space of A− λminI.
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How to get Antidesigns? II
for e ≥ 1 or n even

The eigenspace of λmin is the null space of A− λminI.
The rowspace is its orthogonal complement.

Every antidesign of Γ(n, e,q) is a linear combination of wC.

Let π be a generator. We have the antidesign

wπ(B) :=
%

Cn=π

wC(B) =

!
"#

"$

−λmin if Bn = π,
qn(n−1)/2 if Bn ∩ π = {0},
0 otherwise.
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How to get Antidesigns? II
for e ≥ 1 or n even

The eigenspace of λmin is the null space of A− λminI.
The rowspace is its orthogonal complement.

Every antidesign of Γ(n, e,q) is a linear combination of wC.

Let π be a generator. We have the antidesign

wπ(B) :=
%

Cn=π

wC(B) =

!
"#

"$

−λmin if Bn = π,
qn(n−1)/2 if Bn ∩ π = {0},
0 otherwise.

with 1⊤
Fwπ = −λmin · Φ′, where Φ′ is the number of chambers with

Cn = π.
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Reduction to s-spaces
via Antidesigns

Let F be a maximum EKR-set of chambers of PS(n, e,q) for e ≥ 1 or
n even.
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Reduction to s-spaces
via Antidesigns

Let F be a maximum EKR-set of chambers of PS(n, e,q) for e ≥ 1 or
n even.

Then F is a blowup of an EKR-set Fs of s-spaces that meets the
Hoffman ratio-bound.
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Reduction to s-spaces
via Antidesigns

Let F be a maximum EKR-set of chambers of PS(n, e,q) for e ≥ 1 or
n even.

Then F is a blowup of an EKR-set Fs of s-spaces that meets the
Hoffman ratio-bound.

→ only n possibilities left
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Hoffman bound for s-spaces
for 1 < s < n

Assume that the Hoffman ratio-bound is tight for s-spaces.
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Hoffman bound for s-spaces
for 1 < s < n

Assume that the Hoffman ratio-bound is tight for s-spaces.

Find antidesigns.

Play them off against each other and against the geometry.

Contradiction.
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Result

Theorem [De Beule, H., Mattheus, Metsch 2025+]
Consider a polar space PS(n, e,q) with e ≥ 1 or n even.
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Result
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The largest maximal EKR-sets of chambers of PS(n, e,q) are
blowups of EKR-sets of points or generators
for q large enough.

Philipp Heering (Gießen) EKR and Uniqueness June 2025 16 / 16



Result

Theorem [De Beule, H., Mattheus, Metsch 2025+]
Consider a polar space PS(n, e,q) with e ≥ 1 or n even.
The largest maximal EKR-sets of chambers of PS(n, e,q) are
blowups of EKR-sets of points or generators
for q large enough.

Thank you for your attention
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