

# Transitivity in weighted directed graphs

Piotr J. Wojciechowski

Department of Mathematical Sciences  
The University of Texas at El Paso  
USA

## Joint work

- ▶ Grega Cigler  
Faculty of Mathematics and Physics, University of  
Ljubljana, Slovenia

## Transitive systems

Soluble, defective, conclusive graphs

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## Definition

A quadruple  $(X, R, f, G)$  is a transitive system if:

- ▶  $X$  is a nonempty set,
- ▶  $R$  a reflexive and transitive relation on  $X$ ,
- ▶  $G$  is an abelian group and
- ▶  $f : R \rightarrow G$  is a transitive function on  $R$ , i.e.

$$(x, y), (y, z) \in R \Rightarrow f(x, y) + f(y, z) = f(x, z).$$

## Definition

A quadruple  $(X, R, f, G)$  is a transitive system if:

- ▶  $X$  is a nonempty set,
- ▶  $R$  a reflexive and transitive relation on  $X$ ,
- ▶  $G$  is an abelian group and
- ▶  $f : R \rightarrow G$  is a transitive function on  $R$ , i.e.

$$(x, y), (y, z) \in R \Rightarrow f(x, y) + f(y, z) = f(x, z).$$

In other words: these are graphs that are

- ▶ directed,
- ▶ weighted,
- ▶ transitive,
- ▶ with all vertices looped; simple otherwise,
- ▶ with triangle equality of the weights.

## They appear in:

- ▶ Conservative force fields
- ▶ Financial transaction
- ▶ Linear algebra
- ▶ Combinatorics and graph theory
- ▶ Decision theory
  - ▶ Comparison consistent matrices in Analytic Hierarchy Process (T. Saaty 1977) satisfying

$$a_{ij} a_{jk} = a_{ik}.$$

- ▶ etc. etc. etc.

## Definition

A transitive system  $(X, R, f, G)$  can be completed if there is a transitive function  $\hat{f} : X \times X \rightarrow G$  extending  $f$ .

## Definition

A transitive system  $(X, R, f, G)$  can be completed if there is a transitive function  $\hat{f} : X \times X \rightarrow G$  extending  $f$ .

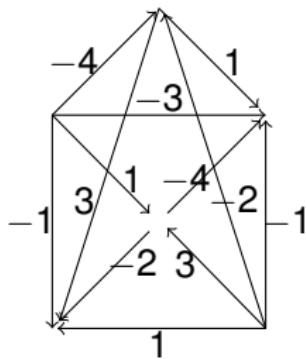


Figure: A transitive system that can be completed in  $\mathbb{Z}$ .

## Basic completion theorems

Let  $R' = \{(y, x) : (x, y) \in R\}$  and  $\bar{f} : R \cup R' \rightarrow G$ ;

$$\bar{f}(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \in R \\ -f(y, x) & \text{if } (x, y) \in R' \end{cases}$$

## Basic completion theorems

Let  $R' = \{(y, x) : (x, y) \in R\}$  and  $\bar{f} : R \cup R' \rightarrow G$ ;

$$\bar{f}(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \in R \\ -f(y, x) & \text{if } (x, y) \in R' \end{cases}$$

### Theorem

*A transitive system can be completed if and only if*

- ▶ *For every cycle  $C = (x_1, x_2, \dots, x_n = x_1)$  with all  $(x_i, x_{i+1}) \in R \cup R'$ , the circulation*

$$\sigma_G(C) = \sum_{i=1}^{n-1} \bar{f}(x_i, x_{i+1}) = 0.$$

## Basic completion theorems

Let  $R' = \{(y, x) : (x, y) \in R\}$  and  $\bar{f} : R \cup R' \rightarrow G$ ;

$$\bar{f}(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \in R \\ -f(y, x) & \text{if } (x, y) \in R' \end{cases}$$

### Theorem

*A transitive system can be completed if and only if*

- ▶ *For every cycle  $C = (x_1, x_2, \dots, x_n = x_1)$  with all  $(x_i, x_{i+1}) \in R \cup R'$ , the circulation*

$$\sigma_G(C) = \sum_{i=1}^{n-1} \bar{f}(x_i, x_{i+1}) = 0.$$

- ▶ *There is a labeling  $\phi : X \rightarrow G$  such that*

$$f(x, y) = \phi(x) - \phi(y).$$

## Example

*The system can be completed:*

## Example

*The system can be completed:*

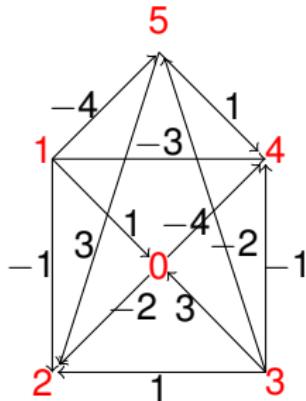


Figure: The labeling is possible.

## Systems that cannot be completed

### Theorem

*If a transitive system  $(X, R, f, G)$  cannot be completed then the graph of  $R$  contains an S-cycle, i.e. a  $2k$ -cycle ( $k > 2$ ) with its consecutive edges pointing in opposite directions and a non-zero circulation.*

## Systems that cannot be completed

### Theorem

If a transitive system  $(X, R, f, G)$  cannot be completed then the graph of  $R$  contains an S-cycle, i.e. a  $2k$ -cycle ( $k > 2$ ) with its consecutive edges pointing in opposite directions and a non-zero circulation.

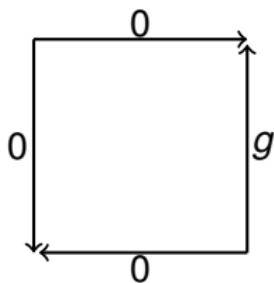


Figure: A transitive system that cannot be completed if  $g \neq 0$ .

## Reduction theorems

### Theorem

*Completing of a system is equivalent to completing each of the following:*

## Reduction theorems

### Theorem

*Completing of a system is equivalent to completing each of the following:*

- ▶ *All of its finite subsystems,*

## Reduction theorems

### Theorem

*Completing of a system is equivalent to completing each of the following:*

- ▶ *All of its finite subsystems,*
- ▶ *All of its connected components,*

## Reduction theorems

### Theorem

*Completing of a system is equivalent to completing each of the following:*

- ▶ *All of its finite subsystems,*
- ▶ *All of its connected components,*
- ▶ *The system's retract to a partial order,*

## Reduction theorems

### Theorem

*Completing of a system is equivalent to completing each of the following:*

- ▶ *All of its finite subsystems,*
- ▶ *All of its connected components,*
- ▶ *The system's retract to a partial order,*
- ▶ *The system with  $G$  replaced by  $\mathbb{Z}_{p^k}$ , for some prime  $p$ .*

Transitive systems

**Soluble, defective, conclusive graphs**

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## Definition

A graph  $(X, R)$  is:

- ▶  $G$ -soluble if every transitive system  $(X, R, f, G)$  can be completed,
- ▶ soluble if it is  $G$ -soluble for every abelian group  $G$ ,

## Definition

A graph  $(X, R)$  is:

- ▶  $G$ -soluble if every transitive system  $(X, R, f, G)$  can be completed,
- ▶ soluble if it is  $G$ -soluble for every abelian group  $G$ ,
- ▶  $G$ -defective if there is a transitive system  $(X, R, f, G)$  that cannot be completed,
- ▶ defective if it is  $G$ -defective for every nontrivial abelian group  $G$ ,

## Definition

A graph  $(X, R)$  is:

- ▶  $G$ -soluble if every transitive system  $(X, R, f, G)$  can be completed,
- ▶ soluble if it is  $G$ -soluble for every abelian group  $G$ ,
- ▶  $G$ -defective if there is a transitive system  $(X, R, f, G)$  that cannot be completed,
- ▶ defective if it is  $G$ -defective for every nontrivial abelian group  $G$ ,
- ▶ conclusive if it is either soluble or defective.

## Definition

A graph  $(X, R)$  is:

- ▶  $G$ -soluble if every transitive system  $(X, R, f, G)$  can be completed,
- ▶ soluble if it is  $G$ -soluble for every abelian group  $G$ ,
- ▶  $G$ -defective if there is a transitive system  $(X, R, f, G)$  that cannot be completed,
- ▶ defective if it is  $G$ -defective for every nontrivial abelian group  $G$ ,
- ▶ conclusive if it is either soluble or defective.

**Conjecture:** every transitive graph is conclusive.

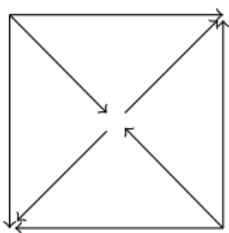
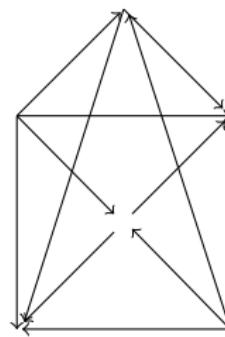


Figure: Soluble graphs.

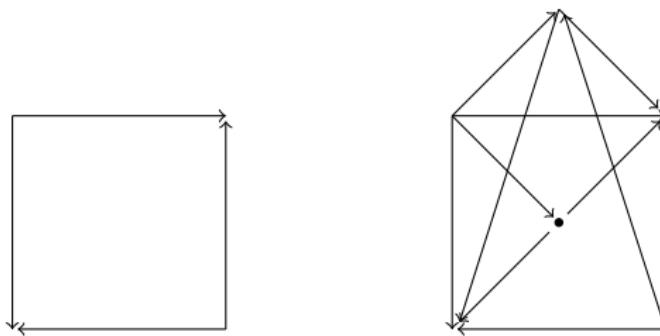


Figure: Defective graphs.

## Algebraic approach

$\mathbb{R}$ -solubility can be established by means of checking consistency of a finite number of systems of linear equations determined by the graph alone. There exists a feasible algorithm to determine solubility over torsion-free abelian groups.

## Properties of soluble posets

Let  $X$  and  $Y$  be posets (so the graphs have the edges directed only one way).

- ▶ If  $X \cap Y = \emptyset$  and at least one of  $X$  and  $Y$  is connected then their sum  $X \oplus Y$  ( $Y$  is put on top of  $X$ ) is soluble. If both  $A$  and  $B$  are disconnected, then  $A \oplus B$  is defective.

## Properties of soluble posets

Let  $X$  and  $Y$  be posets (so the graphs have the edges directed only one way).

- ▶ If  $X \cap Y = \emptyset$  and at least one of  $X$  and  $Y$  is connected then their sum  $X \oplus Y$  ( $Y$  is put on top of  $X$ ) is soluble. If both  $A$  and  $B$  are disconnected, then  $A \oplus B$  is defective.
- ▶ The coordinatewise-ordered product  $X \times Y$  is soluble if and only if both  $X$  and  $Y$  are soluble.

## Properties of soluble posets

Let  $X$  and  $Y$  be posets (so the graphs have the edges directed only one way).

- ▶ If  $X \cap Y = \emptyset$  and at least one of  $X$  and  $Y$  is connected then their sum  $X \oplus Y$  ( $Y$  is put on top of  $X$ ) is soluble. If both  $A$  and  $B$  are disconnected, then  $A \oplus B$  is defective.
- ▶ The coordinatewise-ordered product  $X \times Y$  is soluble if and only if both  $X$  and  $Y$  are soluble.
- ▶ If  $X$  and  $Y$  are soluble and  $Y$  is connected then the lexicographic product  $X \overrightarrow{\times} Y$  is soluble.

## Bipartite graphs

All bipartite graphs, as Hasse diagrams of posets, are conclusive.

### Example

*Any complete bipartite graph  $K_{m,n}$  with  $m, n > 1$  is defective since it is a sum of two disconnected posets.*

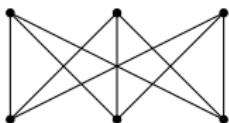


Figure:  $K_{3,3}$  is defective.

## Extension methods

Let  $(X, \mathcal{R})$  be a poset and  $p \in X$ . Define:

- ▶  $X_p = X \setminus p$ ,  $\mathcal{R}_p = \mathcal{R} \cap (X_p \times X_p)$ ,
- ▶  $X^p = \{x : x < p \text{ or } x > p\}$ ,  $\mathcal{R}^p = \mathcal{R} \cap (X^p \times X^p)$ .

## Extension methods

Let  $(X, \mathcal{R})$  be a poset and  $p \in X$ . Define:

- ▶  $X_p = X \setminus p$ ,  $\mathcal{R}_p = \mathcal{R} \cap (X_p \times X_p)$ ,
- ▶  $X^p = \{x : x < p \text{ or } x > p\}$ ,  $\mathcal{R}^p = \mathcal{R} \cap (X^p \times X^p)$ .
- ▶ We say that a suborder  $\mathcal{P}$  of  $\mathcal{Q}$  is soluble within  $\mathcal{Q}$  if for every transitive system on  $\mathcal{Q}$ , every cycle in  $\mathcal{P}$  has circulation 0, or equivalently, if the system reduced to  $\mathcal{P}$  can be completed.

## Extension methods

Let  $(X, \mathcal{R})$  be a poset and  $p \in X$ . Define:

- ▶  $X_p = X \setminus p$ ,  $\mathcal{R}_p = \mathcal{R} \cap (X_p \times X_p)$ ,
- ▶  $X^p = \{x : x < p \text{ or } x > p\}$ ,  $\mathcal{R}^p = \mathcal{R} \cap (X^p \times X^p)$ .
- ▶ We say that a suborder  $\mathcal{P}$  of  $\mathcal{Q}$  is soluble within  $\mathcal{Q}$  if for every transitive system on  $\mathcal{Q}$ , every cycle in  $\mathcal{P}$  has circulation 0, or equivalently, if the system reduced to  $\mathcal{P}$  can be completed.
- ▶ A vertex  $p$  is an extension vertex if  $X^p$  is soluble within  $X_p$ .

## Theorem

- ▶ *If  $p$  is an extension vertex and  $X_p$  is defective, then  $X$  is defective.*

## Theorem

- ▶ If  $p$  is an extension vertex and  $X_p$  is defective, then  $X$  is defective.
- ▶ If  $X^p$  is disconnected and  $X_p$  is connected, then  $X$  is defective.

## Theorem

- ▶ If  $p$  is an extension vertex and  $X_p$  is defective, then  $X$  is defective.
- ▶ If  $X^p$  is disconnected and  $X_p$  is connected, then  $X$  is defective.
- ▶ If every component of  $X_p$  contains at most one component of  $X^p$  and  $X_p$  is soluble, then  $X$  is soluble.

## Theorem

- ▶ If  $p$  is an extension vertex and  $X_p$  is defective, then  $X$  is defective.
- ▶ If  $X^p$  is disconnected and  $X_p$  is connected, then  $X$  is defective.
- ▶ If every component of  $X_p$  contains at most one component of  $X^p$  and  $X_p$  is soluble, then  $X$  is soluble.
- ▶ If  $p$  is an extension vertex and  $X_p$  is conclusive, then  $X$  is conclusive.

## Examples

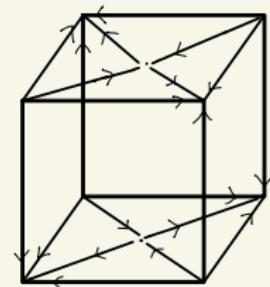


Figure: A given poset.

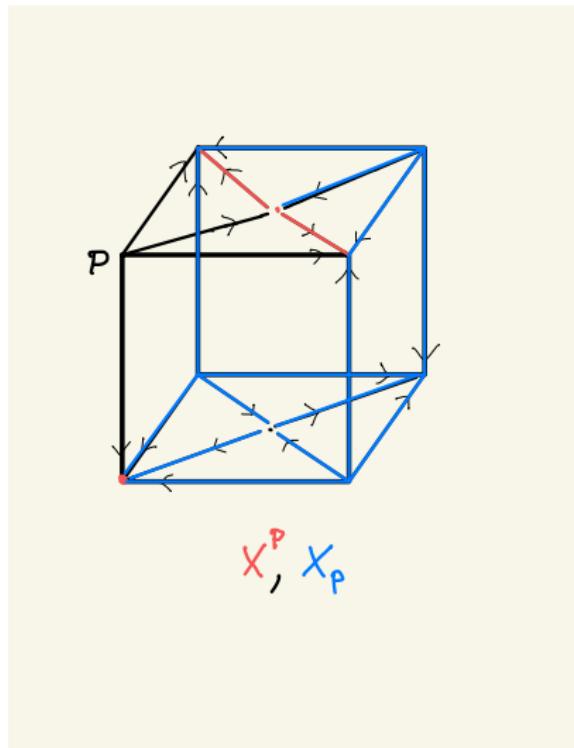


Figure:  $X^P$  is disconnected while  $X_P$  is connected, therefore  $X$  is defective.

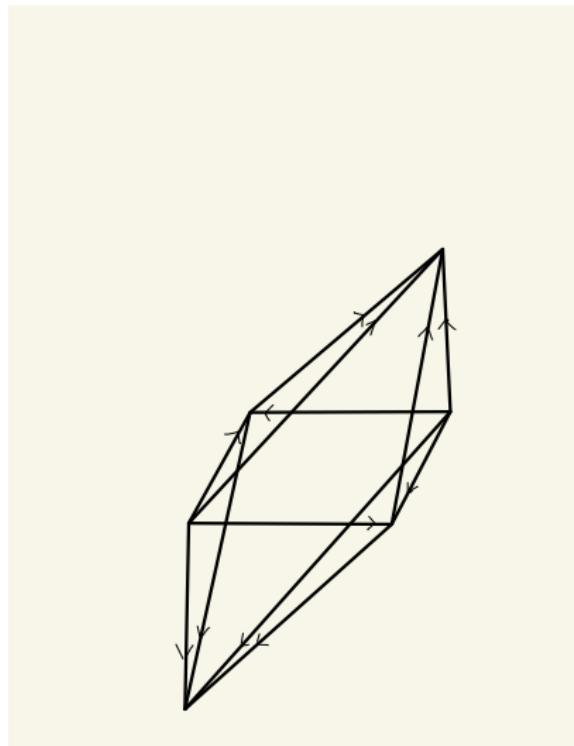


Figure: Given poset.

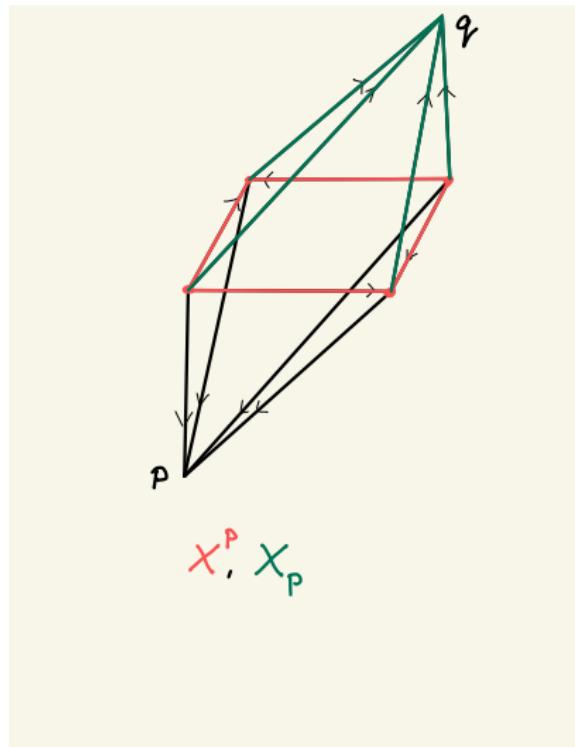


Figure:  $X^p$  is connected and  $X_p$  is soluble, therefore  $X$  is soluble.

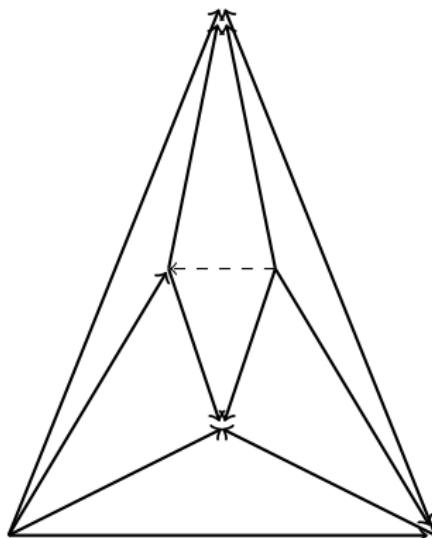


Figure: The octahedron - plane graph, soluble.

## Conclusiveness of special graphs

## Conclusiveness of special graphs

- ▶ Every transitive graph with at most 10 vertices is conclusive.

## Conclusiveness of special graphs

- ▶ Every transitive graph with at most 10 vertices is conclusive.
- ▶ If  $X$  has at most 3 mid-vertices, then the graph is conclusive.

## Conclusiveness of special graphs

- ▶ Every transitive graph with at most 10 vertices is conclusive.
- ▶ If  $X$  has at most 3 mid-vertices, then the graph is conclusive.
- ▶ If  $X$  has at most 2 sinks or 2 sources, then the graph is conclusive.

Transitive systems

Soluble, defective, conclusive graphs

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## Significance of the conjecture

Recall the conjecture: **all transitive graphs are conclusive.**

## Significance of the conjecture

Recall the conjecture: **all transitive graphs are conclusive.**

If the conjecture is true, verification if a transitive graph is soluble or defective can be done by using only the group  $\mathbb{Z}_2$ , so the process would be minimized.

Transitive systems

Soluble, defective, conclusive graphs

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## Towards an application in Analytic Hierarchy Process

Partially consistent comparison matrix configurations:

## Towards an application in Analytic Hierarchy Process

Partially consistent comparison matrix configurations:

$$\begin{bmatrix} 1 & \bullet & & & \\ \bullet & 1 & \bullet & \bullet & \bullet \\ & & 1 & & \\ & & \bullet & 1 & \bullet \\ & & & 1 & \\ \bullet & & \bullet & \bullet & \bullet & 1 \end{bmatrix}$$

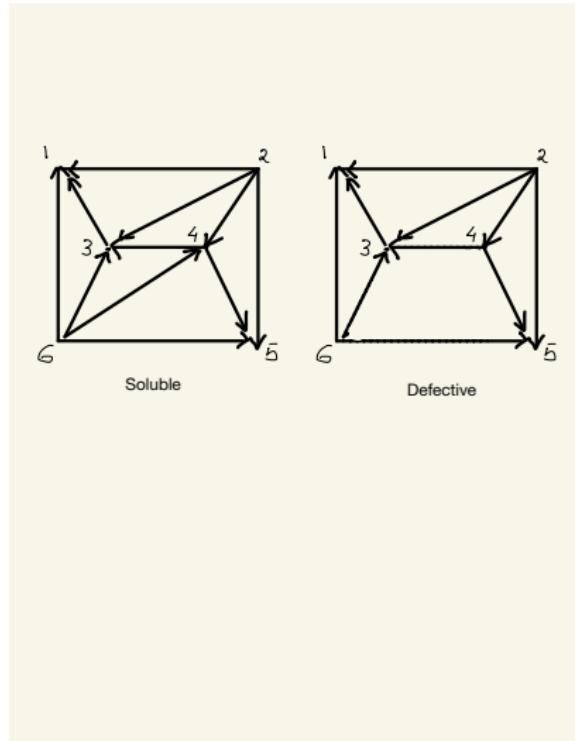
Can always be completed to  
a consistent matrix

$$\begin{bmatrix} 1 & \bullet & & & \\ \bullet & 1 & \bullet & \bullet & \bullet \\ & & 1 & & \\ & & \bullet & 1 & \bullet \\ & & & 1 & \\ \bullet & & \bullet & & \bullet & 1 \end{bmatrix}$$

May not be possible  
to complete

Why?...

... Because:



Transitive systems

Soluble, defective, conclusive graphs

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## Bounds on the degree

### Theorem

*If every vertex in  $X$  has degree at most 4, then  $X$  is conclusive.*

### Proof outline:

## Bounds on the degree

### Theorem

*If every vertex in  $X$  has degree at most 4, then  $X$  is conclusive.*

### Proof outline:

- ▶ Induction on  $|X|$ .

## Bounds on the degree

### Theorem

*If every vertex in  $X$  has degree at most 4, then  $X$  is conclusive.*

### Proof outline:

- ▶ Induction on  $|X|$ .
- ▶ If there is an extension vertex,  $X$  is conclusive by induction.

## Bounds on the degree

### Theorem

*If every vertex in  $X$  has degree at most 4, then  $X$  is conclusive.*

### Proof outline:

- ▶ Induction on  $|X|$ .
- ▶ If there is an extension vertex,  $X$  is conclusive by induction.
- ▶ Otherwise for every  $p \in X$ ,  $X^p$  is defective. In particular, all vertices have degree 4.

## Bounds on the degree

### Theorem

*If every vertex in  $X$  has degree at most 4, then  $X$  is conclusive.*

### Proof outline:

- ▶ Induction on  $|X|$ .
- ▶ If there is an extension vertex,  $X$  is conclusive by induction.
- ▶ Otherwise for every  $p \in X$ ,  $X^p$  is defective. In particular, all vertices have degree 4.
- ▶ It follows that  $X$  is an octahedron and thus it is soluble.

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

**Proof outline:**

- ▶ Induction on  $|X|$ .

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

**Proof outline:**

- ▶ Induction on  $|X|$ .
- ▶ Let  $p$  be a vertex on the boundary. So  $X_p$  is again triangular and by induction hypothesis,  $X_p$  is soluble.

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

**Proof outline:**

- ▶ Induction on  $|X|$ .
- ▶ Let  $p$  be a vertex on the boundary. So  $X_p$  is again triangular and by induction hypothesis,  $X_p$  is soluble.
- ▶ Let  $A$  be a component of  $X_p$  and suppose that  $X^p \cap A \neq \emptyset$ .

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

**Proof outline:**

- ▶ Induction on  $|X|$ .
- ▶ Let  $p$  be a vertex on the boundary. So  $X_p$  is again triangular and by induction hypothesis,  $X_p$  is soluble.
- ▶ Let  $A$  be a component of  $X_p$  and suppose that  $X^p \cap A \neq \emptyset$ .
- ▶ Any two consecutive vertices from  $X^p \cap A$  must be adjacent. Otherwise, there would be a non-triangular face in  $X$ .

## Planar graphs

**Theorem:** A triangular plane transitive graph is soluble.

**Proof outline:**

- ▶ Induction on  $|X|$ .
- ▶ Let  $p$  be a vertex on the boundary. So  $X_p$  is again triangular and by induction hypothesis,  $X_p$  is soluble.
- ▶ Let  $A$  be a component of  $X_p$  and suppose that  $X^p \cap A \neq \emptyset$ .
- ▶ Any two consecutive vertices from  $X^p \cap A$  must be adjacent. Otherwise, there would be a non-triangular face in  $X$ .

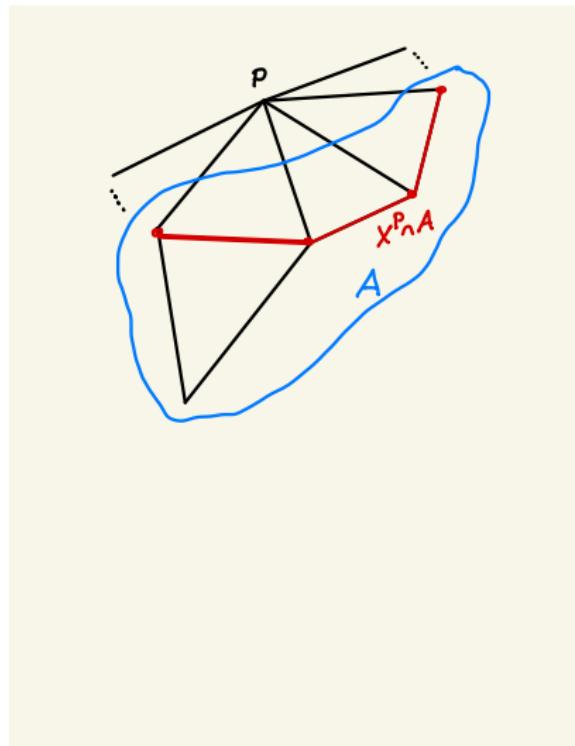


Figure:  $X^P \cap A$  must be connected.

- ▶ So  $X^p \cap A$  is connected.

- ▶ So  $X^p \cap A$  is connected.
- ▶ So every component of  $X_p$  contains at most one component of  $X^p$  and  $X_p$  is soluble.

- ▶ So  $X^p \cap A$  is connected.
- ▶ So every component of  $X_p$  contains at most one component of  $X^p$  and  $X_p$  is soluble.
- ▶ Hence, by the Extension Theorem  $X$  is soluble.

## Towards conclusiveness of planar graphs

Suppose  $A$  is a mid-vertex. Unless  $A$  is an extension vertex,  $X$  can be drawn this way:

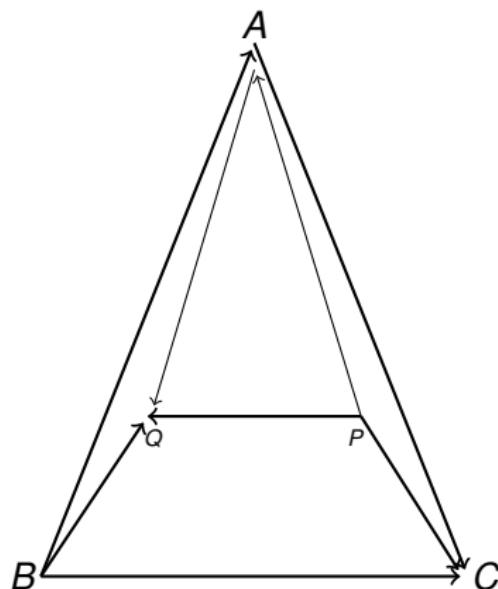


Figure:  $\text{In-deg}(A) = \text{Out-deg}(A) = 2$ ,  $B, P$  - sources,  $C, Q$  - sinks.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

- ▶ Induction on  $|X|$ . If there is an extension vertex, we are done.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

- ▶ Induction on  $|X|$ . If there is an extension vertex, we are done.
- ▶ Otherwise, every mid-vertex is adjacent to exactly 4 triangles, and thus to 4 triangular faces.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

- ▶ Induction on  $|X|$ . If there is an extension vertex, we are done.
- ▶ Otherwise, every mid-vertex is adjacent to exactly 4 triangles, and thus to 4 triangular faces.
- ▶ So a face is either triangular or an S-face.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

- ▶ Induction on  $|X|$ . If there is an extension vertex, we are done.
- ▶ Otherwise, every mid-vertex is adjacent to exactly 4 triangles, and thus to 4 triangular faces.
- ▶ So a face is either triangular or an S-face.
- ▶ If there is none or one S-face, we are done by previous theorem.

**Theorem:** A planar graph in which every 3-cycle bounds a triangular face is conclusive.

**Proof outline:**

- ▶ Induction on  $|X|$ . If there is an extension vertex, we are done.
- ▶ Otherwise, every mid-vertex is adjacent to exactly 4 triangles, and thus to 4 triangular faces.
- ▶ So a face is either triangular or an S-face.
- ▶ If there is none or one S-face, we are done by previous theorem.
- ▶ Otherwise we build a transitive system on  $X$  that cannot be completed:

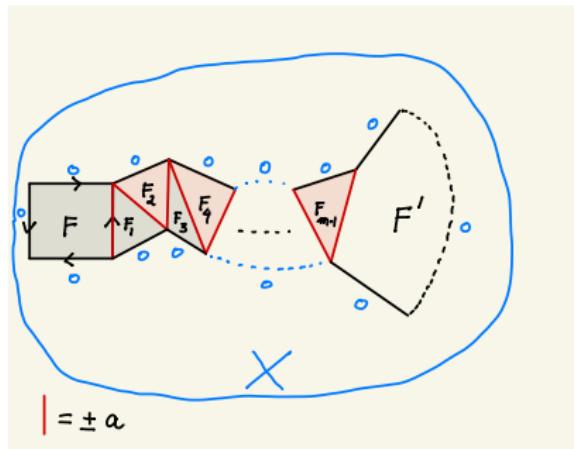


Figure: A triangular path from  $F$  to  $F'$ .

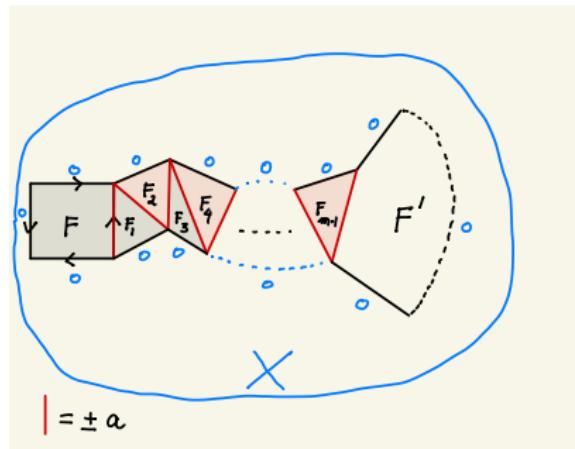


Figure: A triangular path from  $F$  to  $F'$ .

- ▶ There are at least two S-faces.

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.
- ▶ The S-faces  $F$  and  $F'$  can be chosen so that there is a triangular path between  $F$  and  $F'$ :  $F_1, \dots, F_{m-1}$  (perhaps empty).

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.
- ▶ The S-faces  $F$  and  $F'$  can be chosen so that there is a triangular path between  $F$  and  $F'$ :  $F_1, \dots, F_{m-1}$  (perhaps empty).
- ▶ A weight of  $\pm a \in G$  is assigned along the edges of the adjacent triangular faces, shown in red, and 0's to all remaining edges.

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.
- ▶ The S-faces  $F$  and  $F'$  can be chosen so that there is a triangular path between  $F$  and  $F'$ :  $F_1, \dots, F_{m-1}$  (perhaps empty).
- ▶ A weight of  $\pm a \in G$  is assigned along the edges of the adjacent triangular faces, shown in red, and 0's to all remaining edges.
- ▶ This way we obtain a transitive system on  $X$  that cannot be completed, independently on  $G$ .

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.
- ▶ The S-faces  $F$  and  $F'$  can be chosen so that there is a triangular path between  $F$  and  $F'$ :  $F_1, \dots, F_{m-1}$  (perhaps empty).
- ▶ A weight of  $\pm a \in G$  is assigned along the edges of the adjacent triangular faces, shown in red, and 0's to all remaining edges.
- ▶ This way we obtain a transitive system on  $X$  that cannot be completed, independently on  $G$ .
- ▶ Hence  $X$  is defective.

- ▶ There are at least two S-faces.
- ▶ Since  $X$  is connected, the dual graph  $X^*$  is connected too and there is a simple path in  $X^*$  between the faces.
- ▶ The S-faces  $F$  and  $F'$  can be chosen so that there is a triangular path between  $F$  and  $F'$ :  $F_1, \dots, F_{m-1}$  (perhaps empty).
- ▶ A weight of  $\pm a \in G$  is assigned along the edges of the adjacent triangular faces, shown in red, and 0's to all remaining edges.
- ▶ This way we obtain a transitive system on  $X$  that cannot be completed, independently on  $G$ .
- ▶ Hence  $X$  is defective.

### Theorem (99%)

*Every planar graph is conclusive.*

Transitive systems

Soluble, defective, conclusive graphs

Optimization of the verification of solubility

Possible applications

Latest results and current work

References

## References

- ▶ G. Cigler, P. J. Wojciechowski, “Algebraic properties of soluble posets”, *Discret. Appl. Math* 348 (2024) 211-220.
- ▶ G. Cigler, M. Jerman, and P. J. Wojciechowski, “Transitive systems and conclusive partial orders”, *Discret. Appl. Math* 314 (2022), 129-141.
- ▶ G. Cigler, V. Kreinovich, J. Urenda, P. J. Wojciechowski, “A feasible algorithm for solubility of transitive graphs”, *Math. Proc. R. Irish Acad.* 122A (2022), 27-32.
- ▶ G. Cigler, P. J. Wojciechowski, “Direct approach to rank-1 completions of partial matrices”, *Math. Proc. R. Irish Acad.* 122A(2) (2022).
- ▶ G. Cigler, M. Jerman, P. J. Wojciechowski, “Full algebras of matrices”, *Linear Multilinear Algebra* 67(8) (2019), 1511-1521.
- ▶ T.L. Saaty, “A scaling method for priorities in hierarchical structures”, *Journal of Mathematical Psychology* 15 (1977) 234-281.

THANK YOU FOR YOUR ATTENTION