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Transitive systems

Definition
A quadruple (X, R, f, G) is a transitive system if:
» X is a nonempty set,
» R a reflexive and transitive relation on X,
» G is an abelian group and
» f: R— Gis atransitive function on R, i.e.

(x,¥),(y,z) e R= f(x,y) + f(y,z) = f(x, 2).
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Definition
A quadruple (X, R, f, G) is a transitive system if:
» X is a nonempty set,
» R a reflexive and transitive relation on X,
» G is an abelian group and
» f: R— Gis atransitive function on R, i.e.

(x,¥),(y,z) e R= f(x,y) + f(y,z) = f(x, 2).

In other words: these are graphs that are
directed,

weighted,

transitive,

with all vertices looped; simple otherwise,
with triangle equality of the weights.
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Transitive systems

They appear in:

» Conservative force fields
Financial tran$action$
Linear algebra

Combinatorics and graph theory
Decision theory

» Comparison consistent matrices in Analytic Hierarchy
Process (T. Saaty 1977) satisfying
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Transitive systems

Definition
A transitive system (X, R, f, G) can be completed if there is a
transitive function 7 : X x X — G extending .
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Transitive systems

Definition
A transitive system (X, R, f, G) can be completed if there is a
transitive function 7 : X x X — G extending .

Figure: A transitive system that can be completed in Z.
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Transitive systems

Basic completion theorems
Let R = {(y,x): (x,y) € R}and f: RUR — G;

_ f R -f ( ) ) € F?
f(x,y)={ _(;((}{)x) i (i,i’/)eR'
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Theorem
A transitive system can be completed if and only if
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Transitive systems

Basic completion theorems
Let R = {(y,x): (x,y) € R}and f: RUR — G;

_ f R -f ( ) ) € F?
f(x,y)={ _(;((;/,)x) i (i,i’/)eR'

Theorem
A transitive system can be completed if and only if
> Forevery cycle C = (X1, %, ...,%Xn = X1) with all (x;, xi.1) € RUR', the
circulation

n—1
06(C) = _F(xi,xi41) = 0.
i=1

> There is a labeling ¢ : X — G such that
f(x,y) = o(x) — ¢(y).
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Transitive systems

Example
The system can be completed:
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Transitive systems

Example
The system can be completed:

Figure: The labeling is possible.
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Transitive systems

Systems that cannot be completed

Theorem

If a transitive system (X, R, f, G) cannot be completed then the
graph of R contains an S-cycle, i.e. a 2k-cycle (k > 2) with its
consecutive edges pointing in opposite directions and a
non-zero circulation.

9/43



Transitivity in weighted directed graphs

Transitive systems

Systems that cannot be completed

Theorem

If a transitive system (X, R, f, G) cannot be completed then the
graph of R contains an S-cycle, i.e. a 2k-cycle (k > 2) with its
consecutive edges pointing in opposite directions and a
non-zero circulation.

Figure: A transitive system that cannot be completed if g # 0.
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Reduction theorems

Theorem
Completing of a system is equivalent to completing each of the
following:
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Transitive systems

Reduction theorems

Theorem
Completing of a system is equivalent to completing each of the
following:

All of its finite subsystems,

All of its connected components,

The system’s retract to a partial order,

The system with G replaced by Z, for some prime p.

v
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Soluble, defective, conclusive graphs

Definition
A graph (X, R) is:
» G-soluble if every transitive system (X, R, f, G) can be
completed,

» soluble if it is G-soluble for every abelian group G,
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Soluble, defective, conclusive graphs

Definition
A graph (X, R) is:
» G-soluble if every transitive system (X, R, f, G) can be
completed,
» soluble if it is G-soluble for every abelian group G,

» G-defective if there is a transitive system (X, R, f, G) that
cannot be completed,

» defective if it is G-defective for every nontrivial abelian
group G,
» conclusive if it is either soluble or defective.

Conjecture: every transitive graph is conclusive.
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Soluble, defective, conclusive graphs

/

Figure: Soluble graphs.
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Soluble, defective, conclusive graphs

Figure: Defective graphs.
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Soluble, defective, conclusive graphs

Algebraic approach

R-solubility can be established by means of checking
consistency of a finite number of systems of linear equations
determined by the graph alone. There exists a feasible
algorithm to determine solubility over torsion-free abelian
groups.
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Soluble, defective, conclusive graphs

Properties of soluble posets

Let X and Y be posets (so the graphs have the edges directed
only one way).

» If XN'Y =0 and at least one of X and Y is connected then
their sum X @ Y (Y is put on top of X) is soluble. If both A
and B are disconnected, then A @ B is defective.
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Properties of soluble posets

Let X and Y be posets (so the graphs have the edges directed
only one way).

» If XN'Y =0 and at least one of X and Y is connected then
their sum X @ Y (Y is put on top of X) is soluble. If both A
and B are disconnected, then A ® B is defective.

» The coordinatewise-ordered product X x Y is soluble if
and only if both X and Y are soluble.

16/43



Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Properties of soluble posets

Let X and Y be posets (so the graphs have the edges directed
only one way).

» If XN'Y =0 and at least one of X and Y is connected then
their sum X @ Y (Y is put on top of X) is soluble. If both A
and B are disconnected, then A @ B is defective.

» The coordinatewise-ordered product X x Y is soluble if
and only if both X and Y are soluble.

» If X and Y are soluble and Y is connected then the
lexicographic product XX Y is soluble.
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Soluble, defective, conclusive graphs

Bipartite graphs

All bipartite graphs, as Hasse diagrams of posets, are
conclusive.

Example

Any complete bipartite graph Km n with m, n > 1 is defective
since it is a sum of two disconnected posets.

Rl

Figure: Kz 5 is defective.
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Soluble, defective, conclusive graphs

Extension methods

Let (X, R) be a poset and p € X. Define:
» XP={x:x<porx>p}, RP=RN(XPx XP).
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Extension methods

Let (X, R) be a poset and p € X. Define:
» Xop=X\p,Rp=RN(Xp x Xp),
» XP={x:x<porx>p}, RP=RN(XPx XP).
» We say that a suborder P of Q is soluble within Q if for
every transitive system on Q, every cycle in P has

circulation 0, or equivalently, if the system reduced to P
can be completed.

» A vertex p is an extension vertex if XP is soluble within Xp,.
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Soluble, defective, conclusive graphs

Theorem

» If p is an extension vertex and Xp is defective, then X is
defective.
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Soluble, defective, conclusive graphs

Theorem
» If p is an extension vertex and Xp is defective, then X is
defective.

» If XP is disconnected and X, is connected, then X is
defective.

» If every component of X, contains at most one component
of XP and X,, is soluble, then X is soluble.

» If p is an extension vertex and X, is conclusive, then X is
conclusive.
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Soluble, defective, conclusive graphs

Examples

Figure: A given poset.
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Figure: X* is disconnected while X, is connected, therefore X is defective. o143
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Soluble, defective, conclusive graphs

'

X, X

Figure: XP is connected and Xj is soluble, therefore X is soluble. . .
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Soluble, defective, conclusive graphs

7

Figure: The octahedron - plane graph, soluble.
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Soluble, defective, conclusive graphs

Conclusiveness of special graphs

» Every transitive graph with at most 10 vertices is
conclusive.

» If X has at most 3 mid-vertices, then the graph is
conclusive.

» If X has at most 2 sinks or 2 sources, then the graph is
conclusive.
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Optimization of the verification of solubility

Significance of the conjecture

Recall the conjecture: all transitive graphs are conclusive.

If the conjecture is true, verification if a transitive graph is
soluble or defective can be done by using only the group Z,, so
the process would be minimized.
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Possible applications

Towards an application in Analytic Hierarchy Process

Partially consistent comparison matrix configurations:

-4 . - - . -
o 1 o o o o 1 o o o
1 1
o 1 o o 1 o
1 1
| o e o o 1 | | o ° o 1 |
Can always be completed to May not be possible
a consistent matrix to complete

Why?...
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Possible applications

... Because:

Nt | e

Soluble Defective
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Bounds on the degree

Theorem
If every vertex in X has degree at most 4, then X is conclusive.

Proof outline:
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Latest results and current work

Bounds on the degree

Theorem
If every vertex in X has degree at most 4, then X is conclusive.

Proof outline:
» Induction on | X].
» If there is an extension vertex, X is conclusive by induction.
» Otherwise for every p € X, XP is defective. In particular, all
vertices have degree 4.
» |t follows that X is an octahedron and thus it is soluble.
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Planar graphs

Theorem: A triangular plane transitive graph is soluble.
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Latest results and current work

Figure: XP N A must be connected. 54/ 43
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» So XP N Ais connected.

» So every component of X, contains at most one
component of XP and X, is soluble.
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Latest results and current work

» So XP N Ais connected.

» So every component of X, contains at most one
component of XP and X, is soluble.

» Hence, by the Extension Theorem X is soluble.
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Latest results and current work

Towards conclusiveness of planar graphs

Suppose A is a mid-vertex. Unless A is an extension vertex, X
can be drawn this way:
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Latest results and current work

A

B > C

Figure: In-deg(A) = Out-deg(A) = 2, B, P - sources, C, Q -sinks.
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Theorem: A planar graph in which every 3-cycle bounds a
triangular face is conclusive.
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Theorem: A planar graph in which every 3-cycle bounds a
triangular face is conclusive.
Proof outline:
» Induction on | X|. If there is an extension vertex, we are
done.
» Otherwise, every mid-vertex is adjacent to exactly 4
triangles, and thus to 4 triangular faces.
» So a face is either triangular or an S-face.
» If there is none or one S-face, we are done by previous
theorem.
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Latest results and current work

Theorem: A planar graph in which every 3-cycle bounds a
triangular face is conclusive.
Proof outline:

>

Induction on | X|. If there is an extension vertex, we are
done.

Otherwise, every mid-vertex is adjacent to exactly 4
triangles, and thus to 4 triangular faces.

So a face is either triangular or an S-face.

If there is none or one S-face, we are done by previous
theorem.

Otherwise we build a transitive system on X that cannot be
completed:
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°

Figure: A triangular path from F to F'.
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Figure: A triangular path from F to F'.
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Latest results and current work

» There are at least two S-faces.

» Since X is connected, the dual graph X* is connected too
and there is a simple path in X* between the faces.

» The S-faces F and F’ can be chosen so that there is a
triangular path between F and F': Fy,..., Fp_1 (perhaps
empty).

» A weight of +a € G is assigned along the edges of the
adjacent triangular faces, shown in red, and 0’s to all
remaining edges.

» This way we obtain a transitive system on X that cannot be
completed, independently on G.

» Hence X is defective.

Theorem (99%)
Every planar graph is conclusive.
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