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Transitivity in weighted directed graphs

Transitive systems

Definition
A quadruple (X ,R, f ,G) is a transitive system if:

I X is a nonempty set,
I R a reflexive and transitive relation on X ,
I G is an abelian group and
I f : R → G is a transitive function on R, i.e.

(x , y), (y , z) ∈ R ⇒ f (x , y) + f (y , z) = f (x , z).

In other words: these are graphs that are
I directed,
I weighted,
I transitive,
I with all vertices looped; simple otherwise,
I with triangle equality of the weights.
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Transitivity in weighted directed graphs

Transitive systems

They appear in:

I Conservative force fields
I Financial tran$action$
I Linear algebra
I Combinatorics and graph theory
I Decision theory

I Comparison consistent matrices in Analytic Hierarchy
Process (T. Saaty 1977) satisfying

aijajk = aik .

I etc. etc. etc.
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Transitivity in weighted directed graphs

Transitive systems

Definition
A transitive system (X ,R, f ,G) can be completed if there is a
transitive function f̂ : X × X → G extending f .

1

−3

−1 −1

−4 1

3 −21 −4

−2 3

Figure: A transitive system that can be completed in Z.
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Transitivity in weighted directed graphs

Transitive systems

Basic completion theorems
Let R′ = {(y , x) : (x , y) ∈ R} and f̄ : R ∪ R′ → G;

f̄ (x , y) =

{
f (x , y) if (x , y) ∈ R
−f (y , x) if (x , y) ∈ R′

Theorem
A transitive system can be completed if and only if

I For every cycle C = (x1, x2, . . . , xn = x1) with all (xi , xi+1) ∈ R ∪ R′, the
circulation

σG(C) =
n−1∑
i=1

f̄ (xi , xi+1) = 0.

I There is a labeling φ : X → G such that

f (x , y) = φ(x)− φ(y).
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Transitivity in weighted directed graphs

Transitive systems

Example
The system can be completed:

1

−3

−1 −1

−4 1

3 −21 −4

−2 3

2 3

41

0

5

Figure: The labeling is possible.
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Transitivity in weighted directed graphs

Transitive systems

Systems that cannot be completed
Theorem
If a transitive system (X ,R, f ,G) cannot be completed then the
graph of R contains an S-cycle, i.e. a 2k-cycle (k > 2) with its
consecutive edges pointing in opposite directions and a
non-zero circulation.

g0

0

0

Figure: A transitive system that cannot be completed if g 6= 0.
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Transitivity in weighted directed graphs

Transitive systems

Reduction theorems

Theorem
Completing of a system is equivalent to completing each of the
following:

I All of its finite subsystems,
I All of its connected components,
I The system’s retract to a partial order,
I The system with G replaced by Zpk , for some prime p.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Definition
A graph (X ,R) is:

I G-soluble if every transitive system (X ,R, f ,G) can be
completed,

I soluble if it is G-soluble for every abelian group G,

I G-defective if there is a transitive system (X ,R, f ,G) that
cannot be completed,

I defective if it is G-defective for every nontrivial abelian
group G,

I conclusive if it is either soluble or defective.

Conjecture: every transitive graph is conclusive.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Figure: Soluble graphs.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Figure: Defective graphs.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Algebraic approach

R-solubility can be established by means of checking
consistency of a finite number of systems of linear equations
determined by the graph alone. There exists a feasible
algorithm to determine solubility over torsion-free abelian
groups.

15 / 43



Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Properties of soluble posets

Let X and Y be posets (so the graphs have the edges directed
only one way).

I If X ∩ Y = ∅ and at least one of X and Y is connected then
their sum X ⊕ Y (Y is put on top of X ) is soluble. If both A
and B are disconnected, then A⊕ B is defective.

I The coordinatewise-ordered product X × Y is soluble if
and only if both X and Y are soluble.

I If X and Y are soluble and Y is connected then the
lexicographic product X−→×Y is soluble.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Bipartite graphs
All bipartite graphs, as Hasse diagrams of posets, are
conclusive.

Example
Any complete bipartite graph Km,n with m,n > 1 is defective
since it is a sum of two disconnected posets.

Figure: K3,3 is defective.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Extension methods

Let (X ,R) be a poset and p ∈ X . Define:
I Xp = X \ p, Rp = R∩ (Xp × Xp),
I X p = {x : x < p or x > p}, Rp = R∩ (X p × X p).

I We say that a suborder P of Q is soluble within Q if for
every transitive system on Q, every cycle in P has
circulation 0, or equivalently, if the system reduced to P
can be completed.

I A vertex p is an extension vertex if X p is soluble within Xp.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Theorem
I If p is an extension vertex and Xp is defective, then X is

defective.

I If X p is disconnected and Xp is connected, then X is
defective.

I If every component of Xp contains at most one component
of X p and Xp is soluble, then X is soluble.

I If p is an extension vertex and Xp is conclusive, then X is
conclusive.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Examples

T-
/

--
↓-
7 -

L

X

V

- > T-
&

VL -

- [

Figure: A given poset.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

T-
--/8

↓- 7 -

L

X

-.T-
VL -

· <

XXp

Figure: X p is disconnected while Xp is connected, therefore X is defective.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

T
↑

I

I

F

&

-
--

#

Figure: Given poset.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

g

T S
↑

&
I g

I

F

&
, D

- -

P

"XpX
,

Figure: X p is connected and Xp is soluble, therefore X is soluble.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Figure: The octahedron - plane graph, soluble.
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Transitivity in weighted directed graphs

Soluble, defective, conclusive graphs

Conclusiveness of special graphs

I Every transitive graph with at most 10 vertices is
conclusive.

I If X has at most 3 mid-vertices, then the graph is
conclusive.

I If X has at most 2 sinks or 2 sources, then the graph is
conclusive.
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Transitivity in weighted directed graphs

Optimization of the verification of solubility

Significance of the conjecture

Recall the conjecture: all transitive graphs are conclusive.

If the conjecture is true, verification if a transitive graph is
soluble or defective can be done by using only the group Z2, so
the process would be minimized.
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Transitivity in weighted directed graphs

Possible applications

Towards an application in Analytic Hierarchy Process
Partially consistent comparison matrix configurations:



1 •
• 1 • • •

1
• 1 •

1
• • • • 1





1 •
• 1 • • •

1
• 1 •

1
• • • 1


Can always be completed to

a consistent matrix
May not be possible

to complete

Why?...

29 / 43



Transitivity in weighted directed graphs

Possible applications

Towards an application in Analytic Hierarchy Process
Partially consistent comparison matrix configurations:



1 •
• 1 • • •

1
• 1 •

1
• • • • 1





1 •
• 1 • • •

1
• 1 •

1
• • • 1


Can always be completed to

a consistent matrix
May not be possible

to complete

Why?...

29 / 43



Transitivity in weighted directed graphs

Possible applications

... Because:

Soluble Defective

x 2 I

#
2

M M

3is E 35I

V / V

6
>V56>V5

Figure:
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Transitivity in weighted directed graphs

Latest results and current work

Bounds on the degree

Theorem
If every vertex in X has degree at most 4, then X is conclusive.
Proof outline:

I Induction on |X |.
I If there is an extension vertex, X is conclusive by induction.
I Otherwise for every p ∈ X , X p is defective. In particular, all

vertices have degree 4.
I It follows that X is an octahedron and thus it is soluble.
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Transitivity in weighted directed graphs

Latest results and current work

Planar graphs

Theorem: A triangular plane transitive graph is soluble.

Proof outline:
I Induction on |X |.
I Let p be a vertex on the boundary. So Xp is again

triangular and by induction hypothesis, Xp is soluble.
I Let A be a component of Xp and suppose that X p ∩ A 6= ∅.
I Any two consecutive vertices from X p ∩ A must be

adjacent. Otherwise, there would be a non-triangular face
in X .
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Transitivity in weighted directed graphs

Latest results and current work

&

·

Figure: X p ∩ A must be connected.
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Transitivity in weighted directed graphs

Latest results and current work

I So X p ∩ A is connected.

I So every component of Xp contains at most one
component of X p and Xp is soluble.

I Hence, by the Extension Theorem X is soluble.

35 / 43



Transitivity in weighted directed graphs

Latest results and current work

I So X p ∩ A is connected.
I So every component of Xp contains at most one

component of X p and Xp is soluble.

I Hence, by the Extension Theorem X is soluble.

35 / 43



Transitivity in weighted directed graphs

Latest results and current work

I So X p ∩ A is connected.
I So every component of Xp contains at most one

component of X p and Xp is soluble.
I Hence, by the Extension Theorem X is soluble.

35 / 43



Transitivity in weighted directed graphs

Latest results and current work

Towards conclusiveness of planar graphs

Suppose A is a mid-vertex. Unless A is an extension vertex, X
can be drawn this way:

36 / 43



Transitivity in weighted directed graphs

Latest results and current work

PQ

B

A

C

Figure: In-deg(A) = Out-deg(A) = 2, B,P - sources, C,Q -sinks.
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Transitivity in weighted directed graphs

Latest results and current work

Theorem: A planar graph in which every 3-cycle bounds a
triangular face is conclusive.

Proof outline:
I Induction on |X |. If there is an extension vertex, we are

done.
I Otherwise, every mid-vertex is adjacent to exactly 4

triangles, and thus to 4 triangular faces.
I So a face is either triangular or an S-face.
I If there is none or one S-face, we are done by previous

theorem.
I Otherwise we build a transitive system on X that cannot be

completed:
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Figure: A triangular path from F to F ′.
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I There are at least two S-faces.

I Since X is connected, the dual graph X ∗ is connected too
and there is a simple path in X ∗ between the faces.

I The S-faces F and F ′ can be chosen so that there is a
triangular path between F and F ′: F1, . . . ,Fm−1 (perhaps
empty).

I A weight of ±a ∈ G is assigned along the edges of the
adjacent triangular faces, shown in red, and 0′s to all
remaining edges.

I This way we obtain a transitive system on X that cannot be
completed, independently on G.

I Hence X is defective.

Theorem (99%)
Every planar graph is conclusive.
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