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Cover-free families: Definition

Definition

A set system is d-cover-free if no set is covered by the union of d
others.
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Example: 2-cover-free family

Set system:
X ={1,2,3,4,5,6,7,8,9}
B
B, ={1,2,3}
By = {4,5,6}
B. = {7,8,9}
By ={1,4,7}
B. = {2,5,8}
By = {3,6,9}
By = {1,5,9}
B ={2,6,7}
Bi = {3,4,8}
B, = {1,6,8}
Bi = {2,4,9}
B, = {3,5,7}

° Bd = {17477} .Z {1727374‘7576} - BaU Bb-
e (X,B) is not 3-cover-free.
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Cover-free families: Representation using a binary matrix

X ={1,2,3,4,5,6,7,8,9}

B.={1,2,3}

By = {4,5,6}

B. ={7,8,9}

Ba={1,4,7}

B. = {2,5,8}

By = {3,6,9}

B, ={1,5,9}

By ={2,6,7}

B = {3,4,8}

B; 5,

Bk

B =
1 2 3 4 5 6 7 8 9 10 11 12
141 0 01 001 00 1 0 O
210 001 001 0 0 1 O
3j1. 0 00 01 00 1 0 0 1
4/0 1. 0 1 0 0 0 01 O 1 O
5(0 1.0 01 01 00 0 0 1
6/0 1.0 0 0 1 01 0 1 0 O
7,0 0 1.1.0 0 0 1 0 O 0 1
g8/,0 0 1.0 1.0 001 1 0 O
9]0 0 1 0 01 1.0 0 O 1 O

Table: 2-CFF(9, 12)
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Cover-free families: Representation using a binary matrix

X ={1,2,3,4,5,6,7,8,9}
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Cover-free families: Representation using a binary matrix

X ={1,2,3,4,5,6,7,8,9}
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Cover-free families: Representation using a binary matrix

X ={1,2,3,4,5,6,7,8,9}

B.={1,2,3}

By = {4,5,6}

B. ={7,8,9}

Ba={1,4,7}

B. = {2,5,8}

By = {3,6,9}

B, ={1,5,9}

By ={2,6,7}

B = {3,4,8}

B; 5,

Bk

B =
1 2 3 4 5 6 7 8 9 10 11 12
141 0 01 001 00 1 0 O
210 001 001 0 0 1 O
3j1. 0 0001001 0 0 1
4/0 1. 0 1 0 0 0 01 O 1 O
5(0 1.0 01 01 00 0 0 1
6/0 1.0 0 0 1 01 0 1 0 O
7,0 0 1.1.0 0 0 1 0 O 0 1
g8/,0 0 1.0 1.0 001 1 0 O
9]0 0 1 0 01 1.0 0 O 1 O

Table: 2-CFF(9, 12)
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Cover-free families: Representation using a binary matrix

X ={1,2,3,4,5,6,7,8,9}

B.={1,2,3}

By = {4,5,6}

B. ={7,8,9}

Ba={1,4,7}

B. = {2,5,8}

By = {3,6,9}

B, ={1,5,9}

By ={2,6,7}

B = {3,4,8}

B; 5,

Bk

B =
12 3 4 5 6 7 8 9 10 11 12
141 0 01 001 00 1 0 O
21 0 0 1.1 0 0 1 0 O 1 0
3170 00001 00 1 0 O 1
4/0 1 0 1 0 0 0 O 1 O 1 0
5/0 1.0 01 o1 o 0O O O 1
6/0 1.0 0 0 1 01 0 1 0 O
7/0 01 1.0 0 01 0 0 O 1
g8/,0 0 1.0 1.0 001 1 0 O
9]0 0 1. 0 01 1 0 O O 1 0

Table: 2-CFF(9, 12)
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Cover-free families: Definitions

Definition
A set system is d-cover-free if no set is covered by the union of d
others.

Definition (Alternate definition of cover-free families)

Given d < t < n positive integers, a d-CFF(t,n) is a t x n binary
matrix M such that any set of d + 1 columns has a permutation
sub-matrix of dimension d + 1.
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Minimizing number of rows

Definition (Minimizing number of Rows)

Given d and n we want to minimize the number of rows:

t(d,n) = min{t : 3 a d-CFF(t, n)}.
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Minimizing number of rows

Definition (Minimizing number of Rows)

Given d and n we want to minimize the number of rows:

t(d,n) = min{t : 3 a d-CFF(t,n)}.

The case for d = 1 is solved due to Sperner’s theorem.
Given n, we have

t(1,n) = min{s : (Ls;2j) > n}.

t(1,6) = 4.
X ={1,2,3,4}.
F={{1,2},{1,3},{1,4},{2,3},{2,4}, {3, 4}}.

Prangya Parida (University of Ottawa) 11 / 43
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Cover free families: minimizing number of rows

For d > 2,
a |og( jlog(n) < t(d, n) < cad? log(n).

Lower bounds: Dyachkov & Rikov (1982), Ruszinké (1994), Fiiredi
(1996).

Upper bounds: (Constructive)

Porat and Rothschild (2010): deterministic polynomial-time.
Gargano, Rescigno, Vaccaro (2020).

Rescigno & Vaccaro (2023): constructive algorithm using Lovéasz
local lemma + Moser & Tardos.

Prangya Parida (University of Ottawa) 12 / 43
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Cover free families: minimizing number of rows

For d > 2,
a |og( jlog(n) < t(d, n) < cad? log(n).

Lower bounds: Dyachkov & Rikov (1982), Ruszinké (1994), Fiiredi
(1996).

Upper bounds: (Constructive)

Porat and Rothschild (2010): deterministic polynomial-time.
Gargano, Rescigno, Vaccaro (2020).

Rescigno & Vaccaro (2023): constructive algorithm using Lovéasz
local lemma + Moser & Tardos.

Theorem (Erdés, Frankl, and Fiiredi (1982))

3.106log(n) < t(2,n) < 5.512log(n).

Prangya Parida (University of Ottawa) 12 / 43
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Cover-free families on Graphs

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,

@ Their union does not contain any other subset in the system.

@ The corresponding pair of subsets are not contained in one
another.

Prangya Parida (University of Ottawa) 14 / 43
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Cover-free families on Graphs

A cover-free family on a graph G, denoted G-CFF, is a set system

such that, for each edge in G,
@ Their union does not contain any other subset in the system.

@ The corresponding pair of subsets are not contained in one

another.

e Notation: t(G) = min{t: 3 a G-CFF(¢,|V(G)|}.
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Cover-free families on Graphs

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,
@ Their union does not contain any other subset in the system.

@ The corresponding pair of subsets are not contained in one
another. )

e Notation: t(G) = min{t: 3 a G-CFF(¢,|V(G)|}.
e If G = K,, then t(G) = t(2, n).

Prangya Parida (University of Ottawa) 14 / 43
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2-CFF(9,12) on a graph
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Ki2-CFF.

CFF(9,12) =

2

t(2,12) = 9 = t(Ki2). (Lee, VanRees, Wei (2006))
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<
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1.2 3 4 5 6
1 0 0 0 0 1
0 1 0 0 1 0O
0 o 1 1 0 0O
1 1 1 0 0 O
o o o 1 1 1

Figure: A Gs-CFF

Co-CFF as the set system:
X ={1,2,3,4,5}
[{1,4},{2,4},{3,4},{3,5},{1,5}].
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1 2 3 4 5 6
1 0 0 0 0 1
0 1 0 0 1 o0
0 o 1 1 0 0
1 1 1 0 0 O
o 1 1 [

Figure: A Gs-CFF

Cs-CFF as the set system:
X ={1,2,3,4,5}
[{1,4},{2,4},{3,4},{3,5},{1,5}].
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Figure: A Gs-CFF

Co-CFF as the set system:
X ={1,2,3,4,5}
[{1,4},{2,4},{3,4},{3,5},{1,5}].
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1 2 3 4 5 ¢
10 0 0 0 1
01 0 0 1 0
0 0 1 1 0 o0
11 §_0 0 0
0 0 1 1

Figure: A Cs-CFF

Cs-CFF as the set system:
X =1{1,2,3,4,5)
[{17 4}7 {2, 4}’ {37 4}7 {3’ 5}’ {1’ 5}]'
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Figure: A Cs-CFF

Co-CFF as the set system:
X ={1,2,3,4,5}
[{1,4},{2,4},{3,4},{3,5},{1,5}].
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Cover-free families on Graphs

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,

@ Their union does not contain any other subset in the system.
G-CFF
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Cover-free families on Graphs

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,

@ Their union does not contain any other subset in the system.
G-CFF

@ The corresponding pair of subsets are not contained in one
another. G-in-CFF
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Cover-free families on Graphs

Definition

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,

@ Their union does not contain any other subset in the system.
G-CFF

@ The corresponding pair of subsets are not contained in one
another. G-in-CFF

Remarks: We denote by t.(G) and t;,(G) the minimum t such
that there exist a G-CFF and G-in-CFF; respectively.
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Cover-free families on Graphs

Definition

A cover-free family on a graph G, denoted G-CFF, is a set system
such that, for each edge in G,

@ Their union does not contain any other subset in the system.
G-CFF

@ The corresponding pair of subsets are not contained in one
another. G-in-CFF

\,

Remarks: We denote by t.(G) and t;,(G) the minimum t such
that there exist a G-CFF and G-in-CFF; respectively.

Proposition (Idalino, Moura (2025+))
t(G) < te(G) + tin(G).

Prangya Parida (University of Ottawa) 21 /43
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Some bounds of G-CFF

Theorem (Idalino, Moura (2025+))
t(G) < x(G) log(n)

where x(G) is the Chromatic number of G.

Prangya Parida (University of Ottawa) 22 /43
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Some bounds of G-CFF

Theorem (Idalino, Moura (2025+))
t(G) < x(G)log(n)

where x(G) is the Chromatic number of G.

Let P, and C, be a Path and a Cycle of length n, respectively.

t(Pp) < 2log(n) and t(C,) < 2log(n) + (n mod 2).

Prangya Parida (University of Ottawa) 22 /43
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Some bounds of G-CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

t(1,n) < t(G) < t(2,n).

Prangya Parida (University of Ottawa) 23 / 43
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Some bounds of G-CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

t(1,n) < t(G) < t(2,n).
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t(K{3)) = 6,t(C2) < 7, and t(K12) = 9
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Some bounds of G-CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

t(1,n) < t(G) < t(2,n).
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6,t(Ci2) <7, and t(K12) =9

t(KS))

6 < f(Clz) <7
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Cover-free family on a Star Graph

O O O O oo
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Figure: A star graph Si; (left) and a S13-CFF with t.(S511) = 5.
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Cover-free family on a Star Graph
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Figure: A star graph Si1 (left) and a S13-in-CFF with ¢;,(511) = 2.
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Cover-free family on a Star Graph
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Figure: A star graph Sy; (left) and a S;;-CFF with t(S11) < 7.
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Cover-free family on a Star Graph
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Figure: A star graph Sy; (left) and a S;;-CFF with t(S11) = 6.
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Cover-free family on a Star Graph
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Figure: A star graph Sy; (left) and a S;;-CFF with t(S11) = 6.
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Summary of the main results

© There is an infinite family of Star graphs S, such that
t(Sn) = t(1, n).
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Main results
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Summary of the main results

© There is an infinite family of Star graphs S, such that
t(Sn) = t(1, n).

Q tin(G) = (1, x(G)).

@ log(n) < t(G) < 1.89log(n) when G is either P, or C,
(Construction using a Mixed-Radix Gray Code).

Prangya Parida (University of Ottawa) 29 / 43
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An infinite family meeting the lower bound t(1, n) < t(G)

Theorem (P., Moura, 2025+)

Let G = S, be a star graph on n vertices. Then,
t(Sp) =t(1,n—1)+ 1.

Corollary (P., Moura, 2025+)

Ifn= (LX)/<2J) + 1 for any x € N, then t(S,) = t(1, n), thus
meeting the lower bound t(1, n) < t(G).

V,

t(Sn) = t(L, (|, 72))) +1=x+1=t(1,n). O

V.

Prangya Parida (University of Ottawa) 30 / 43
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tin(G) = t(1, x(G)).

Characterizing t;, for Graphs via homomorphisms to Sperner
Graphs:

0
{12y @ {1}

N
ZON

o 3
{1,2,3}

{23}

Figure: Sperner graph of order 3
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tin(G) = t(1, x(G)).

Sketch of the proof:
We first prove some basic results using Graph homomorphism:

e If G — H, then t;,(G) < tjn(H).

o tin(Ky,) = t(1,n).

o w(S(z)) =x(S(2)) = (L%). (Using Dilworth's theorem?)

o tin(S(2)) = z.

@ tin(G) = minien{/: G = S(/)}.
Since G = Ky (g), tin(G) < tin(Ky(6)) = t(1, x(G)).
Now, suppose by contradicton, tj,(G) < t(1, x(G)) = k. So,
min{/: G — S(I)} = tin(G) < k — 1. Thus, G — S(k — 1).
However, x(G) < (kaTt}J), which follows that t(1,x(G)) < k — 1,
the desired contradiction. 0

1R P Dilworth, A Decomposition Theorem for Partially Ordered Sets, Annals of Mathematics (1950)
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Cover-free families on Paths and Cycles

1 1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 1 1
4 0 0 1 1 1 1 0 0
5 1 0 0 1 1 0 0 1
6 0 1 1 0 0 1 1 0

Figure: A Cg-CFF with t(Gg) = 6.
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Cover-free families on Paths and Cycles

1 1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 1 1
4 0 0 1 1 1 0 0
5 1 0 0 1 1 0 0 1
6 0 1 1 0 0 1 1 0

Figure: A Cg-CFF with t(Gg) = 6.
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Cover-free families on Paths and Cycles

e O

1 2 3 4 5 6 7 8
1 1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 1 1
4 0 0 1 1 1 1 0 0
5 1 0 0 1 1 0 0 1
6 0 1 1 0 0 1 1 0

{135 {136} {146} {145 {245 {246} {236} {235}

<D
Figure: A Cg-CFF with t(Gg) = 6.
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Cover-free families on Paths and Cycles

1 2 3 4 5 6 7 8
1 1 1 1 1 0 0 0 0
2 0 0 0 0 1 1 1 1
3 1 1 0 0 0 0 1 1
4 0 0 1 1 1 1 0 0
5 1 0 0 1 1 0 0 1
6 0 1 1 0 0 1 1 0

{135} {1,36} {146} {145 {245 {246} {236} {235}
000 o001 o011 o010 110 111 101 100

. .
Figure: A Cg-CFF with t(Cg) = 6 and the corresponding Binary Reflected
Gray Code.
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Cover-free families on Paths and Cycles

S ® ©& e © @ ©
1 2 3 4 5 6 7 8 9
5

{1.4} {1,5} {16} {26} {24} {25} {35 {36} {34}

SEXPICITS

Figure: A Co-CFF with t(Co) = 6.
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Cover-free families on Paths and Cycles

e O © O © e &
3 4 5 6

1 7 8 9

2
{1.4} {1,5} {1,6} {26} {24} {25} {3,5} {36} {3,4}

00 01 02 12 10 11 21 22 20
4 [ ||

Figure: A Go-CFF with t(Gy) = 6 and the corresponding mixed-radix?
Gray code.

2D.E. Knuth, The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms,
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Optimal Integer Partitions for Product

Theorem (Sequence A000792 in Sloane’s On-Line Encyclopedia of
Integer Sequences)

Let a(m) be the function which gives the maximum product of size
of partitions of [m]. Then,

Bk if m = 3k,
a(m)=<4-31 ifm=3k+1,
2.3k ifm=3k+2.

Prangya Parida (University of Ottawa) 39 /43
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Bounds of P,-CFF and C,-CFF

Theorem (P., Moura (2025+))

For some k > 1,

3k ifne (2-3k71 3
t(G) << 3k+1 ifnec (3K 4.31]
3k+2 ifne (4-31 2.3

where G is either P, or C,.
For all the above cases, t(G) < @ log,(n) + o(1) where

3 pr— DY
o503 = 1.8915---.

Prangya Parida (University of Ottawa) 40 / 43
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Bounds of CFFs on other families of graphs:

Graph Type t(G)

t(Coy1) < t(Whia) < t(Co) + 1.

Wheel graph

t(1, (k— 1)n) + 1 < t(Wd(k, n)) < t(1, )+ £(2, k — 1)+ 1.

Windmill graph

e [(5Y) + 1, [3(35)] ], then t(1,m) +2 < t(Fansa) < (1) + 3.

If ne H%(Zkk“)J +1, (Qkk)] then t(Fopi1) = t(1,n) + 3.
Friendship graph

@ t(Cr) < H(Qn) < 2n.
Hypercube graph

Prangya Parida (University of Ottawa) 41 /43



Future Work
0

Future work

e We are investigating tight bounds for t(G) for specific classes
of graphs.

Cover-free families on hypergraphs and the product of
hypergraphs (Work in progress).

@ Further develop the theory, constructions and bounds for
CFFs on hypergraphs.

@ Non-existential results of cover-free families on hypergraphs
using the probabilistic method.

Generalization of cover-free families on hypergraphs.

Prangya Parida (University of Ottawa) 42 /43
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