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Cover-free families: Definition

Definition

A set system is d-cover-free if no set is covered by the union of d
others.

Prangya Parida (University of Ottawa) 3 / 43
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Example: 2-cover-free family

Set system:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
B

Bd = {1, 4, 7} ̸⊆ {1, 2, 3, 4, 5, 6} = Ba ∪ Bb.
(X ,B) is not 3-cover-free.

Prangya Parida (University of Ottawa) 4 / 43
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Cover-free families: Representation using a binary matrix

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}

1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 1 0 0 1 0 0 1 0 0
2 1 0 0 0 1 0 0 1 0 0 1 0
3 1 0 0 0 0 1 0 0 1 0 0 1
4 0 1 0 1 0 0 0 0 1 0 1 0
5 0 1 0 0 1 0 1 0 0 0 0 1
6 0 1 0 0 0 1 0 1 0 1 0 0
7 0 0 1 1 0 0 0 1 0 0 0 1
8 0 0 1 0 1 0 0 0 1 1 0 0
9 0 0 1 0 0 1 1 0 0 0 1 0

Table: 2-CFF(9, 12)
Prangya Parida (University of Ottawa) 5 / 43
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Cover-free families: Definitions

Definition

A set system is d-cover-free if no set is covered by the union of d
others.

Definition (Alternate definition of cover-free families)

Given d < t ≤ n positive integers, a d-CFF(t, n) is a t × n binary
matrix M such that any set of d + 1 columns has a permutation
sub-matrix of dimension d + 1.
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Minimizing number of rows

Definition (Minimizing number of Rows)

Given d and n we want to minimize the number of rows:

t(d , n) = min{t : ∃ a d-CFF(t, n)}.

The case for d = 1 is solved due to Sperner’s theorem.
Given n, we have

t(1, n) = min{s :
( s
⌊s/2⌋

)
≥ n}.

Example

t(1, 6) = 4.
X = {1, 2, 3, 4}.

F = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.
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Cover free families: minimizing number of rows

For d ≥ 2,

c1
d2

log(d) log(n) ≤ t(d , n) ≤ c2d
2 log(n).

Lower bounds: Dyachkov & Rikov (1982), Ruszinkó (1994), Füredi
(1996).
Upper bounds: (Constructive)
Porat and Rothschild (2010): deterministic polynomial-time.
Gargano, Rescigno, Vaccaro (2020).
Rescigno & Vaccaro (2023): constructive algorithm using Lovász
local lemma + Moser & Tardos.

Theorem (Erdös, Frankl, and Füredi (1982))

3.106 log(n) < t(2, n) < 5.512 log(n).

Prangya Parida (University of Ottawa) 12 / 43
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2-CFF(9, 12) on a graph
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Cover-free families on Graphs

Definition

A cover-free family on a graph G , denoted G -CFF, is a set system
such that, for each edge in G ,

Their union does not contain any other subset in the system.

The corresponding pair of subsets are not contained in one
another.

Notation: t(G ) = min{t : ∃ a G -CFF(t, |V (G )|}.
If G = Kn, then t(G ) = t(2, n).
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2-CFF(9, 12) on a graph

2-CFF(9, 12) = K12-CFF.

t(2, 12) = 9 = t(K12). (Lee, VanRees, Wei (2006))
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A C6-CFF

Figure: A C6-CFF

C6-CFF as the set system:

X = {1, 2, 3, 4, 5}
[{1, 4}, {2, 4}, {3, 4}, {3, 5}, {1, 5}].
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Cover-free families on Graphs

Definition

A cover-free family on a graph G , denoted G -CFF, is a set system
such that, for each edge in G ,

Their union does not contain any other subset in the system.
G -CFF

The corresponding pair of subsets are not contained in one
another. G -in-CFF

Remarks: We denote by te(G ) and tin(G ) the minimum t such
that there exist a G -CFF and G -in-CFF; respectively.

Proposition (Idalino, Moura (2025+))

t(G ) ≤ te(G ) + tin(G ).
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Some bounds of G -CFF

Theorem (Idalino, Moura (2025+))

t(G ) ≤ χ(G ) log(n)

where χ(G ) is the Chromatic number of G.

Corollary

Let Pn and Cn be a Path and a Cycle of length n, respectively.

t(Pn) ≤ 2 log(n) and t(Cn) ≤ 2 log(n) + (n mod 2).

Prangya Parida (University of Ottawa) 22 / 43
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Some bounds of G -CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

t(1, n) ≤ t(G ) ≤ t(2, n).

t(K
(1)
12 ) = 6, t(C12) ≤ 7, and t(K12) = 9

6 ≤ t(C12) ≤ 7

Prangya Parida (University of Ottawa) 23 / 43
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Cover-free family on a Star Graph

0
1

2

34

5

6

7

8 9

10

0 1 2 3 4 5 6 7 8 9 10

1 0 1 1 1 1 0 0 0 0 0 0
2 0 1 0 0 0 1 1 1 0 0 0
3 0 0 1 0 0 1 0 0 1 1 0
4 0 0 0 1 0 0 1 0 1 0 1
5 0 0 0 0 1 0 0 1 0 1 1

Figure: A star graph S11 (left) and a S11-CFF with te(S11) = 5.
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Cover-free family on a Star Graph
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Figure: A star graph S11 (left) and a S11-in-CFF with tin(S11) = 2.
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Cover-free family on a Star Graph
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1 0 1 1 1 1 0 0 0 0 0 0
2 0 1 0 0 0 1 1 1 0 0 0
3 0 0 1 0 0 1 0 0 1 1 0
4 0 0 0 1 0 0 1 0 1 0 1
5 0 0 0 0 1 0 0 1 0 1 1
6 0 1 1 1 1 1 1 1 1 1 1
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Figure: A star graph S11 (left) and a S11-CFF with t(S11) ≤ 7.

Prangya Parida (University of Ottawa) 26 / 43



Cover-free families: Introduction Cover-free families on Graphs Main results Future Work

Cover-free family on a Star Graph
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Figure: A star graph S11 (left) and a S11-CFF with t(S11) = 6.
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Summary of the main results

1 There is an infinite family of Star graphs Sn such that
t(Sn) = t(1, n).

2 tin(G ) = t(1, χ(G )).

3 log(n) ≤ t(G ) ≤ 1.89 log(n) when G is either Pn or Cn

(Construction using a Mixed-Radix Gray Code).

Prangya Parida (University of Ottawa) 29 / 43
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An infinite family meeting the lower bound t(1, n) ≤ t(G )

Theorem (P., Moura, 2025+)

Let G = Sn be a star graph on n vertices. Then,
t(Sn) = t(1, n − 1) + 1.

Corollary (P., Moura, 2025+)

If n =
( x
⌊x/2⌋

)
+ 1 for any x ∈ N, then t(Sn) = t(1, n), thus

meeting the lower bound t(1, n) ≤ t(G ).

Proof.

t(Sn) = t(1,
( x
⌊x/2⌋

)
) + 1 = x + 1 = t(1, n).

Prangya Parida (University of Ottawa) 30 / 43
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tin(G ) = t(1, χ(G )).

Characterizing tin for Graphs via homomorphisms to Sperner
Graphs:

∅
{1}

{2}

{3}

{1, 2}

{1, 3}

{2, 3}

{1, 2, 3}

Figure: Sperner graph of order 3
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tin(G ) = t(1, χ(G )).

Sketch of the proof:
We first prove some basic results using Graph homomorphism:

If G → H, then tin(G ) ≤ tin(H).

tin(Kn) = t(1, n).

ω(S(z)) = χ(S(z)) =
( z
⌊ z
2
⌋
)
. (Using Dilworth’s theorem1)

tin(S(z)) = z .

tin(G ) = minl∈N{l : G → S(l)}.
Since G → Kχ(G), tin(G ) ≤ tin(Kχ(G)) = t(1, χ(G )).
Now, suppose by contradicton, tin(G ) < t(1, χ(G )) = k. So,
min{l : G → S(l)} = tin(G ) ≤ k − 1. Thus, G → S(k − 1).

However, χ(G ) ≤
( k−1
⌊ k−1

2
⌋
)
, which follows that t(1, χ(G )) ≤ k − 1,

the desired contradiction.
1
R P Dilworth, A Decomposition Theorem for Partially Ordered Sets, Annals of Mathematics (1950)

Prangya Parida (University of Ottawa) 32 / 43
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Cover-free families on Paths and Cycles

Figure: A C8-CFF with t(C8) = 6.
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Cover-free families on Paths and Cycles

Figure: A C8-CFF with t(C8) = 6 and the corresponding Binary Reflected
Gray Code.
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Cover-free families on Paths and Cycles

Figure: A C9-CFF with t(C9) = 6.

Prangya Parida (University of Ottawa) 37 / 43



Cover-free families: Introduction Cover-free families on Graphs Main results Future Work

Cover-free families on Paths and Cycles

Figure: A C9-CFF with t(C9) = 6 and the corresponding mixed-radix2

Gray code.

2D.E. Knuth, The Art of Computer Programming, Volume 4A:
Combinatorial Algorithms,
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Optimal Integer Partitions for Product

Theorem (Sequence A000792 in Sloane’s On-Line Encyclopedia of
Integer Sequences)

Let a(m) be the function which gives the maximum product of size
of partitions of [m]. Then,

a(m) =


3k if m = 3k ,

4 · 3k−1 if m = 3k + 1,

2 · 3k if m = 3k + 2.

Prangya Parida (University of Ottawa) 39 / 43
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Bounds of Pn-CFF and Cn-CFF

Theorem (P., Moura (2025+))

For some k ≥ 1,

t(G ) ≤


3k if n ∈ (2 · 3k−1, 3k ]

3k + 1 if n ∈ (3k , 4 · 3k−1]

3k + 2 if n ∈ (4 · 3k−1, 2 · 3k ]

where G is either Pn or Cn.
For all the above cases, t(G ) ≤ 3

log2(3)
log2(n) + o(1) where

3
log2(3)

= 1.8915 · · · .

Prangya Parida (University of Ottawa) 40 / 43
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Bounds of CFFs on other families of graphs:

Graph Type t(G )

Wheel graph

t(Cn+1) ≤ t(Wn+1) ≤ t(Cn) + 1.

Windmill graph

t(1, (k − 1)n) + 1 ≤ t(Wd(k , n)) ≤ t(1, n) + t(2, k − 1) + 1.

Friendship graph

If n ∈
[(2k−1

k

)
+ 1,

⌊
1
2

(2k+1
k

)⌋]
, then t(1, n) + 2 ≤ t(F2n+1) ≤ t(1, n) + 3.

If n ∈
[⌊

1
2

(2k+1
k

)⌋
+ 1,

(2k
k

)]
, then t(F2n+1) = t(1, n) + 3.

Hypercube graph

t(C2n) ≤ t(Qn) ≤ 2n.
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Future work

We are investigating tight bounds for t(G ) for specific classes
of graphs.

Cover-free families on hypergraphs and the product of
hypergraphs (Work in progress).

Further develop the theory, constructions and bounds for
CFFs on hypergraphs.

Non-existential results of cover-free families on hypergraphs
using the probabilistic method.

Generalization of cover-free families on hypergraphs.
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Families of finite sets in which no set is covered by the union of two others.
J. Comb. Theory, Series A, 33(2):158–166, 1982.

Idalino, T.B., and Moura, L.

Group testing and Cover-free families on Hypergraphs.
Manuscript to be submitted, 2025.

Sperner, E.

Ein Satz über Untermengen einer endlichen Menge.
Mathematische Zeitschrift, 27(1):544–548, 1928.

E. Porat and A. Rothschild.

Explicit nonadaptive combinatorial group testing schemes.
IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.

P. C. Li, G. H. J. Van Rees, and R. Wei.

Constructions of 2-cover-free families and related separating hash families.
Journal of Combinatorial Designs, 14(6):423–440, 2006.

Thank you for your attention! :)

Prangya Parida (University of Ottawa) 43 / 43



Cover-free families: Introduction Cover-free families on Graphs Main results Future Work

References

Knuth, D.E.

The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1.
Pearson Education India, 2011.
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