

Cover-free families on Graphs

Prangya Parida
(Joint work with Lucia Moura)

5th Pythagorean Conference
Kalamata, Greece

June 5, 2025

Overview

1 Cover-free families: Introduction

2 Cover-free families on Graphs

3 Main results

4 Future Work

Cover-free families: Definition

Definition

A set system is ***d*-cover-free** if no set is covered by the union of d others.

Example: 2-cover-free family

Set system:

$$\mathcal{X} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$B_g = \{1, 2, 3\}$$

$$B_b = \{4, 5, 6\}$$

$$B_c = \{7, 8, 9\}$$

$$B_d = \{1, 4, 7\}$$

$$B_e = \{2, 5, 8\}$$

$$B_f = \{3, 6, 9\}$$

$$B_g = \{1, 5, 9\}$$

$$B_h = \{2, 6, 7\}$$

$$B_i = \{3, 4, 8\}$$

$$B_j = \{1, 6, 8\}$$

$$B_k = \{2, 4, 9\}$$

$$B_l = \{3, 5, 7\}$$

- $B_d = \{1, 4, 7\} \not\subseteq \{1, 2, 3, 4, 5, 6\} = B_a \cup B_b$
- $(\mathcal{X}, \mathcal{B})$ is not 3-cover-free. ◀ □

Cover-free families: Representation using a binary matrix

$$\mathcal{X} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\begin{aligned}B_a &= \{1, 2, 3\} \\B_b &= \{4, 5, 6\} \\B_c &= \{7, 8, 9\} \\B_d &= \{1, 4, 7\} \\B_e &= \{2, 5, 8\} \\B_f &= \{3, 6, 9\} \\B_g &= \{1, 5, 9\} \\B_h &= \{2, 6, 7\} \\B_i &= \{3, 4, 8\} \\B_j &= \{1, 6, 8\} \\B_k &= \{2, 4, 9\} \\B_l &= \{3, 5, 7\}\end{aligned}$$

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

Cover-free families: Representation using a binary matrix

$$\mathcal{X} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$B_0 = \{1, 2, 3\}$$

$$B_b = \{4, 5, 6\}$$

$$B_6 = \{7, 8, 9\}$$

$$B_d = \{1, 4, 7\}$$

$$B_e = \{2, 5, 8\}$$

$$B_f = \{3, 6, 9\}$$

$$B_g = \{1, 5, 9\}$$

$$B_h = \{2, 6, 7\}$$

$$B_i = \{3, 4, 8\}$$

$$B_j = \{1, 6, 8\}$$

$$B_k = \{2, 4, 9\}$$

$$B_l = \{3, 5, 7\}$$

1000

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

Cover-free families: Representation using a binary matrix

$$\mathcal{X} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\begin{aligned}B_a &= \{1, 2, 3\} \\B_b &= \{4, 5, 6\} \\B_c &= \{7, 8, 9\} \\B_d &= \{1, 4, 7\} \\B_e &= \{2, 5, 8\} \\B_f &= \{3, 6, 9\} \\B_g &= \{1, 5, 9\} \\B_h &= \{2, 6, 7\} \\B_i &= \{3, 4, 8\} \\B_j &= \{1, 6, 8\} \\B_k &= \{2, 4, 9\} \\B_l &= \{3, 5, 7\}\end{aligned}$$

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

Cover-free families: Representation using a binary matrix

$$\mathcal{X} = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\begin{aligned}B_a &= \{1, 2, 3\} \\B_b &= \{4, 5, 6\} \\B_c &= \{7, 8, 9\} \\B_d &= \{1, 4, 7\} \\B_e &= \{2, 5, 8\} \\B_f &= \{3, 6, 9\} \\B_g &= \{1, 5, 9\} \\B_h &= \{2, 6, 7\} \\B_i &= \{3, 4, 8\} \\B_j &= \{1, 6, 8\} \\B_k &= \{2, 4, 9\} \\B_l &= \{3, 5, 7\}\end{aligned}$$

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	1	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

Cover-free families: Definitions

Definition

A set system is **d -cover-free** if no set is covered by the union of d others.

Definition (Alternate definition of cover-free families)

Given $d < t \leq n$ positive integers, a **d -CFF(t, n)** is a $t \times n$ binary matrix M such that any set of $d + 1$ columns has a permutation sub-matrix of dimension $d + 1$.

Minimizing number of rows

Definition (Minimizing number of Rows)

Given d and n we want to minimize the number of rows:

$$t(d, n) = \min\{t : \exists \text{ a } d\text{-CFF}(t, n)\}.$$

Minimizing number of rows

Definition (Minimizing number of Rows)

Given d and n we want to minimize the number of rows:

$$t(d, n) = \min\{t : \exists \text{ a } d\text{-CFF}(t, n)\}.$$

The case for $d = 1$ is solved due to **Sperner's theorem**.

Given n , we have

$$t(1, n) = \min\{s : \binom{s}{\lfloor s/2 \rfloor} \geq n\}.$$

Example

$$t(1, 6) = 4.$$

$$\mathcal{X} = \{1, 2, 3, 4\}.$$

$$\mathcal{F} = \{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}.$$

Cover free families: minimizing number of rows

For $d \geq 2$,

$$c_1 \frac{d^2}{\log(d)} \log(n) \leq t(d, n) \leq c_2 d^2 \log(n).$$

Lower bounds: Dyachkov & Rikov (1982), Ruszinkó (1994), Füredi (1996).

Upper bounds: (Constructive)

Porat and Rothschild (2010): deterministic polynomial-time.

Gargano, Rescigno, Vaccaro (2020).

Rescigno & Vaccaro (2023): constructive algorithm using Lovász local lemma + Moser & Tardos.

Cover free families: minimizing number of rows

For $d \geq 2$,

$$c_1 \frac{d^2}{\log(d)} \log(n) \leq t(d, n) \leq c_2 d^2 \log(n).$$

Lower bounds: Dyachkov & Rikov (1982), Ruszinkó (1994), Füredi (1996).

Upper bounds: (Constructive)

Porat and Rothschild (2010): deterministic polynomial-time.

Gargano, Rescigno, Vaccaro (2020).

Rescigno & Vaccaro (2023): constructive algorithm using Lovász local lemma + Moser & Tardos.

Theorem (Erdős, Frankl, and Füredi (1982))

$$3.106 \log(n) < t(2, n) < 5.512 \log(n).$$

2-CFF(9, 12) on a graph

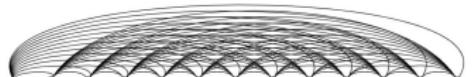
	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9,12)

2-CFF(9, 12) on a graph

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)



	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	1	0	1	0	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system.
- The corresponding pair of subsets are not contained in one another.

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system.
- The corresponding pair of subsets are not contained in one another.
- **Notation:** $t(G) = \min\{t : \exists \text{ a } \overline{G}\text{-CFF}(t, |V(G)|)\}$.

Cover-free families on Graphs

Definition

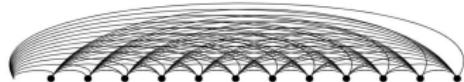
A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system.
- The corresponding pair of subsets are not contained in one another.
- **Notation:** $t(G) = \min\{t : \exists \text{ a } \overline{G}\text{-CFF}(t, |V(G)|)\}$.
- If $G = K_n$, then $t(G) = t(2, n)$.

2-CFF(9, 12) on a graph

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	0	1	0	1	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)



	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	1	0	0	1	0	0	1	0	0
2	1	0	0	0	1	0	0	1	0	0	1	0
3	1	0	0	0	0	1	0	0	1	0	0	1
4	0	1	0	1	0	0	0	1	0	1	0	0
5	0	1	0	0	1	0	1	0	0	0	0	1
6	0	1	0	0	0	1	0	1	0	1	0	0
7	0	0	1	1	0	0	0	1	0	0	0	1
8	0	0	1	0	1	0	0	0	1	1	0	0
9	0	0	1	0	0	1	1	0	0	0	1	0

Table: 2-CFF(9, 12)

$$2\text{-CFF}(9, 12) = \overline{K_{12}}\text{-CFF}.$$

$$t(2, 12) = 9 = t(K_{12}). \text{ (Lee, VanRees, Wei (2006))}$$

A $\overline{C_6}$ -CFF

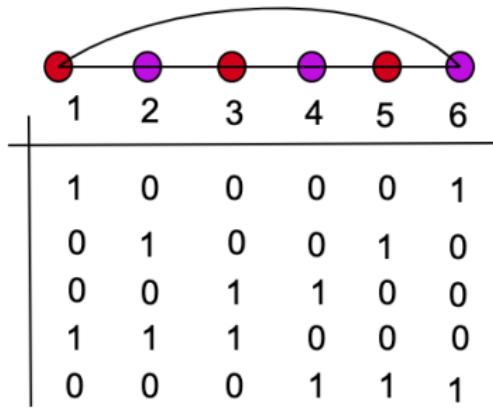


Figure: A $\overline{C_6}$ -CFF

$\overline{C_6}$ -CFF as the set system:

$$\mathcal{X} = \{1, 2, 3, 4, 5\}$$

$[\{1, 4\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{1, 5\}]$.

A $\overline{C_6}$ -CFF

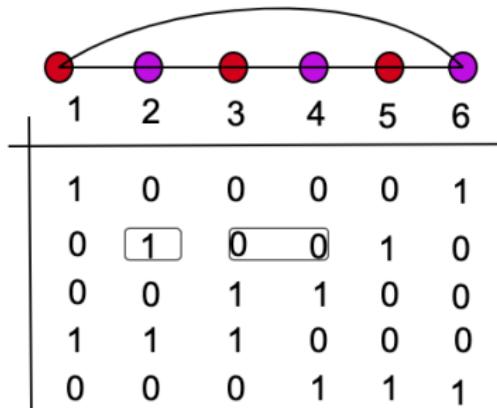
1	2	3	4	5	6
1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	1	1	0	0	0
0	0	0	1	1	1

Figure: A $\overline{C_6}$ -CFF

$\overline{C_6}$ -CFF as the set system:

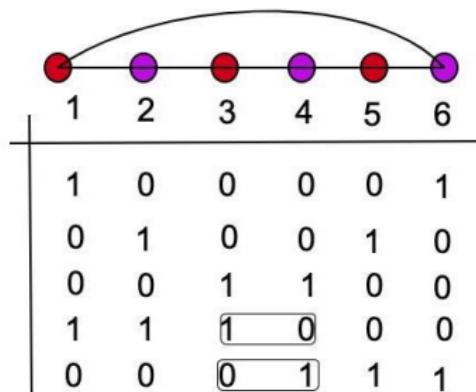
$$\mathcal{X} = \{1, 2, 3, 4, 5\}$$

$$[\{1, 4\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{1, 5\}].$$

A $\overline{C_6}$ -CFFFigure: A $\overline{C_6}$ -CFF $\overline{C_6}$ -CFF as the set system:

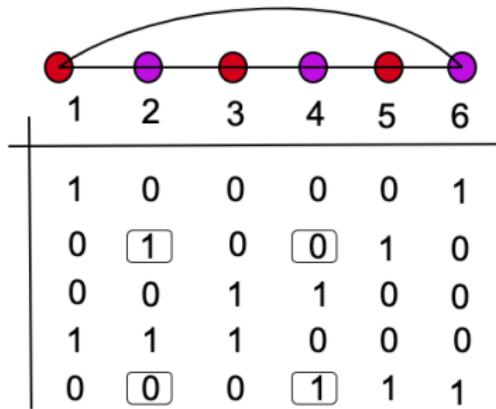
$$\mathcal{X} = \{1, 2, 3, 4, 5\}$$

$$[\{1, 4\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{1, 5\}].$$

A \overline{C}_6 -CFFFigure: A \overline{C}_6 -CFF \overline{C}_6 -CFF as the set system:

$$\mathcal{X} = \{1, 2, 3, 4, 5\}$$

$$[\{1, 4\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{1, 5\}].$$

A \overline{C}_6 -CFFFigure: A \overline{C}_6 -CFF \overline{C}_6 -CFF as the set system:

$$\mathcal{X} = \{1, 2, 3, 4, 5\}$$

$$[\{1, 4\}, \{2, 4\}, \{3, 4\}, \{3, 5\}, \{1, 5\}].$$

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system.
 G -CFF

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system. **G -CFF**
- The corresponding pair of subsets are not contained in one another. **G -in-CFF**

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system. **G -CFF**
- The corresponding pair of subsets are not contained in one another. **G -in-CFF**

Remarks: We denote by $t_e(G)$ and $t_{in}(G)$ the minimum t such that there exist a G -CFF and G -in-CFF; respectively.

Cover-free families on Graphs

Definition

A *cover-free family on a graph G* , denoted \overline{G} -CFF, is a set system such that, for each edge in G ,

- Their union does not contain any other subset in the system. **G -CFF**
- The corresponding pair of subsets are not contained in one another. **G -in-CFF**

Remarks: We denote by $t_e(G)$ and $t_{in}(G)$ the minimum t such that there exist a G -CFF and G -in-CFF; respectively.

Proposition (Idalino, Moura (2025+))

$$t(G) \leq t_e(G) + t_{in}(G).$$

Some bounds of \overline{G} -CFF

Theorem (Idalino, Moura (2025+))

$$t(G) \leq \chi(G) \log(n)$$

where $\chi(G)$ is the Chromatic number of G .

Some bounds of \overline{G} -CFF

Theorem (Idalino, Moura (2025+))

$$t(G) \leq \chi(G) \log(n)$$

where $\chi(G)$ is the Chromatic number of G .

Corollary

Let P_n and C_n be a Path and a Cycle of length n , respectively.

$$t(P_n) \leq 2 \log(n) \text{ and } t(C_n) \leq 2 \log(n) + (n \bmod 2).$$

Some bounds of \overline{G} -CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

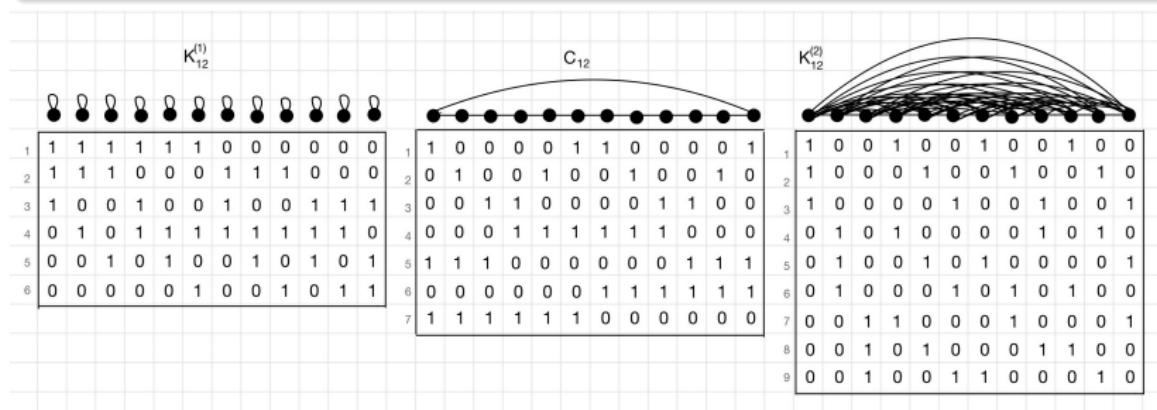
$$t(1, n) \leq t(G) \leq t(2, n).$$

Some bounds of \overline{G} -CFF

Theorem (P., Moura (2025+))

Let G be a connected graph with n vertices. Then,

$$t(1, n) \leq t(G) \leq t(2, n).$$



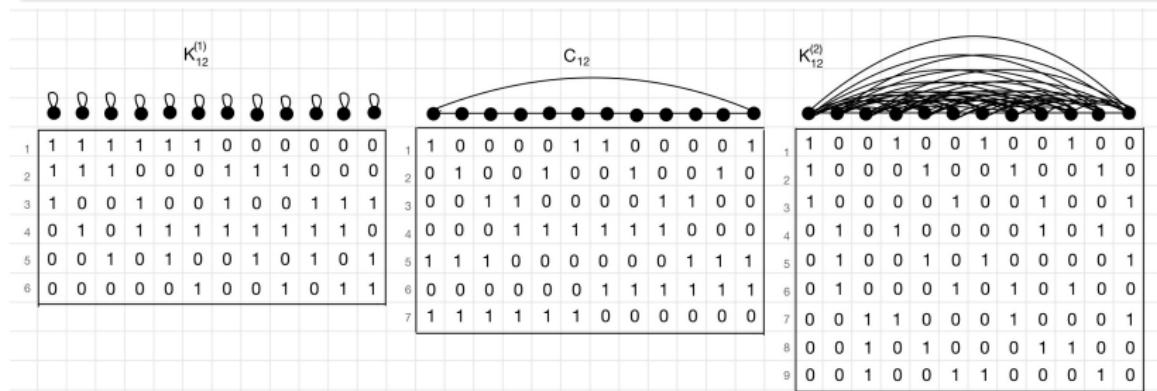
$$t(K_{12}^{(1)}) = 6, t(C_{12}) \leq 7, \text{ and } t(K_{12}) = 9$$

Some bounds of \overline{G} -CFF

Theorem (P., Moura (2025+))

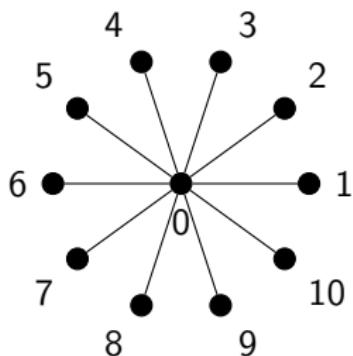
Let G be a connected graph with n vertices. Then,

$$t(1, n) \leq t(G) \leq t(2, n).$$



$$t(K_{12}^{(1)}) = 6, t(C_{12}) \leq 7, \text{ and } t(K_{12}) = 9$$
$$6 \leq t(C_{12}) \leq 7$$

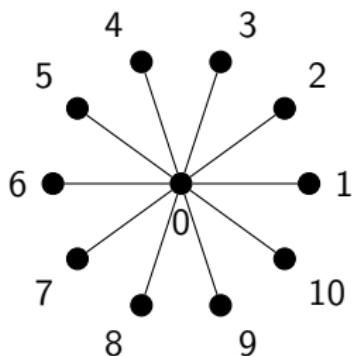
Cover-free family on a Star Graph



	0	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	0	0	0	0	0	0
2	0	1	0	0	0	1	1	1	0	0	0
3	0	0	1	0	0	1	0	0	1	1	0
4	0	0	0	1	0	0	1	0	1	0	1
5	0	0	0	0	1	0	0	1	0	1	1

Figure: A star graph S_{11} (left) and a S_{11} -CFF with $t_e(S_{11}) = 5$.

Cover-free family on a Star Graph



	0	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	1	1	1	1	1	1
2	1	0	0	0	0	0	0	0	0	0	0

Figure: A star graph S_{11} (left) and a S_{11} -in-CFF with $t_{in}(S_{11}) = 2$.

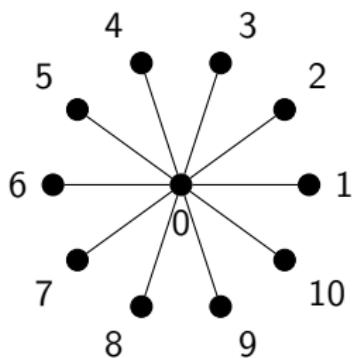
Cover-free family on a Star Graph



	0	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	0	0	0	0	0	0
2	0	1	0	0	0	1	1	1	0	0	0
3	0	0	1	0	0	1	0	0	1	1	0
4	0	0	0	1	0	0	1	0	1	0	1
5	0	0	0	0	1	0	0	1	0	1	1
6	0	1	1	1	1	1	1	1	1	1	1
7	1	0	0	0	0	0	0	0	0	0	0

Figure: A star graph S_{11} (left) and a $\overline{S_{11}}$ -CFF with $t(S_{11}) \leq 7$.

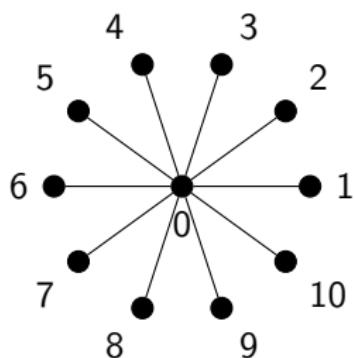
Cover-free family on a Star Graph



	0	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	0	0	0	0	0	0
2	0	1	0	0	0	1	1	1	0	0	0
3	0	0	1	0	0	1	0	0	1	1	0
4	0	0	0	1	0	0	1	0	1	0	1
5	0	0	0	0	1	0	0	1	0	1	1
6	1	0	0	0	0	0	0	0	0	0	0

Figure: A star graph S_{11} (left) and a $\overline{S_{11}}$ -CFF with $t(S_{11}) = 6$.

Cover-free family on a Star Graph



	0	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	0	0	0	0	0	0
2	0	1	0	0	0	1	1	1	0	0	0
3	0	0	1	0	0	1	0	0	1	1	0
4	0	0	0	1	0	0	1	0	1	0	1
5	0	0	0	0	1	0	0	1	0	1	1
6	1	0	0	0	0	0	0	0	0	0	0

Figure: A star graph S_{11} (left) and a $\overline{S_{11}}$ -CFF with $t(S_{11}) = 6$.

Summary of the main results

- 1 There is an infinite family of Star graphs S_n such that $t(S_n) = t(1, n)$.

Summary of the main results

- ① There is an infinite family of Star graphs S_n such that $t(S_n) = t(1, n)$.
- ② $t_{in}(G) = t(1, \chi(G))$.

Summary of the main results

- ① There is an infinite family of Star graphs S_n such that $t(S_n) = t(1, n)$.
- ② $t_{in}(G) = t(1, \chi(G))$.
- ③ $\log(n) \leq t(G) \leq 1.89 \log(n)$ when G is either P_n or C_n (Construction using a Mixed-Radix Gray Code).

An infinite family meeting the lower bound $t(1, n) \leq t(G)$

Theorem (P., Moura, 2025+)

Let $G = S_n$ be a star graph on n vertices. Then,

$$t(S_n) = t(1, n-1) + 1.$$

Corollary (P., Moura, 2025+)

If $n = \binom{x}{\lfloor x/2 \rfloor} + 1$ for any $x \in \mathbb{N}$, then $t(S_n) = t(1, n)$, thus meeting the lower bound $t(1, n) \leq t(G)$.

Proof.

$$t(S_n) = t(1, \binom{x}{\lfloor x/2 \rfloor}) + 1 = x + 1 = t(1, n).$$

$$t_{in}(G) = t(1, \chi(G)).$$

Characterizing t_{in} for Graphs via homomorphisms to Sperner Graphs:

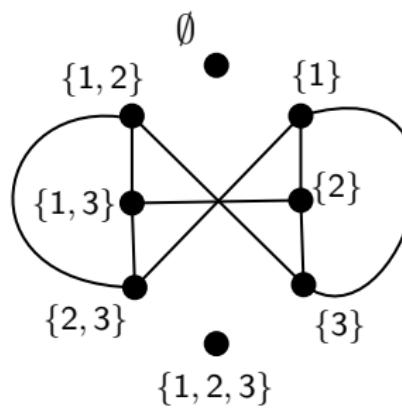


Figure: Sperner graph of order 3

$$t_{in}(G) = t(1, \chi(G)).$$

Sketch of the proof:

We first prove some basic results using Graph homomorphism:

- If $G \rightarrow H$, then $t_{in}(G) \leq t_{in}(H)$.
- $t_{in}(K_n) = t(1, n)$.
- $\omega(\mathcal{S}(z)) = \chi(\mathcal{S}(z)) = \left(\left\lfloor \frac{z}{2} \right\rfloor\right)$. (Using Dilworth's theorem¹)
- $t_{in}(\mathcal{S}(z)) = z$.
- $t_{in}(G) = \min_{I \in \mathbb{N}} \{I : G \rightarrow \mathcal{S}(I)\}$.

Since $G \rightarrow K_{\chi(G)}$, $t_{in}(G) \leq t_{in}(K_{\chi(G)}) = t(1, \chi(G))$.

Now, suppose by contradiction, $t_{in}(G) < t(1, \chi(G)) = k$. So, $\min\{I : G \rightarrow \mathcal{S}(I)\} = t_{in}(G) \leq k - 1$. Thus, $G \rightarrow \mathcal{S}(k - 1)$.

However, $\chi(G) \leq \left(\left\lfloor \frac{k-1}{2} \right\rfloor\right)$, which follows that $t(1, \chi(G)) \leq k - 1$, the desired contradiction. □

¹R P Dilworth, A Decomposition Theorem for Partially Ordered Sets, Annals of Mathematics (1950)

Cover-free families on Paths and Cycles

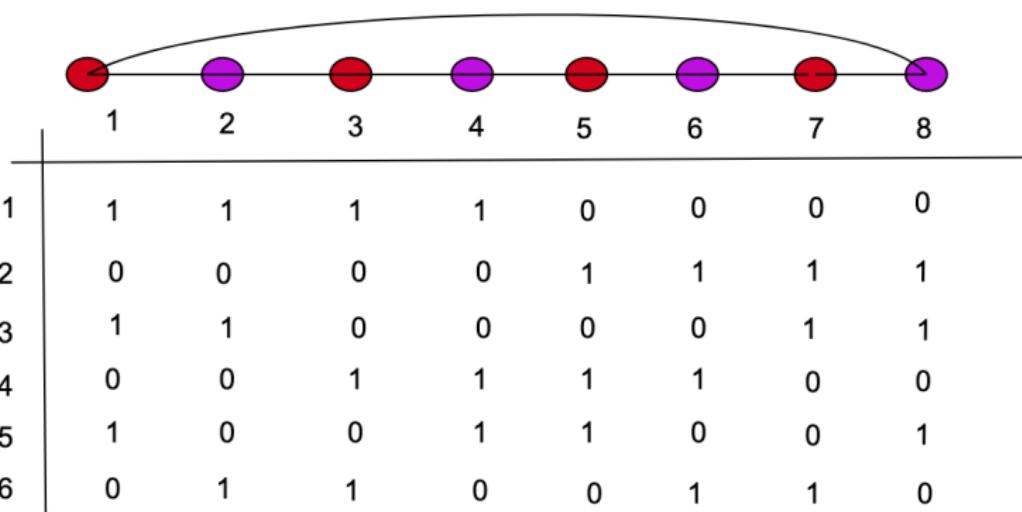
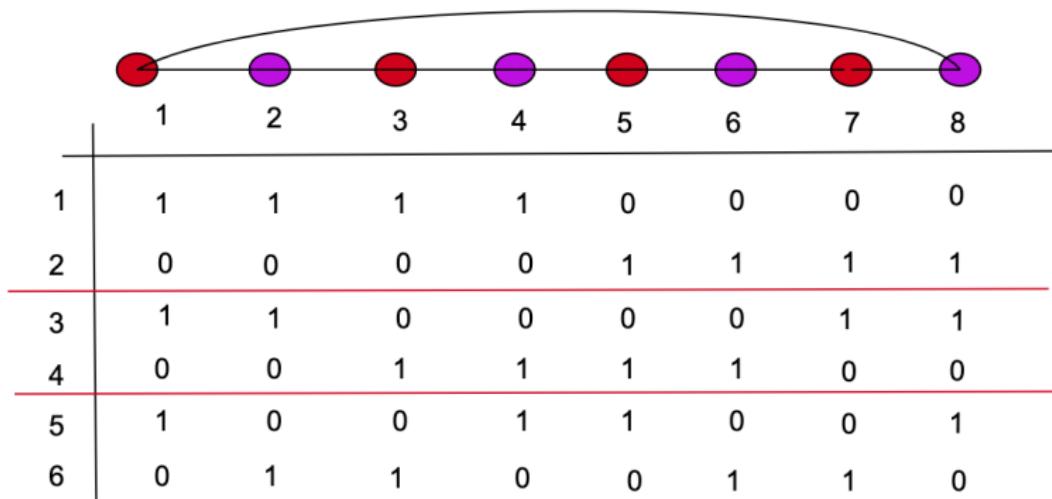
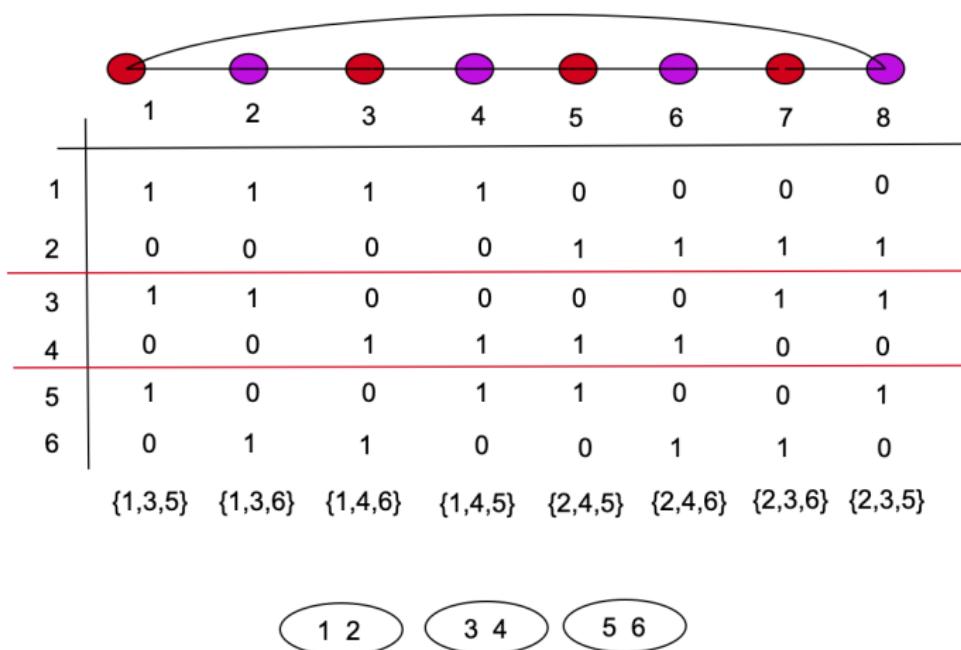


Figure: A $\overline{C_8}$ -CFF with $t(C_8) = 6$.

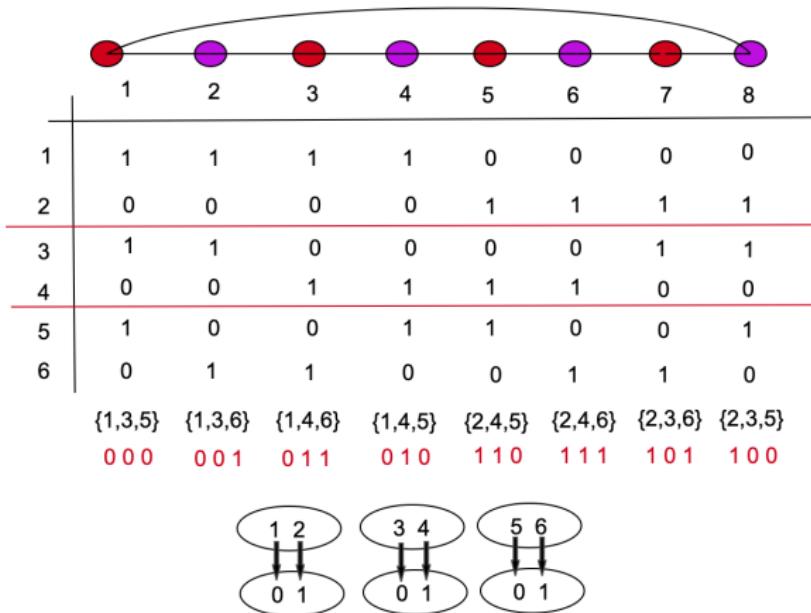
Cover-free families on Paths and Cycles

Figure: A $\overline{C_8}$ -CFF with $t(C_8) = 6$.

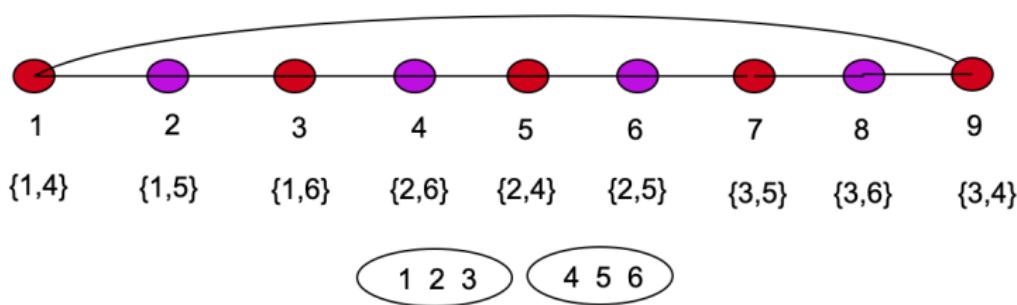
Cover-free families on Paths and Cycles

Figure: A $\overline{C_8}$ -CFF with $t(C_8) = 6$.

Cover-free families on Paths and Cycles

Figure: A \overline{C}_8 -CFF with $t(C_8) = 6$ and the corresponding Binary Reflected Gray Code.

Cover-free families on Paths and Cycles

Figure: A $\overline{C_9}$ -CFF with $t(C_9) = 6$.

Cover-free families on Paths and Cycles

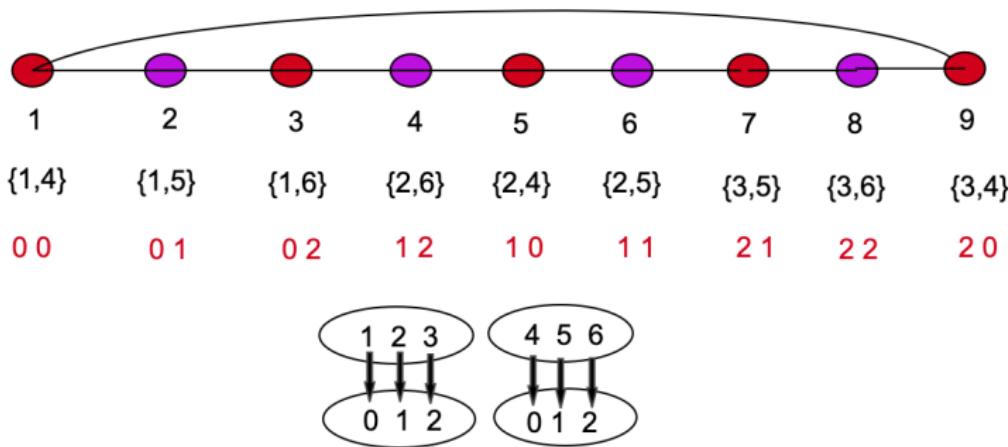


Figure: A $\overline{C_9}$ -CFF with $t(C_9) = 6$ and the corresponding mixed-radix² Gray code.

²D.E. Knuth, The Art of Computer Programming, Volume 4A: Combinatorial Algorithms,

Optimal Integer Partitions for Product

Theorem (Sequence A000792 in Sloane's On-Line Encyclopedia of Integer Sequences)

Let $a(m)$ be the function which gives the maximum product of size of partitions of $[m]$. Then,

$$a(m) = \begin{cases} 3^k & \text{if } m = 3k, \\ 4 \cdot 3^{k-1} & \text{if } m = 3k + 1, \\ 2 \cdot 3^k & \text{if } m = 3k + 2. \end{cases}$$

Bounds of \overline{P}_n -CFF and \overline{C}_n -CFF

Theorem (P., Moura (2025+))

For some $k > 1$,

$$t(G) \leq \begin{cases} 3k & \text{if } n \in (2 \cdot 3^{k-1}, 3^k] \\ 3k + 1 & \text{if } n \in (3^k, 4 \cdot 3^{k-1}] \\ 3k + 2 & \text{if } n \in (4 \cdot 3^{k-1}, 2 \cdot 3^k] \end{cases}$$

where G is either P_n or C_n .

For all the above cases, $t(G) \leq \frac{3}{\log_2(3)} \log_2(n) + o(1)$ where

$$\frac{3}{\log_2(3)} = 1.8915 \dots$$

Bounds of CFFs on other families of graphs:

Graph Type	$t(G)$
Wheel graph	$t(C_{n+1}) \leq t(W_{n+1}) \leq t(C_n) + 1.$
Windmill graph	$t(1, (k-1)n) + 1 \leq t(Wd(k, n)) \leq t(1, n) + t(2, k-1) + 1.$
Friendship graph	If $n \in \left[\binom{2k-1}{k} + 1, \left\lfloor \frac{1}{2} \binom{2k+1}{k} \right\rfloor \right]$, then $t(1, n) + 2 \leq t(F_{2n+1}) \leq t(1, n) + 3$. If $n \in \left[\left\lfloor \frac{1}{2} \binom{2k+1}{k} \right\rfloor + 1, \binom{2k}{k} \right]$, then $t(F_{2n+1}) = t(1, n) + 3$.
Hypercube graph	$t(C_{2^n}) \leq t(Q_n) \leq 2n.$

Future work

- We are investigating tight bounds for $t(G)$ for specific classes of graphs.
- Cover-free families on hypergraphs and the product of hypergraphs (**Work in progress**).
- Further develop the theory, constructions and bounds for CFFs on hypergraphs.
- Non-existential results of cover-free families on hypergraphs using the probabilistic method.
- Generalization of cover-free families on hypergraphs.

References

- Knuth, D.E.
The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1.
Pearson Education India, 2011.
- Erdős, P., Frankl, P., and Füredi, Z.
Families of finite sets in which no set is covered by the union of two others.
J. Comb. Theory, Series A, 33(2):158–166, 1982.
- Idalino, T.B., and Moura, L.
Group testing and Cover-free families on Hypergraphs.
Manuscript to be submitted, 2025.
- Sperner, E.
Ein Satz über Untermengen einer endlichen Menge.
Mathematische Zeitschrift, 27(1):544–548, 1928.
- E. Porat and A. Rothschild.
Explicit nonadaptive combinatorial group testing schemes.
IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.
- P. C. Li, G. H. J. Van Rees, and R. Wei.
Constructions of 2-cover-free families and related separating hash families.
Journal of Combinatorial Designs, 14(6):423–440, 2006.

References

- **Knuth, D.E.**
The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1.
Pearson Education India, 2011.
- **Erdős, P., Frankl, P., and Füredi, Z.**
Families of finite sets in which no set is covered by the union of two others.
J. Comb. Theory, Series A, 33(2):158–166, 1982.
- **Idalino, T.B., and Moura, L.**
Group testing and Cover-free families on Hypergraphs.
Manuscript to be submitted, 2025.
- **Sperner, E.**
Ein Satz über Untermengen einer endlichen Menge.
Mathematische Zeitschrift, 27(1):544–548, 1928.
- **E. Porat and A. Rothschild.**
Explicit nonadaptive combinatorial group testing schemes.
IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.
- **P. C. Li, G. H. J. Van Rees, and R. Wei.**
Constructions of 2-cover-free families and related separating hash families.
Journal of Combinatorial Designs, 14(6):423–440, 2006.

Thank you for your attention! :)