

Study of symmetries of Latin squares by local permutation polynomials

Raúl M. Falcón

Department of Applied Mathematics I.

Universidad de Sevilla.

rafalgan@us.es

Joint work with: Jaime Gutiérrez-Gutiérrez and Jorge Jiménez-Urroz.

UNIVERSIDAD
POLITECNICA
DE MADRID

Latin squares

Ruth Moufang (1935)

A **quasigroup** (Q, f) of order q is formed by

- a finite set Q of q elements, and
- a binary operation f such that, for all $a, b, c \in Q$:

$$\begin{cases} f(a, b) \neq f(a, c) \text{ if } b \neq c, \\ f(a, b) \neq f(c, b) \text{ if } a \neq c. \end{cases}$$

Its Cayley table L_f is a **Latin square** of order q .

0	1	2
1	2	0
2	0	1

Two quasigroups (Q, f) and (Q, g) are **isotopic** if there exist three permutations π_1, π_2, π_3 in the symmetric group S_Q on Q such that

$$g(\pi_1(a), \pi_2(b)) = \pi_3(f(a, b))$$

for all $a, b \in Q$. Then, $L_f^{(\pi_1, \pi_2, \pi_3)} = L_g$.

π_1 (rows); π_2 (columns); π_3 (symbols).

$$\left\{ \begin{array}{l} L \equiv \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 2 & 3 & 4 & 1 \\ \hline 3 & 4 & 1 & 2 \\ \hline 4 & 1 & 2 & 3 \\ \hline \end{array} \\ \Theta = ((1\ 2)(3\ 4), (2\ 3), \text{Id}) \end{array} \right. \Rightarrow L^\Theta \equiv \begin{array}{|c|c|c|c|} \hline 2 & 4 & 3 & 1 \\ \hline 1 & 3 & 2 & 4 \\ \hline 4 & 2 & 1 & 3 \\ \hline 3 & 1 & 4 & 2 \\ \hline \end{array}$$

- **Isotopism:** $\Theta = (\pi_1, \pi_2, \pi_3)$.
- $\pi_1 = \pi_2 = \pi_3 \Rightarrow$ **Isomorphic**.
- $f = g \Rightarrow$ **Autotopism / Automorphism**.

\mathcal{S}_3 : The symmetric group on $\{1, 2, 3\}$.

Two quasigroups (Q, f) and (Q, g) are **π -conjugate**, with $\pi \in \mathcal{S}_3$, if

$$g(a_{\pi(1)}, a_{\pi(2)}) = a_{\pi(3)} \Leftrightarrow f(a_1, a_2) = a_3$$

for all $a_1, a_2, a_3 \in Q$. Then, $L_f^\pi := L_g$.

$$L = L^{(12)} \equiv \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 2 & 3 & 4 & 1 \\ \hline 3 & 4 & 1 & 2 \\ \hline 4 & 1 & 2 & 3 \\ \hline \end{array} \Rightarrow \left\{ \begin{array}{l} L^{(13)} = L^{(23)} \equiv \begin{array}{|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 4 & 1 & 2 & 3 \\ \hline 3 & 4 & 1 & 2 \\ \hline 2 & 3 & 4 & 1 \\ \hline \end{array} \\ L^{(123)} = L^{(132)} \equiv \begin{array}{|c|c|c|c|} \hline 1 & 4 & 3 & 2 \\ \hline 2 & 1 & 4 & 3 \\ \hline 3 & 2 & 1 & 4 \\ \hline 4 & 3 & 2 & 1 \\ \hline \end{array} \end{array} \right.$$

A quasigroup (Q, f) is **totally symmetric** if $L_f^\pi = L_f$ for all $\pi \in \mathcal{S}_3$.

Local permutation polynomials

A polynomial

$$f(x) := \sum_{i=0}^{q-1} c_i x^i \in \mathbb{F}_q[x]$$

with q a prime power, is a **permutation polynomial (PP)** if the equation $f(x) = a$ has one solution in \mathbb{F}_q for each $a \in \mathbb{F}_q$.

Each polynomial $f \in \text{PP}(q)$ is identified with the zeros of

$$\left\{ \frac{f(i)^q - f(i) - f(j)^q + f(j)}{f(i) - f(j)} = 0: i < j \right\}$$

$$\text{PP}(2) = \bigcup_{a \in \mathbb{F}_2} \{x + a\}$$

$$\text{PP}(3) = \bigcup_{a,b \in \mathbb{F}_3} \{ax + b: a^2 = 1\}$$

$$\text{PP}(4) = \bigcup_{a,b,c \in \mathbb{F}_4} \{ax^2 + bx + c: ab = 0 = a^3 + b^3 + 1\}$$

A polynomial

$$f(x, y) := \sum_{i,j=0}^{q-1} c_{ij} x^i y^j \in \mathbb{F}_q[x, y]$$

with q a prime power, is a **local permutation polynomial (LPP)** if

- ① $f(x, y) = a$ has q solutions for all $a \in \mathbb{F}_q$.
- ② Both $f(a, x)$, $f(x, a) \in \mathbb{F}_q[x]$ are **permutation polynomials (PP)** for all $a \in \mathbb{F}_q$.

$$\text{LPP}(q) := \{ \text{ LPPs in } \mathbb{F}_q[x, y] \}$$

$\mathcal{L}(q) := \{ \text{ Latin squares of order } q \text{ with entries in } \mathbb{F}_q \}.$

Theorem (Mullen, 1980)

$$f \in \text{LPP}(q) \Leftrightarrow L_f := (f(a, b))_{a, b \in \mathbb{F}_q} \in \mathcal{L}(q).$$

$$L \in \mathcal{L}(q) \Rightarrow \sum_{a, b \in \mathbb{F}_q} L[a, b] \prod_{c \neq a} \frac{x - c}{a - c} \prod_{d \neq b} \frac{y - d}{b - d} \in \text{LPP}(q)$$

4	2	1	0	3
3	4	2	1	0
0	3	4	2	1
1	0	3	4	2
2	1	0	3	4

$$x^3 + 2x^2y - 2xy^2 - y^3 + x^2 - 2xy + y^2 + 2x - 2y - 1$$

Theorem (Mullen, 1980)

Every polynomial in LPP(2) and LPP(3) is linear.

$q = 2$:

$$\begin{array}{c} \begin{array}{|c|c|} \hline 0 & 1 \\ \hline 1 & 0 \\ \hline \end{array} \quad \begin{array}{|c|c|} \hline 1 & 0 \\ \hline 0 & 1 \\ \hline \end{array} \\ x+y \qquad \qquad x+y+1 \end{array}$$

$q = 3$:

$$\begin{array}{cccccc} \begin{array}{|c|c|c|} \hline 0 & 1 & 2 \\ \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 1 & 2 & 0 \\ \hline 2 & 0 & 1 \\ \hline 0 & 1 & 2 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 2 & 0 & 1 \\ \hline 0 & 1 & 2 \\ \hline 1 & 2 & 0 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 0 & 1 & 2 \\ \hline 2 & 0 & 1 \\ \hline 1 & 2 & 0 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 1 & 2 & 0 \\ \hline 0 & 1 & 2 \\ \hline 2 & 0 & 1 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 2 & 0 & 1 \\ \hline 1 & 2 & 0 \\ \hline 0 & 1 & 2 \\ \hline \end{array} \\ x+y & x+y+1 & x+y-1 & -x+y & -x+y+1 & -x+y-1 \end{array}$$

$$\begin{array}{cccccc} \begin{array}{|c|c|c|} \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 1 & 0 & 2 \\ \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 2 & 1 & 0 \\ \hline 0 & 2 & 1 \\ \hline 1 & 0 & 2 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 0 & 2 & 1 \\ \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline 2 & 1 & 0 \\ \hline \end{array} & \begin{array}{|c|c|c|} \hline 2 & 1 & 0 \\ \hline 1 & 0 & 2 \\ \hline 0 & 2 & 1 \\ \hline \end{array} \\ x-y & x-y+1 & x-y-1 & -x-y & -x-y+1 & -x-y-1 \end{array}$$

Theorem (Diestelkamp, Hartke, Kenney, 04)

For $q > 3$, if $f \in \text{LPP}(q)$, then $\deg(f) \leq 2q - 4$. This upper bound is sharp.

Example: In \mathbb{F}_4 , let u be a root of the irreducible polynomial $x^2 + x + 1$ over \mathbb{Z}_2 . Then:

0	1	u	$u + 1$
1	0	$u + 1$	u
u	$u + 1$	0	1
$u + 1$	u	1	0

$$x^2y^2 + x^2y + xy^2 + xy + x + y$$

Lemma (Mullen, 1980)

The set of coefficients of a generic polynomial

$$f(x, y) = \sum_{\substack{i, j=0 \\ i+j \leq 2q-4}}^{q-1} c_{ij} x^i y^j \in \text{LPP}(q)$$

*describes an **affine variety**.*

Each polynomial $f \in \text{LPP}(q)$ is identified with the zeros of

$$\begin{cases} \frac{f(i,j)^q - f(i,j) - f(i,k)^q + f(i,k)}{f(i,j) - f(i,k)}, & \text{for all } i, j, k \in \mathbb{F}_q, \text{ with } j \neq k, \\ \frac{f(i,j)^q - f(i,j) - f(k,j)^q + f(k,j)}{f(i,j) - f(k,j)}, & \text{for all } i, j, k \in \mathbb{F}_q, \text{ with } j \neq i. \end{cases}$$

Theorem (F, Gutiérrez, Jiménez, 25+)

$$\mathcal{L}(2) \equiv \begin{array}{|c|c|} \hline a & 1+a \\ \hline 1+a & a \\ \hline \end{array}$$

$$\text{LPP}(2) = \{x + y + a: a \in \mathbb{Z}_2\}.$$

$$\mathcal{L}(3) \equiv \begin{array}{|c|c|c|} \hline c & b+c & -b+c \\ \hline a+c & a+b+c & a-b+c \\ \hline -a+c & -a+b+c & -a-b+c \\ \hline \end{array}$$

$$\text{LPP}(3) = \{ax + by + c: a, b \neq 0\}$$

Theorem (F, Gutiérrez, Jiménez, 25+)

Every polynomial in $\text{LPP}(4)$ is of the form

$$(a^2b^2 + c^2bd)x^2y^2 + (a^2bd + c^2d^2)x^2y + bxy^2 + ex^2 + ay^2 + dxy + fx + cy + g$$

where

$$\left\{ \begin{array}{l} ac = 0, \\ ef = 0, \\ a^3 + c^3 = 1, \\ e^3 + f^3 = 1, \\ b^3 = d^3, \\ bf = d^2f^3, \\ de + b^2c^2d + a^2bdf + a^2d^3 + c^2d^2f = 0, \\ be + a^2bd^2 + bc^2df + c^2d^3 + a^2df^2 = 0. \end{array} \right.$$

Theorem (F, Gutiérrez, Jiménez, 25+)

$\text{LPP}(4) = S_1 \sqcup S_2$, where

$$S_1 := \{a x^2 + c y^2 + b x + d y + e: a^3 + b^3 + 1 = 0, c^3 + d^3 + 1 = 0\}$$

and

$$S_2 := \{(xy + abc)(axy + bx + cy) + dx^2 + bcd^2x + ey^2 + a^2bey + f: a, b, c \neq 0, d(d + a^2b^2) = 0, e(e + a^2c^2) = 0\}$$

In particular, $|S_1| = 144$ and $|S_2| = 432$.

Do they correspond to the two isotopic classes of $\mathcal{L}(4)$?

Symmetries of Latin squares by LPPs

$f, g \in \text{LPP}(q)$ are **isotopic** if there exist $\pi_1, \pi_2, \pi_3 \in \text{PP}(q)$ such that

$$g(\pi_1(x), \pi_2(y)) = \pi_3(f(x, y)).$$

$\Theta := (\pi_1, \pi_2, \pi_3)$ is an **isotopism** such that $f^\Theta = g$. (An **isomorphism** if $\pi_1 = \pi_2 = \pi_3$.) (An **autotopism** if $f = g$.)

Lemma

Every polynomial $f \in \text{LPP}(q)$ is isotopic to $g(x, y) \cdot xy + x + y$ for some $g(x, y) \in \mathbb{F}_q[x, y]$.

If $g = 0$, then we call f **isolinear**.

Theorem (F, Gutiérrez, Jiménez, 25+)

Every polynomial in $\text{LPP}(2)$ and $\text{LPP}(3)$ is isolinear. Furthermore, a polynomial in $\text{LPP}(4)$ is isolinear if and only if it belongs to S_1 .

$$\text{Isot}(q) := \text{PP}(q) \times \text{PP}(q) \times \text{PP}(q)$$

$$\text{Atop}(f) := \{\Theta \in \text{Isot}(q) : f^\Theta = f\}.$$

$$\Theta \in \text{Isot}(q) \Rightarrow \text{LPP}(\Theta) := \{f \in \text{LPP}(q) : \Theta \in \text{Atop}(f)\}.$$

Lemma

If $\Theta \in \text{Isot}(q)$ is trivial, then $\text{LPP}(\Theta) = \text{LPP}(q)$.

Theorem (F, Gutiérrez, Jiménez, 25+)

$\#\text{LPP}(\Theta)$ only depends on the conjugacy class of Θ .

- $q = 2$:

$$\text{LPP}((x+1, x+1, x)) = \{-x + y + a: a \in \mathbb{Z}_2\} \xrightarrow{\#} 2$$

- $q = 3$:

$$\text{LPP}((x+1, x+1, x+1)) = \{-x + 2y + a: a \neq 0\} \xrightarrow{\#} 3$$

$$\text{LPP}((x+1, x+1, x)) = \{ax - ay + b: b \neq 0\} \xrightarrow{\#} 6$$

$$\text{LPP}((2x, 2x, 2x)) = \{ax + by: a, b \neq 0\} \xrightarrow{\#} 4$$

Two LPPs $f, g \in \mathbb{F}_q[x, y]$ are **conjugate** if one of the following six identities holds.

- ① $g(x, y) = f(x, y).$
- ② $g(x, y) = f(y, x).$
- ③ $g(x, f(x, y)) = y.$
- ④ $g(f(x, y), x) = y.$
- ⑤ $g(f(x, y), y) = x.$
- ⑥ $g(y, f(x, y), x) = x.$

If all the six identities hold for $f = g$, then f is **totally symmetric**.

Theorem (F, Gutiérrez, Jiménez, 25+)

- Every polynomial in LPP(2) is totally symmetric.
- Every totally symmetric polynomial in LPP(3) is of the form

$$2(x + y) + a$$

- There are four totally symmetric polynomials in LPP(4) of the form

$$x + y + a$$

and 12 of the form

$$x^2y^2 + a(x^2y + xy^2) + a^2(xy + a(x + y)) + b(x^2 + y^2) + ab(x + y) + c$$

where $a \neq 0$, $b(b + a^2) = 0$ and $a^2 + ac + b + c^2 = 0$.

Work in progress

- High orders and high dimensions (hypercubes).
- Latin transversals.
- Critical sets.
- Autotopism group.

REFERENCES

- WS Diestelkamp, SG Hartke, RH Kenney, *On the degree of local permutation polynomials*, J. Comb. Math. Comb. Comput. **50** (2004), 129–140.
- RM Falcón, J Gutiérrez-Gutiérrez, J Jiménez-Urroz, *An algebraic approach to Latin hypercubes by local permutation polynomials over finite fields*, in preparation.
- J Gutiérrez-Gutiérrez, J Jiménez-Urroz, *Local permutation polynomials and the action of e -Klenian groups*, Finite Fields Their Appl. **91** (2023), paper 102261.
- GL Mullen. *Local permutation polynomials over \mathbb{Z}_p* , Fibonacci Quart. **18** (1980), 104–108.

Thank you for your attention!