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Introduction

In Spectral Graph Theory, matrices are associated to graphs and
graph structure is studied through eigenvalues and eigenvectors of
these matrices.
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Although the study of hypergraphs and their structural properties
can be considered a fruitful area, with many published articles, a
Spectral Theory for hypergraphs is still at an early stage.

We will deal here with a classic problem of Spectral Graph Theory,
in the context of hypergraphs.
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Integral Graphs

A graph is integral if the spectrum of its adjacency matrix
consists entirely of integers.

Question posed by Harary and Schwenk, 74:
Which graphs have integral spectra?

Some examples: the complete graph Kn, the complete
bipartite graph Kp,q where p · q = t2, the path P2 and the
cycles C3,C4 and C6.

K. Balińska et al. (2002) noticed in their survey on integral
graphs that they are very rare and difficult to find.
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Although the initial motivation was strictly theoretical, it was later
seen that integral graphs were important in certain applications:

M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Perfect state
transfer in quantum spin networks, Phys. Rev. Lett. 92 (2004)
187.
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Hypergraph

There are two distinct approaches to a spectral theory of
hypergraphs:

through matrices

through tensors.

Here we will approach the study of hypergraphs through the
adjacency matrix and see how relevant problems in spectral graph
theory can be extended to hypergraphs.
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Hypergraphs
Adjacency matrix of a hypergraph

Preliminaries

In this section, basic notions about hypergraphs and the adjacency
matrix are presented.
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Hypergraphs
Adjacency matrix of a hypergraph

Hypergraphs

A hypergraph H = (V ,E ) is given by a finite vertex set V
and an edge set E = {e : e ⊆ V }, where |e| ≥ 2.

H is said to be k-uniform if |e| = k , ∀e ∈ E .

Remark

A graph is a 2−uniform hypergraph.
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Hypergraphs
Adjacency matrix of a hypergraph

Example

Figure: A non uniform hypergraph and a 3−uniform hypergraph
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Adjacency matrix of a hypergraph

Adjacency matrix of a hypergraph

Definition: Let H be a hypergraph with n vertices.

The adjacency matrix of H, A(H), is the n × n symmetric matrix
with entries:

aij = | {e ∈ E (H) : vi , vj ∈ e} |.

The eigenvalues of A(H) are λ1(H) ≥ . . . ≥ λn(H).

The spectrum of a hypergraph H, spec(H), is the spectrum of its
adjacency matrix.

Renata R. Del-Vecchio (UFF-Brazil) Integral Hypergraphs



Introduction
Preliminaries
Hypercycles
Conclusion
References

Hypergraphs
Adjacency matrix of a hypergraph

Example

A(H) =


0 2 1 1 1 0
2 0 2 1 1 0
1 2 0 1 0 0
1 1 1 0 0 1
1 1 0 0 0 0
0 0 0 1 0 0

 and

spec(H) = {(4, 41)1, (0, 78)1, (0, 06)1, (−1, 23)1, (−1, 59)1, (−2, 43)1}.
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Hypergraphs
Adjacency matrix of a hypergraph

Remark

Note that the adjacency matrix of a hypergraph is real and
symmetric. Therefore:

(i) It is diagonalizable with real eigenvalues.

(ii) As the trace is zero, it always has positive and negative
eigenvalues, unless it is the hypergraph without edges.
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Hypercycles
Uniform hypercycles
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4-uniform hypercycles
5-uniform hypercycles

Integral Hypergraphs

Integral hypergraphs are those whose all adjacency eigenvalues are
integer numbers.

Integral cycles are already identified in spectral graph theory:
The only integral cycles are C3, C4 and C6

A natural question is if it is also possible to identify the integrality
of hypercycles.

Try to answer this question will be the focus of this part of the
presentation
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Hypercycles
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Hypercycles

There are different ways to generalize the concept of cycle to the
context of hypercycle.

Definition: Let Zn = {0, 1, . . . , n − 1} be the ring of integers

modulo n. A k−uniform hypercycle on n vertices, k < n, C
[k]
n , is

given by a vertex set V = Zn = {0, 1, . . . , n − 1} and an edge set
E = {ej | j ∈ V } where ej = {j , j + 1, . . . , j + k − 1}, ∀j ∈ V .
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Hypercycles
Uniform hypercycles
3-uniform hypercycles
4-uniform hypercycles
5-uniform hypercycles

As in 2-uniform cycles, the adjacency matrix of a k-uniform
hypercycle is also a circulant matrix.

Definition: A circulant matrix is a square matrix in which all row
are composed of the same elements and each row is rotated one
element to the right relative to the previous row.
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Hypercycles
Uniform hypercycles
3-uniform hypercycles
4-uniform hypercycles
5-uniform hypercycles

Example

C
[4]
8 is given by the sets:

V = Z8 = {0, 1, 2, 3, 4, 5, 6, 7}
E = {{0, 1, 2, 3}, {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}, {4, 5, 6, 7},
{5, 6, 7, 0}, {6, 7, 0, 1}, {7, 0, 1, 2}}.

Its adjacency matrix is:



0 3 2 1 0 1 2 3
3 0 3 2 1 0 1 2
2 3 0 3 2 1 0 1
1 2 3 0 3 2 1 0
0 1 2 3 0 3 2 1
1 0 1 2 3 0 3 2
2 1 0 1 2 3 0 3
3 2 1 0 1 2 3 0


.
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Recall that a circulant matrix is fully characterized by the first row.
If [0, a1, a2, . . . , an−1] is the first row, its eigenvalues are given by

λj =
n−1∑
k=1

akω
kj , for j = 0, . . . , n − 1,

where ω = exp(2πin ) = cos(2πn ) + i .sin(2πn ) and i is the imaginary
unit.
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Remark

For k = n we have that A(C
[n]
n ) = J − I.

For k = n − 1 we have that A(C
[n−1]
n ) = (n − 2)(J − I).

Therefore, C
[n]
n and C

[n−1]
n are integral hypercycles, for every n ≥ 3.

We are looking for integral hypercycles C
[k]
n , for k ≤ n − 2.
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3-uniform hypercycles

Next we study the eigenvalues of the adjacency matrix of C
[3]
n .

For n ≥ 5 we have by computation that:

λ0 = 6.

λj = 4cos
(
2πj
n

)
+ 2cos

(
4πj
n

)
, for 1 ≤ j ≤ n − 1.
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Proposition

If n ≥ 5 the spectrum of C
[3]
n is given by:

(i) For n odd,{
(6)1,

(
4cos

(
2π
n

)
+ 2cos

(
4π
n

))2
,
(
4cos

(
4π
n

)
+ 2cos

(
8π
n

))2
, . . . ,(

4cos
(

(n−1)π
n

)
+ 2cos

(
2(n−1)π

n

))2
}
.

(ii) For n even,{
(6)1,

(
4cos

(
2π
n

)
+ 2cos

(
4π
n

))2
,
(
4cos

(
4π
n

)
+ 2cos

(
8π
n

))2
, . . . ,(

4cos
(

(n−2)π
n

)
+ 2cos

(
2(n−2)π

n

))2
, (−2)1

}
.
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4-uniform hypercycles
5-uniform hypercycles

Proof: As seen before, we have that:

λ0 = 6 and λj = 4cos

(
2πj

n

)
+2cos

(
4πj

n

)
, for j = 1, . . . , n−1.

But these numbers are not all distinct, since:

cos
(
2πj
n

)
= cos

(
2π(n−j)

n

)
and cos

(
4πj
n

)
= cos

(
4π(n−j)

n

)
.

Therefore, for n odd we have:
λ1 = λn−1, λ2 = λn−2, . . . , λ n−1

2
= λ n+1

2
;

and for n even: λ1 = λn−1, λ2 = λn−2, . . . , λ n−2
2

= λ n+2
2
.
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Besides that, when n is even and j = n
2 , we have that:

4cos

(
2π

n
.
n

2

)
+2cos

(
4π

n
.
n

2

)
= 4cos (π)+2cos (2π) = −4+2 = −2.

Since n
2 = n − n

2 , the multiplicity of this eigenvalue is one.
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Theorem

Let n ≥ 5. C
[3]
n is integral ⇐⇒ n = 6.

Proof:

λ1(n) = 4cos
(
2π
n

)
+ 2cos

(
4π
n

)
is an eigenvalue of C

[3]
n .

λ1(n) is an increasing function for n ≥ 5.

λ1(n) ∈ (0, 6) for n ≥ 5.

λ1(16) > 5, therefore λ1(n) ∈ (5, 6) and it is never an integer
number for n ≥ 16.

For 5 ≤ n ≤ 15, we computed that C
[3]
n is integral ⇐⇒

n = 6.
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4-uniform hypercycles

Next we study the eigenvalues of the adjacency matrix of C
[4]
n .

For n ≥ 6 we have that:

λ0 = 12.

λj = 6cos
(
2πj
n

)
+ 4cos

(
4πj
n

)
+ 2cos

(
6πj
n

)
, for

1 ≤ j ≤ n − 1.

Then λj < 12, for 1 ≤ j ≤ n − 1.

Renata R. Del-Vecchio (UFF-Brazil) Integral Hypergraphs



Introduction
Preliminaries
Hypercycles
Conclusion
References

Hypercycles
Uniform hypercycles
3-uniform hypercycles
4-uniform hypercycles
5-uniform hypercycles

Theorem

Let n ≥ 6. C
[4]
n is integral ⇐⇒ n = 6.

We verified that for n ≥ 28, λ1(n) > 11, so it is not an integer as
λ1(n) ∈ (11, 12).

For 6 ≤ n ≤ 27, we computed that C
[4]
n is integral ⇐⇒ n = 6.
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5-uniform hypercycles

Next we study the eigenvalues of the adjacency matrix of C
[5]
n .

For n ≥ 7 we have that:

λ0 = 20.

λj = 8cos
(
2πj
n

)
+ 6cos

(
4πj
n

)
+ 4cos

(
6πj
n

)
+ 2cos

(
8πj
n

)
, for

1 ≤ j ≤ n − 1.

Then λj < 20, for 1 ≤ j ≤ n − 1.
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Theorem

Let n ≥ 7. C
[5]
n is never an integral hypergraph.

We verified that for n ≥ 45, λ1(n) > 19, so it is not an integer as
λ1(n) ∈ (19, 20).

For 7 ≤ n ≤ 44, we computed that C
[5]
n is never integral.
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Conclusion

Besides the cases where n = k n = k + 1, it was proven that for

k = 3 and k = 4, C
[k]
n is integral ⇐⇒ n = 6. For k = 5 it was

proven that C
[5]
n is never integral. Based on that, this question was

left open:

For k ≥ 6 and n > k +1, is there any other integral k-uniform

hypercycle C
[k]
n ?

We did not find any example. Excluding the case n = k + 1, only

C
[3]
6 and C

[4]
6 , together with the 2−uniform cycles C4 and C6 are

integral.

In conclusion, k-uniform integral hypercycles seem to be very
difficult to find.
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Integral hypergraphs G k

We begin with the definition of one operation generating
hypergraphs from a graph.

Definition: Let G be a graph and k ≥ 2 an integer. The k-power
G k of G is a k-uniform hypergraph obtained from G by adding
k − 2 new vertices of degree one to each edge of G .
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Figure: Graph G = P4 an its respective G 6.
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The adjacency matrix A(G k) is given in blocks by:

A(G k) =


A(G ) B(G ) B(G ) . . . B(G )
BT (G ) 0m Im . . . Im
BT (G ) Im 0m . . . Im

...
...

...
. . .

...
BT (G ) Im Im . . . 0m

 ,
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Proposition: If G is an r -regular graph we have that

λ1 =
r + k − 3 +

√
k2 − 6k + 6rk + r2 − 10r + 9

2
,

λ2 =
r + k − 3−

√
k2 − 6k + 6rk + r2 − 10r + 9

2

are eigenvalues of A(G k).
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λ1 ∈ Z ⇔ p(r , k) = k2 − 6k + 6rk + r2 − 10r + 9 is a perfect
square.
Analysing computationally the Diophantine equation p(r , k) = z2

we have:

r k
2 none

3 7

4 5 or 16

5 10 or 29

6 4, 8, 17 or 46

7 7, 13, 26 or 67

8 11, 37 or 92

9 6, 16, 27, 50 or 121

10 9, 14, 22, 36, 65 or 154
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Using this table, we looked for regular graphs G such that G k is
integral.

Example

Let G = K6,6, then (K6,6)
4 is an integral hypergraph with 84

vertices, 36 edges.

Spect((K6,6)
4) = {(9)1, (4)10, (1)25, (−1)36, (−2)1, (−3)10, (−6)1}.
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Thanks!
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