

Design switching on graphs

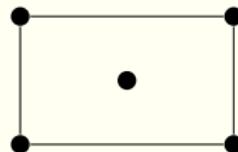
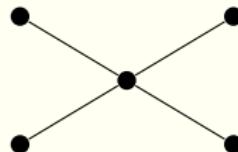
Robin Simoens

Ghent University & Universitat Politècnica de Catalunya

3 June 2025 🎉

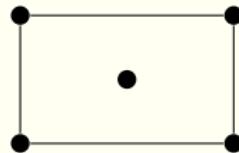
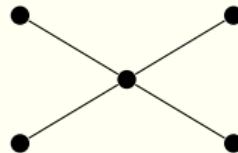
Based on joint work with Ferdinand Ihringer (SUSTech)

Cospectral graphs



Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Cospectral graphs



Both graphs have spectrum $\{-2, 0, 0, 0, 2\}$.

Definition

Graphs with the same spectrum are **cospectral**.

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- Interesting for complexity theory

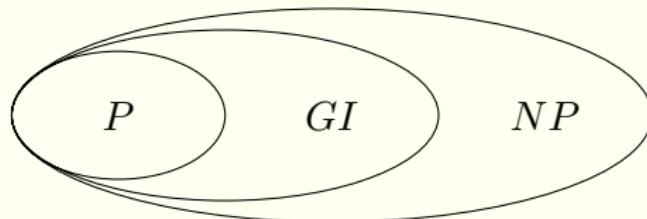


Figure: Is graph isomorphism an easy or hard problem?

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ▶ Interesting for complexity theory
- ▶ Interesting for chemistry

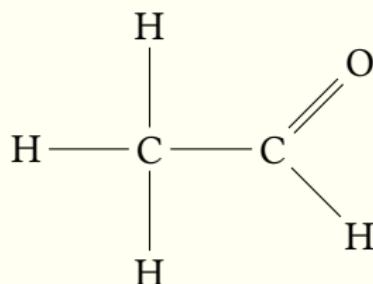
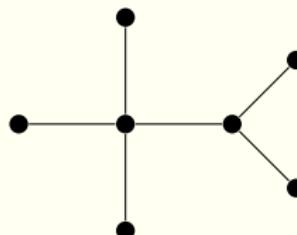


Figure: The molecular graph of acetaldehyde (ethanal).

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ▶ Interesting for complexity theory
- ▶ Interesting for chemistry

 Almost all trees are **not** determined by their spectrum
[Schwenk, 1973]

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ▶ Interesting for complexity theory
- ▶ Interesting for chemistry

 Almost all trees are **not** determined by their spectrum
[Schwenk, 1973]

 Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ▶ Interesting for complexity theory
- ▶ Interesting for chemistry

 Almost all trees are **not** determined by their spectrum
[Schwenk, 1973]

 Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

 Computational evidence [Brouwer and Spence, 2009]

n	3	4	5	6	7	8	9	10	11
ratio	1	1	0.941	0.936	0.895	0.861	0.814	0.787	0.789

Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

- ▶ Interesting for complexity theory
- ▶ Interesting for chemistry

 Almost all trees are **not** determined by their spectrum
[Schwenk, 1973]

 Exponentially many graphs are **not** determined by their spectrum [Haemers and Spence, 2004]

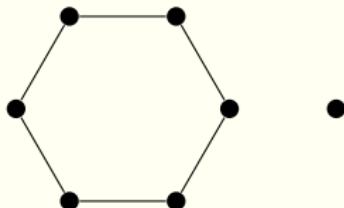
 Computational evidence [Brouwer and Spence, 2009]

 Exponentially many graphs are determined by their spectrum
[Koval and Kwan, 2023]

How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

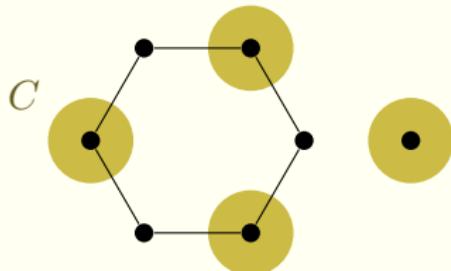
Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .



How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

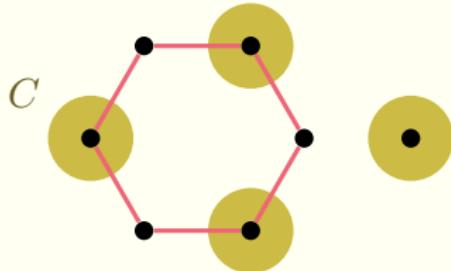
Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .



How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

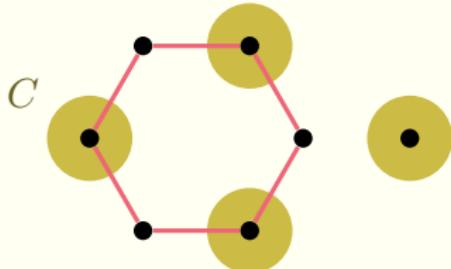
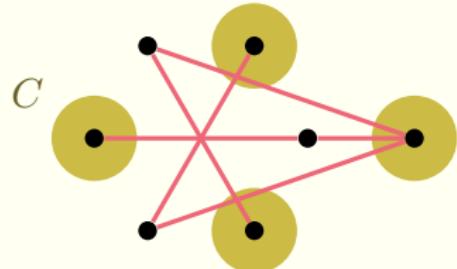
Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .



How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .



How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

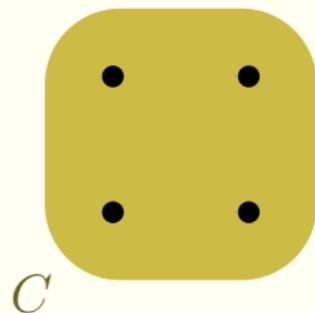
Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .

Proof.

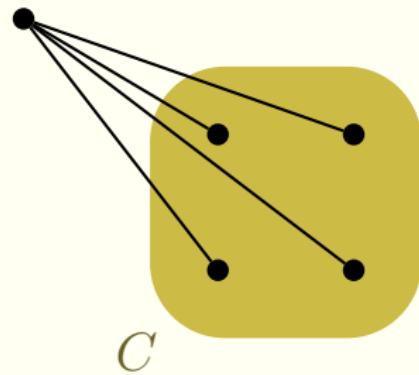
$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} \frac{1}{2}J - I & O \\ O & I \end{pmatrix}.$$

□

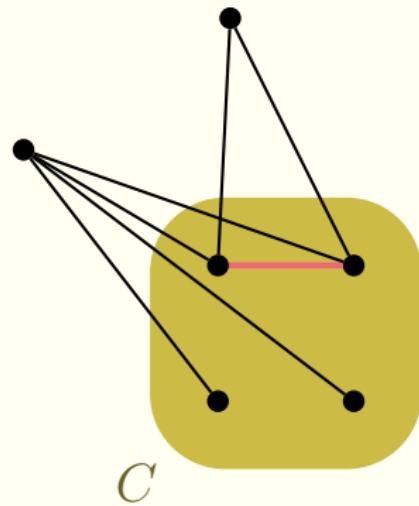
How to find cospectral graphs



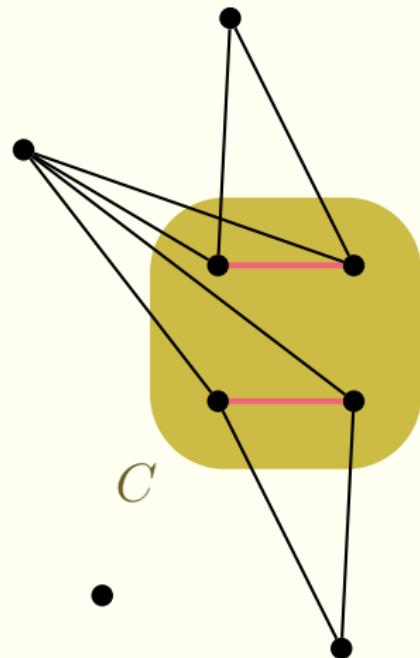
How to find cospectral graphs



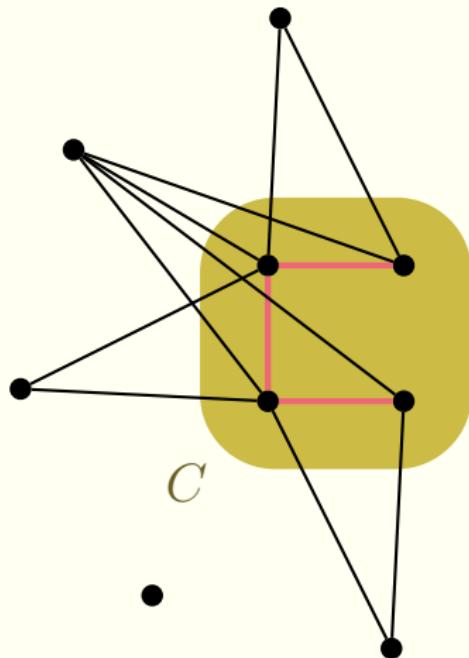
How to find cospectral graphs



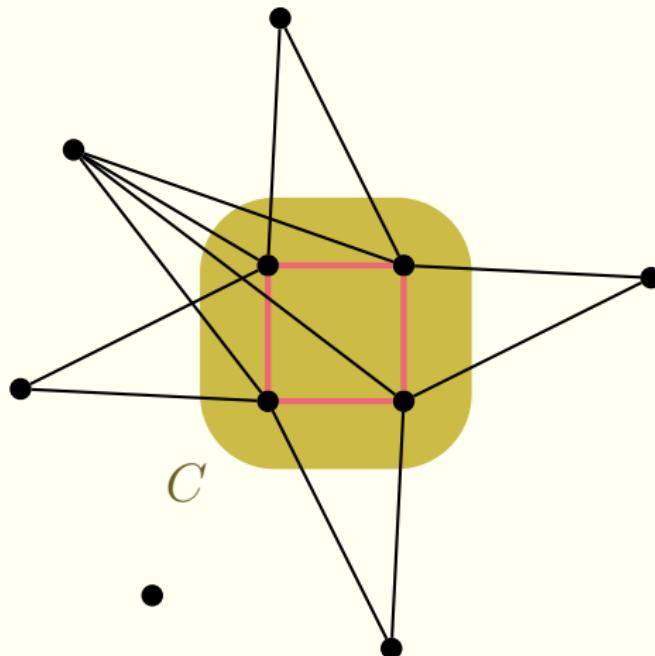
How to find cospectral graphs



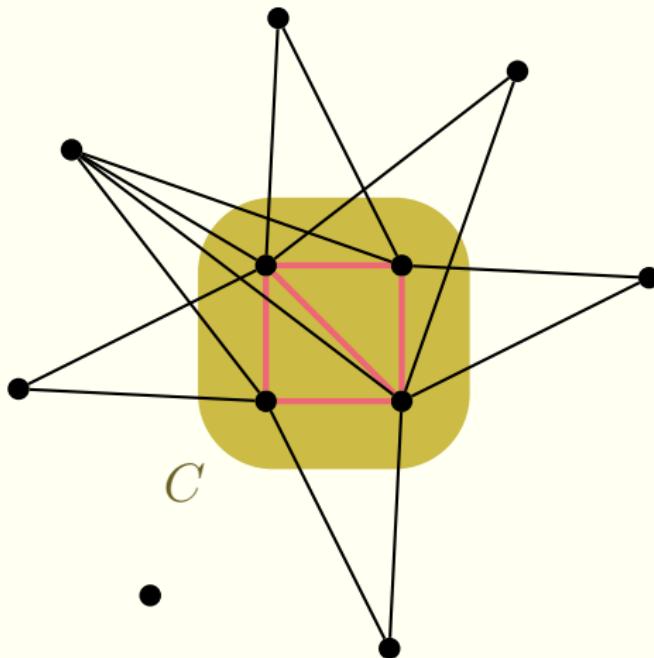
How to find cospectral graphs



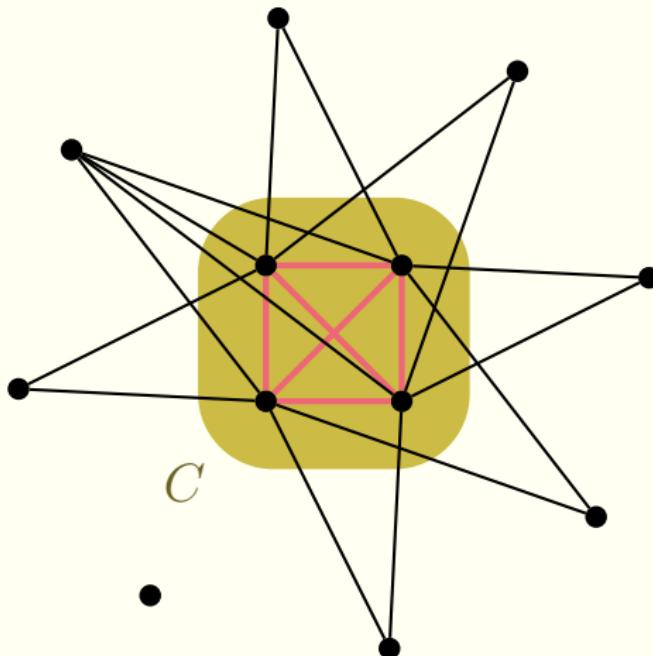
How to find cospectral graphs



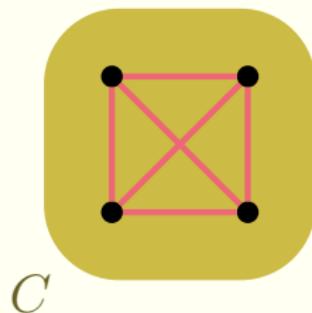
How to find cospectral graphs



How to find cospectral graphs



How to find cospectral graphs



$\text{AG}(2, 2)$

How to find cospectral graphs

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

How to find cospectral graphs

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

“We here define **switching** and **switches** as certain local transformations that do not alter the basic parameters of a combinatorial structure.” [Østergård, *Switching codes and designs*, 2012]

Table of contents

1 Cospectral graphs

2 Switching methods

3 Fano switching

4 Design switching

5 An application

6 Ongoing work

Switching methods

Definition

A **switching method** is a graph operation, resulting in a cospectral graph. It needs a **switching set** with some conditions.

- ▶ GM-switching [Godsil and McKay, 1982]
- ▶ WQH-switching [Wang, Qiu and Hu, 2019]
- ▶ AH-switching [Abiad and Haemers, 2012]
 - ▶ Sun graph switching [Mao, Wang, Liu and Qiu, 2023]
 - ▶ Fano switching [Abiad, van de Berg and Simoens, 2025+]
 - ▶ Cube switching [Abiad, van de Berg and Simoens, 2025+]

Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

$$(i) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, \quad (ii) \frac{1}{2} \begin{bmatrix} J & O & \cdots & \cdots & O & Y \\ Y & J & O & \cdots & \cdots & O \\ O & Y & J & O & \cdots & O \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ O & \cdots & O & Y & J & O \\ O & \cdots & \cdots & O & Y & J \end{bmatrix},$$

$$(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, \quad (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},$$

where $I, J, O, Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

GM-switching

$$(i) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, (ii) \frac{1}{2} \begin{bmatrix} J & O & \cdots & \cdots & O & Y \\ Y & J & O & \cdots & \cdots & O \\ O & Y & J & O & \cdots & O \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ O & \cdots & O & Y & J & O \\ O & \cdots & \cdots & O & Y & J \end{bmatrix},$$

$$(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},$$

where $I, J, O, Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular orthogonal matrix of level 2 and row sum 1 is one of the following:

$$(i) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}, \quad (ii) \frac{1}{2} \begin{bmatrix} J & O & \cdots & \cdots & O & Y \\ Y & J & O & \cdots & \cdots & O \\ O & Y & J & O & \cdots & O \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ O & \cdots & O & Y & J & O \\ O & \cdots & \cdots & O & Y & J \end{bmatrix},$$

Fano switching

$$(iii) \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}, \quad (iv) \frac{1}{2} \begin{bmatrix} -I & I & I & I \\ I & -Z & I & Z \\ I & Z & -Z & I \\ I & I & Z & -Z \end{bmatrix},$$

where $I, J, O, Y = 2I - J$ and $Z = J - I$, are 2×2 matrices.

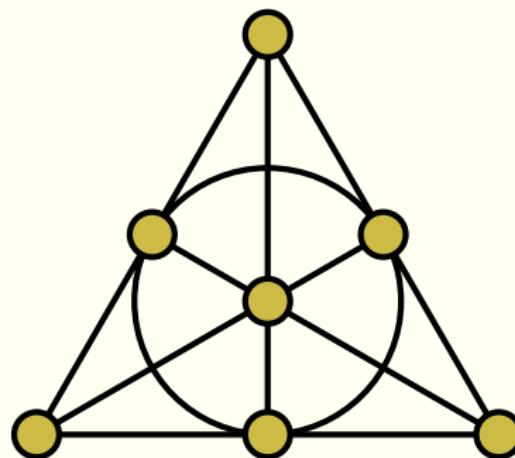
Fano switching

Abiad and Haemers (2012): algebraic conditions such that a conjugation of the adjacency matrix with $Q = \begin{bmatrix} R & O \\ O & I \end{bmatrix}$, where

$$R = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & -1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & -1 \end{bmatrix}$$

results in another adjacency matrix.

Fano switching



$$\text{PG}(2, 2)$$

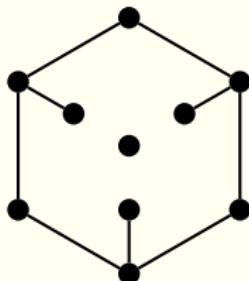
Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - If x has 3 neighbours in C , they form a line.
 - If x has 4 neighbours in C , they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .



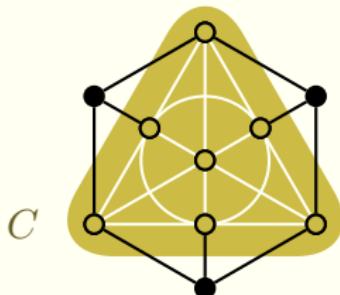
Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - If x has 3 neighbours in C , they form a line.
 - If x has 4 neighbours in C , they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .



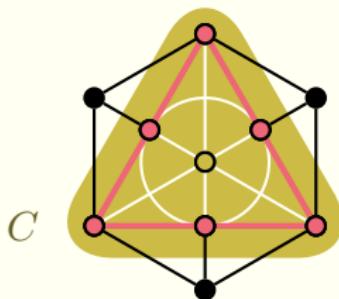
Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - If x has 3 neighbours in C , they form a line.
 - If x has 4 neighbours in C , they form the complement of a line.

Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .



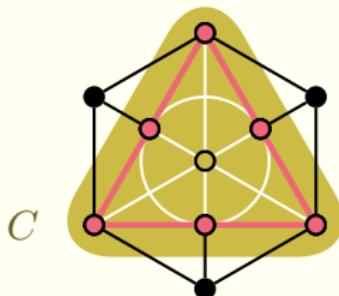
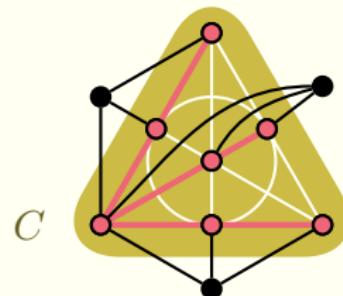
Fano switching

Theorem

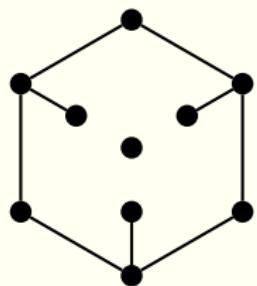
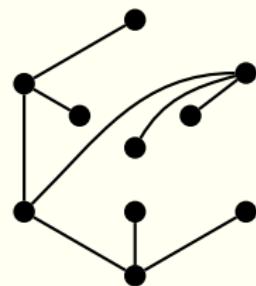
Let Γ be a graph with a subgraph C whose vertices are identified as points of the Fano plane such that:

- C is edgeless or complete.
- Every vertex $x \notin C$ has 0, 3, 4 or 7 neighbours in C .
 - If x has 3 neighbours in C , they form a line.
 - If x has 4 neighbours in C , they form the complement of a line.

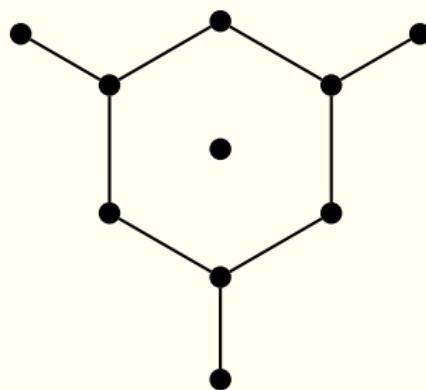
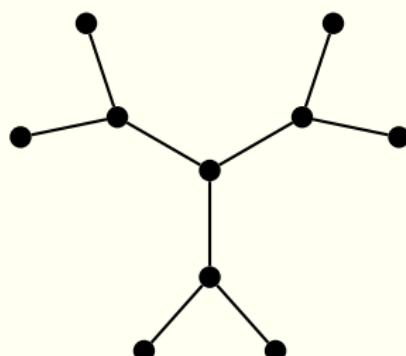
Let π be a permutation of the lines. For every $x \notin C$ that is (non)adjacent to the vertices of ℓ , make it (non)adjacent to the vertices of $\pi(\ell)$. The resulting graph is cospectral with Γ .



Fano switching



Fano switching



Both graphs have spectrum $\{(-\sqrt{5})^1, (-\sqrt{2})^2, (0)^3, (\sqrt{2})^2, (\sqrt{5})^1\}$.

Design switching

Definition

An (r, λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Design switching

Definition

An (r, λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Design switching

Definition

An (r, λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Design switching

Definition

An (r, λ) -**design** is a design where every point is contained in r blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

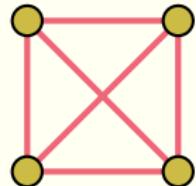
Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

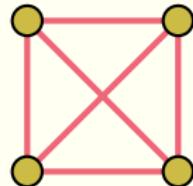
Design switching



is an $(r = 3, \lambda = 1)$ -design with incidence matrix

$$\begin{array}{cccccc} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \bullet & p_2 & \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \\ \bullet & p_3 & \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\ \bullet & p_4 & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{array}.$$

Design switching

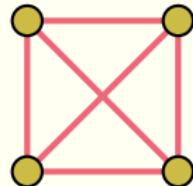


is an $(r = 3, \lambda = 1)$ -design with incidence matrix

$$\begin{array}{ccccccc} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \bullet & p_2 & \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \\ \bullet & p_3 & \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\ \bullet & p_4 & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{array}.$$

$\pi : B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Design switching



is an $(r = 3, \lambda = 1)$ -design with incidence matrix

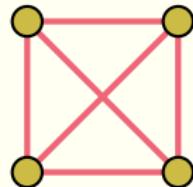
$$\begin{array}{ccccccc} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \bullet & p_2 & \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \\ \bullet & p_3 & \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\ \bullet & p_4 & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{array}.$$

$\pi : B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .

Design switching



is an $(r = 3, \lambda = 1)$ -design with incidence matrix

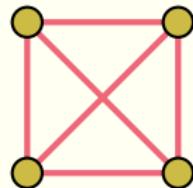
$$\begin{array}{cccccc} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \bullet & p_2 & \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \\ \bullet & p_3 & \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\ \bullet & p_4 & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{array}.$$

$\pi : B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .

Design switching



is an $(r = 3, \lambda = 1)$ -design with incidence matrix

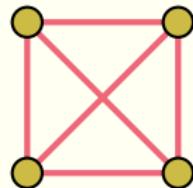
$$\begin{array}{cccccc} & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} \\ \bullet & p_2 & \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix} \\ \bullet & p_3 & \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \\ \bullet & p_4 & \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} \end{array}.$$

$\pi : B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .

Design switching



is an $(r = 4, \lambda = 2)$ -design with incidence matrix

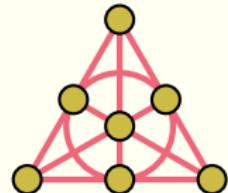
$$\begin{array}{c} \\ \bullet p_1 \\ \bullet p_2 \\ \bullet p_3 \\ \bullet p_4 \end{array} \begin{array}{c} B_1 B_2 B_3 B_4 B_5 B_6 \end{array} \begin{array}{c} \\ \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{array} \right) \end{array}$$

$\pi : B_i \mapsto B_{7-i}$ preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every vertex $x \notin C$ has 0, 2 or 4 neighbours in C . For every $x \notin C$ that has exactly 2 neighbours in C , reverse its adjacencies with C . The resulting graph is cospectral with Γ .

Design switching

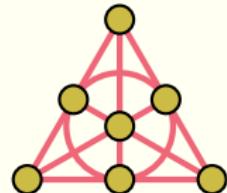


is an $(r = 3, \lambda = 1)$ -design with incidence matrix

$$\begin{array}{ccccccc} & \diagup & \diagup & \diagup & \diagup & \diagup & \diagup \\ & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \\ \bullet & p_2 & & & & & \\ \bullet & p_3 & & & & & \\ \bullet & p_4 & & & & & \\ \bullet & p_5 & & & & & \\ \bullet & p_6 & & & & & \\ \bullet & p_7 & & & & & \end{array}$$

Any permutation of the lines π preserves pairwise intersection.

Design switching



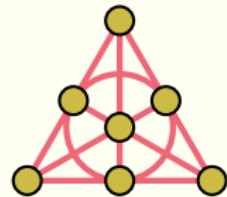
is an $(r = 8, \lambda = 4)$ -design with incidence matrix

$$\begin{array}{ccccccc} & \diagup & \diagup & \diagup & \diagup & \diagup & \diagup \\ & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 \\ \bullet & p_1 & \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix} \\ \bullet & p_2 & & & & & & \\ \bullet & p_3 & & & & & & \\ \bullet & p_4 & & & & & & \\ \bullet & p_5 & & & & & & \\ \bullet & p_6 & & & & & & \\ \bullet & p_7 & & & & & & \end{array}$$

Any permutation of the lines π preserves pairwise intersection.

► Fano switching

Design switching



is an $(r = 8, \lambda = 4)$ -design with incidence matrix

$$\begin{array}{cccccccccccccc} & \diagup & \diagup & \diagup & \diagup & \diagup & \diagup & \diagdown \\ & B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 & \overline{B_1} & \overline{B_2} & \overline{B_3} & \overline{B_4} & \overline{B_5} & \overline{B_6} & \overline{B_7} \end{array}$$

$\bullet p_1 \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \end{pmatrix}$

Any permutation of the lines π preserves pairwise intersection.

► Fano switching

Design switching

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Design switching

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} (N(N^\pi)^T - \lambda J)$, where N^π is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

□

Design switching

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with a subgraph C with adjacency matrix A_C such that $R^T A_C R$ is again an adjacency matrix whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} (N(N^\pi)^T - \lambda J)$, where N^π is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

□

Design switching

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with a subgraph C with adjacency matrix A_C such that $R^T A_C R$ is again an adjacency matrix whose vertices are identified as points of an (r, λ) -design such that every vertex $x \notin C$ is adjacent to the points of a block or its complement.

Let π be a permutation of the blocks such that for all blocks B_i, B_j ,

$$|B_i \cap B_j| = |\pi(B_i) \cap \pi(B_j)|.$$

For every $x \notin C$ adjacent to the points of B , make it adjacent to the points of $\pi(B)$. The resulting graph is cospectral with Γ .

Proof. Define $R = \frac{1}{r-\lambda} (N(N^\pi)^T - \lambda J)$, where N^π is obtained from the incidence matrix N by permuting the columns with π .

$$\begin{pmatrix} A_{11} & A'_{12} \\ A'_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} R & O \\ O & I \end{pmatrix}^T \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} R & O \\ O & I \end{pmatrix}.$$

□

Table of contents

1 Cospectral graphs

2 Switching methods

3 Fano switching

4 Design switching

5 An application

6 Ongoing work

Triangular graphs

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \dots, n\}$, where two vertices are adjacent if they intersect.

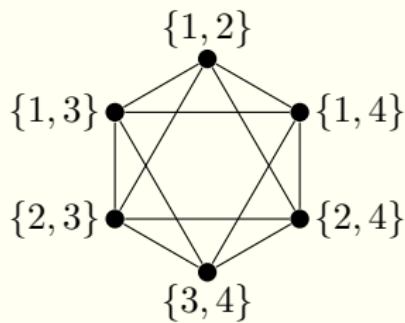
In other words, $T_n = L(K_n)$.

Triangular graphs

Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \dots, n\}$, where two vertices are adjacent if they intersect.

In other words, $T_n = L(K_n)$.



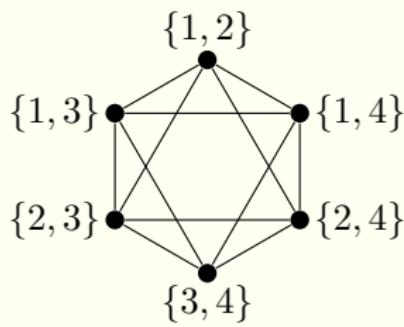
The octahedral graph T_4 .

Triangular graphs

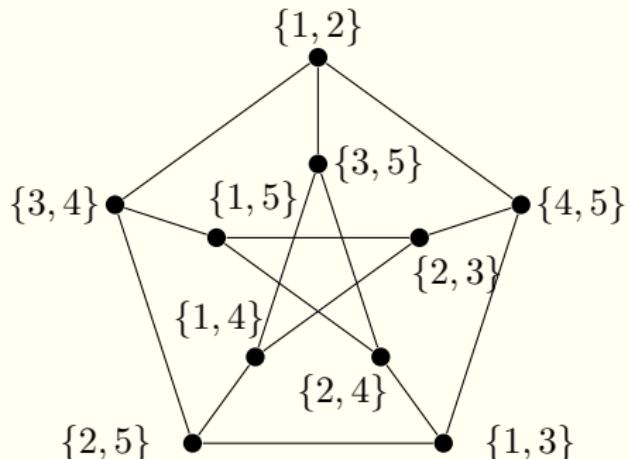
Definition

The **triangular graph** T_n has as vertices the 2-subsets of $\{1, \dots, n\}$, where two vertices are adjacent if they intersect.

In other words, $T_n = L(K_n)$.



The octahedral graph T_4 .



The Petersen graph \overline{T}_5 .

Triangular graphs

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph T_n is determined by its spectrum iff $n \neq 8$.

q-triangular graphs

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the 2-dimensional subspaces of \mathbb{F}_q^n where two vertices are adjacent if they intersect.

q -triangular graphs

Definition

The **q -triangular graph** $T_{q,n}$ has as vertices the lines of $\text{PG}(n-1, q)$ where two vertices are adjacent if they intersect.

q-triangular graphs

Definition

The **q-triangular graph** $T_{q,n}$ has as vertices the lines of $\text{PG}(n-1, q)$ where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q -triangular graph $T_{q,n}$ is not determined by its spectrum if $n \geq 4$.

q -triangular graphs

Definition

The **q -triangular graph** $T_{q,n}$ has as vertices the lines of $\text{PG}(n-1, q)$ where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q -triangular graph $T_{q,n}$ is not determined by its spectrum if $n \geq 4$.

Proof. Consider the subgraph $T_{q,3}$ of all lines in a given plane $\text{PG}(2, q) \subseteq \text{PG}(n-1, q)$ and consider the design $D = (\mathcal{P}, \mathcal{B})$ where

$$\mathcal{P} = \{\text{lines of } \text{PG}(2, q)\}$$

$$\mathcal{B} = \{\text{point pencils of } \text{PG}(2, q)\}$$

Apply design switching, using any permutation π of \mathcal{B} that is not an automorphism. This creates maximal cliques of size $q^2 + q$. \square

q -triangular graphs

Theorem (Ihringer and Simoens, 2025+)

There are at least $q!$ graphs with the same spectrum as $T_{q,n}$.

q -triangular graphs

Theorem (Ihringer and Simoens, 2025+)

There are at least $q!$ graphs with the same spectrum as $T_{q,n}$.

Proof (same strategy as in [Brouwer, Ihringer and Kantor, 2022]).

Let Γ_π denote the graph obtained from design switching $T_{n,q}$ with π . Then

$$\Gamma_{\pi_1} \cong \Gamma_{\pi_2}$$

$\iff \pi_1$ and π_2 are in the same double coset of $\text{Aut}(D)$ in $\text{Sym}(\mathcal{B})$.

There are at least $q!$ double cosets. □

q -triangular graphs

Theorem (Ihringer and Simoens, 2025+)

There are at least $q!$ graphs with the same spectrum as $T_{q,n}$.

Proof (same strategy as in [Brouwer, Ihringer and Kantor, 2022]).

Let Γ_π denote the graph obtained from design switching $T_{n,q}$ with π . Then

$$\Gamma_{\pi_1} \cong \Gamma_{\pi_2}$$

$\iff \pi_1$ and π_2 are in the same double coset of $\text{Aut}(D)$ in $\text{Sym}(\mathcal{B})$.

There are at least $q!$ double cosets. □

- Many strongly regular graphs with the same parameters.

Ongoing work

- Many designs to try

Ongoing work

- ▶ Many designs to try
- ▶ Alternative proofs of cospectrality results
 - ▶ q-triangular graphs [Ihringer and Munemasa, 2019]
 - ▶ Collinearity graphs of polar spaces [Brouwer, Ihringer and Kantor, 2022]
 - ▶ Collinearity graphs of generalised quadrangles [Guo and van Dam, 2022]

Ongoing work

- Many designs to try
- Alternative proofs of cospectrality results
 - q-triangular graphs [Ihringer and Munemasa, 2019]
 - Collinearity graphs of polar spaces [Brouwer, Ihringer and Kantor, 2022]
 - Collinearity graphs of generalised quadrangles [Guo and van Dam, 2022]
- All commonly known *indecomposable* switching methods can be reformulated as design switching.
- More general: π may also be a bijection between blocks of different designs.

Thank you for listening!