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Cospectral graphs

Both graphs have spectrum {−2, 0, 0, 0, 2}.

Definition

Graphs with the same spectrum are cospectral.
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

ä Interesting for complexity theory
ä Interesting for chemistry

Almost all trees are not determined by their spectrum
[Schwenk, 1973]

Exponentially many graphs are not determined by their
spectrum [Haemers and Spence, 2004]

Computational evidence [Brouwer and Spence, 2009]

Exponentially many graphs are determined by their spectrum
[Koval and Kwan, 2023]
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Figure: The molecular graph of acetaldehyde (ethanal).
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ä Interesting for complexity theory
ä Interesting for chemistry

Almost all trees are not determined by their spectrum
[Schwenk, 1973]

Exponentially many graphs are not determined by their
spectrum [Haemers and Spence, 2004]

Computational evidence [Brouwer and Spence, 2009]

n 3 4 5 6 7 8 9 10 11
ratio 1 1 0.941 0.936 0.895 0.861 0.814 0.787 0.789
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[Koval and Kwan, 2023]
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every
vertex x /∈ C has 0, 2 or 4 neighbours in C . For every x /∈ C that has
exactly 2 neighbours in C , reverse its adjacencies with C . The resulting
graph is cospectral with Γ.

C
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph C of size 4 such that every

vertex x /∈ C has 0, 2 or 4 neighbours in C . For every x /∈ C that has
exactly 2 neighbours in C , reverse its adjacencies with C . The resulting
graph is cospectral with Γ.

Proof.(
A11 A′

12

A′
21 A22

)
=

(
1
2J − I O
O I

)T (
A11 A12

A21 A22

)(
1
2J − I O
O I

)
.
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C
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How to find cospectral graphs

Definition

A switching method is a graph operation, resulting in a cospectral
graph. It needs a switching set with some conditions.

“We here define switching and switches as certain local
transformations that do not alter the basic parameters of a
combinatorial structure.” [Östergård, Switching codes and designs,
2012]
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Switching methods

Definition

A switching method is a graph operation, resulting in a cospectral
graph. It needs a switching set with some conditions.

ä GM-switching [Godsil and McKay, 1982]

ä WQH-switching [Wang, Qiu and Hu, 2019]
ä AH-switching [Abiad and Haemers, 2012]

ä Sun graph switching [Mao, Wang, Liu and Qiu, 2023]
ä Fano switching [Abiad, van de Berg and Simoens, 2025+]
ä Cube switching [Abiad, van de Berg and Simoens, 2025+]
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Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)
Up to permutations of rows and columns, an indecomposable regular
orthogonal matrix of level 2 and row sum 1 is one of the following:

(i) 1
2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (ii) 1
2



J O · · · · · · O Y
Y J O · · · · · · O
O Y J O · · · O

. . .
. . .

. . .
. . .

O · · · O Y J O
O · · · · · · O Y J

 ,

(iii) 1
2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1

 , (iv) 1
2

 −I I I I
I −Z I Z
I Z −Z I
I I Z −Z

 ,

where I , J , O, Y = 2I − J and Z = J − I , are 2× 2 matrices.
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Fano switching

Abiad and Haemers (2012): algebraic conditions such that a

conjugation of the adjacency matrix with Q =

[
R O
O I

]
, where

R =
1

2



−1 1 1 0 1 0 0
0 −1 1 1 0 1 0
0 0 −1 1 1 0 1
1 0 0 −1 1 1 0
0 1 0 0 −1 1 1
1 0 1 0 0 −1 1
1 1 0 1 0 0 −1


results in another adjacency matrix.
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Fano switching

PG(2, 2)
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Fano switching

Theorem

Let Γ be a graph with a subgraph C whose vertices are identified as
points of the Fano plane such that:

ä C is edgeless or complete.
ä Every vertex x /∈ C has 0, 3, 4 or 7 neighbours in C .

ä If x has 3 neighbours in C , they form a line.
ä If x has 4 neighbours in C , they form the complement of a line.

Let π be a permutation of the lines. For every x /∈ C that is
(non)adjacent to the vertices of `, make it (non)adjacent to the vertices
of π(`). The resulting graph is cospectral with Γ.

C
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Fano switching
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Fano switching

Both graphs have spectrum
{
(−

√
5)1, (−

√
2)2, (0)3, (

√
2)2, (

√
5)1

}
.
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Design switching

Definition

An (r, λ)-design is a design where every point is contained in r
blocks and every two points are contained in λ blocks.

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose
vertices are identified as points of an (r, λ)-design such that every
vertex x /∈ C is adjacent to the points of a block.
Let π be a permutation of the blocks such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

For every x /∈ C adjacent to the points of B, make it adjacent to the
points of π(B). The resulting graph is cospectral with Γ.
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Design switching

is an (r = 3, λ = 1)-design with incidence matrix

1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1




B1 B2 B3 B4 B5 B6

p1
p2
p3
p4

.

π : Bi 7→ B7−i preserves pairwise intersection.

Theorem (Godsil and McKay, 1982)

Let Γ be a graph with a regular subgraph of size 4 such that every
vertex x /∈ C has 0, 2 or 4 neighbours in C . For every x /∈ C that has
exactly 2 neighbours in C , reverse its adjacencies with C . The resulting
graph is cospectral with Γ.
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Design switching

is an (r = 4, λ = 2)-design with incidence matrix

0 1 1 1 0 0 0 1
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
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Design switching

is an (r = 3, λ = 1)-design with incidence matrix

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1





B1 B2 B3 B4 B5 B6 B7

p1
p2
p3
p4
p5
p6
p7

.

Any permutation of the lines π preserves pairwise intersection.

ä Fano switching
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Design switching

is an (r = 8, λ = 4)-design with incidence matrix

1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1


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.

Any permutation of the lines π preserves pairwise intersection.

ä Fano switching
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Design switching

is an (r = 8, λ = 4)-design with incidence matrix

0 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 1 1 0 0 0 1 1 0 0 1 1 1
0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 1
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 1
0 0 0 1 1 0 0 1 1 1 0 0 1 1 0 1





B1 B2 B3 B4 B5 B6 B7 B1 B2 B3 B4 B5 B6 B7

p1
p2
p3
p4
p5
p6
p7

.

Any permutation of the lines π preserves pairwise intersection.

ä Fano switching
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Design switching

Theorem (Ihringer and Simoens, 2025+)

Let Γ be a graph with an edgeless or complete subgraph C whose
vertices are identified as points of an (r, λ)-design such that every
vertex x /∈ C is adjacent to the points of a block .
Let π be a permutation of the blocks such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

For every x /∈ C adjacent to the points of B, make it adjacent to the
points of π(B). The resulting graph is cospectral with Γ.

Proof. Define R = 1
r−λ

(
N(Nπ)T − λJ

)
, where Nπ is obtained

from the incidence matrix N by permuting the columns with π.(
A11 A′

12

A′
21 A22

)
=

(
R O
O I

)T (
A11 A12

A21 A22

)(
R O
O I

)
.
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Design switching

Theorem (Ihringer and Simoens, 2025+)
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identified as points of an (r, λ)-design such that every vertex
x /∈ C is adjacent to the points of a block .
Let π be a permutation of the blocks such that for all blocks Bi, Bj ,

|Bi ∩Bj | = |π(Bi) ∩ π(Bj)| .

For every x /∈ C adjacent to the points of B, make it adjacent to the
points of π(B). The resulting graph is cospectral with Γ.

Proof. Define R = 1
r−λ

(
N(Nπ)T − λJ

)
, where Nπ is obtained
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Triangular graphs

Definition

The triangular graph Tn has as vertices the 2-subsets of
{1, . . . , n}, where two vertices are adjacent if they intersect.

In other words, Tn = L(Kn).

{1, 2}

{1, 3}

{2, 3}

{3, 4}

{2, 4}

{1, 4}

The octahedral graph T4.

{1, 2}

{3, 4}

{2, 5} {1, 3}

{4, 5}
{3, 5}

{1, 5}

{1, 4}

{2, 4}

{2, 3}

The Petersen graph T5.
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Triangular graphs

Theorem (Chang and Hoffman, independently, 1959)

The triangular graph Tn is determined by its spectrum iff n 6= 8.
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q-triangular graphs

Definition

The q-triangular graph Tq,n has as vertices the 2-dimensional
subspaces of Fn

q where two vertices are adjacent if they intersect.

Theorem (Ihringer and Munemasa, 2019)

The q-triangular graph Tq,n is not determined by its spectrum if n ≥ 4.

Proof. Consider the subgraph Tq,3 of all lines in a given plane
PG(2, q) ⊆ PG(n− 1, q) and consider the design D = (P,B) where

P = {lines of PG(2, q)}
B = {point pencils of PG(2, q)}

Apply design switching, using any permutation π of B that is not an
automorphism. This creates maximal cliques of size q2 + q.
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q-triangular graphs

Theorem (Ihringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as Tq,n.

Proof (same strategy as in [Brouwer, Ihringer and Kantor, 2022]).
Let Γπ denote the graph obtained from design switching Tn,q with
π. Then

Γπ1
∼= Γπ2

⇐⇒ π1 and π2 are in the same double coset of Aut(D) in Sym(B).

There are at least q! double cosets.

ä Many strongly regular graphs with the same parameters.
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Ongoing work

ä Many designs to try

ä Alternative proofs of cospectrality results
ä q-triangular graphs [Ihringer and Munemasa, 2019]
ä Collinearity graphs of polar spaces [Brouwer, Ihringer and

Kantor, 2022]
ä Collinearity graphs of generalised quadrangles [Guo and van

Dam, 2022]

ä All commonly known indecomposable switching methods can
be reformulated as design switching.

ä More general: π may also be a bijection between blocks of
different designs.
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Thank you for listening!
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