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Cospectral graphs

Both graphs have spectrum {—2,0,0,0, 2}.
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Cospectral graphs

Both graphs have spectrum {—2,0,0,0, 2}.

Definition

Graphs with the same spectrum are cospectral.
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

3/24



Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

» Interesting for complexity theory

Figure: Is graph isomorphism an easy or hard problem?
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» Interesting for complexity theory
» Interesting for chemistry
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Figure: The molecular graph of acetaldehyde (ethanal).
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Almost all graphs are determined by their spectrum.

» Interesting for complexity theory
» Interesting for chemistry

2t Almost all trees are not determined by their spectrum
[Schwenk, 1973]

0 Exponentially many graphs are not determined by their
spectrum [Haemers and Spence, 2004]

¥ Computational evidence [Brouwer and Spence, 2009]

n |3 4 5 6 7 8 9 10 11
ratio | 1 1 0941 0936 0895 0861 0814 0.787 0.789
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Cospectral graphs

Conjecture (van Dam and Haemers, 2003)

Almost all graphs are determined by their spectrum.

» Interesting for complexity theory
» Interesting for chemistry

2t Almost all trees are not determined by their spectrum
[Schwenk, 1973]

0 Exponentially many graphs are not determined by their
spectrum [Haemers and Spence, 2004]

¥ Computational evidence [Brouwer and Spence, 2009]

v Exponentially many graphs are determined by their spectrum
[Koval and Kwan, 2023]
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

LetT" be a graph with a regular subgraph C' of size 4 such that every
vertex x ¢ C' has 0, 2 or 4 neighbours in C. For every x ¢ C' that has
exactly 2 neighbours in C, reverse its adjacencies with C. The resulting
graph is cospectral with T".
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How to find cospectral graphs

Theorem (Godsil and McKay, 1982)

LetT" be a graph with a | regular subgraph C' of size4 such that every

exactly 2 neighbours in C, reverse its adjacencies with C'. The resulting
graph is cospectral with I".

Proof.
! 1 T 1
A Ap\ _ (53 —-1 O Apn A\ (-1 O
Al21 A22 - O I A21 A22 0] 1)
O
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How to find cospectral graphs

X

AG(2,2)
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How to find cospectral graphs

A switching method is a graph operation, resulting in a cospectral
graph. It needs a switching set with some conditions.
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How to find cospectral graphs

Definition

A switching method is a graph operation, resulting in a cospectral
graph. It needs a switching set with some conditions.

“We here define switching and switches as certain local
transformations that do not alter the basic parameters of a
combinatorial structure” [Ostergard, Switching codes and designs,
2012]
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Switching methods

A switching method is a graph operation, resulting in a cospectral
graph. It needs a switching set with some conditions.

» GM-switching [Godsil and McKay, 1982]
» WQH-switching [Wang, Qiu and Hu, 2019]
» AH-switching [Abiad and Haemers, 2012]
» Sun graph switching [Mao, Wang, Liu and Qiu, 2023]

» Fano switching [Abiad, van de Berg and Simoens, 2025+]
» Cube switching [Abiad, van de Berg and Simoens, 2025+]
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Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular
orthogonal matrix of level 2 and row sum 1 is one of the following:

rJ O oo e oY
Y J O - - o
-1 1 1 1
. 1§ 4 oy J o0
(Z)§ 1 1 -1 1 7(”)5 )
oL o oY J O
L@ <00 000 oY J
-1 1 1 0 1 0 07
0 -1 1 1 0 1 0
0 0 -1 1 1 o0 1 T
(ii1) & 1 0 0 -1 1 1 O0f,@5| 7 7 _z 711l
0o 1 0 0 -1 1 1 1 1 7 _z
1 0 1 0 0 -1 1
1 1 0 1 0 0 —1]

wherel, J,0,Y =21 — Jand Z = J — I, are 2 X 2 matrices.
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Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular
orthogonal matrix of level 2 and row sum 1 is one of the following:

GM-switching

(i)

NI
HROR,OOR

RO, OO

wherel, J,0,Y =21 — Jand Z = J — I, are 2 X 2 matrices.
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Level 2: Abiad-Haemers switching

Theorem (Chan, Rodger and Seberry, 1986)

Up to permutations of rows and columns, an indecomposable regular
orthogonal matrix of level 2 and row sum 1 is one of the following:

P @ ooo ooc oY

B Y J O - .- 6]
. OY J O -0

@3] 7 1 -1 1| @3 o ;

F tch L1 -1 0] oY J O
ano switching O oo vn- oY J
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Abiad and Haemers (2012): algebraic conditions such that a

conjugation of the adjacency matrix with Q) =

DN |
—_— O OoOOoOR
O OO M=
OHRH OO ==

results in another adjacency matrix.

— OO RO

OO == O

R
0]
0
1
0
1
1
1
0

O
I} , where

_ OO0
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Fano switching

Theorem
LetT" be a graph with a subgraph C' whose vertices are identified as
points of the Fano plane such that:

» (' is edgeless or complete.

» Every vertexx ¢ C has 0, 3, 4 or 7 neighbours in C.

» Ifx has 3 neighbours in C, they form a line.
» If x has 4 neighbours in C, they form the complement of a line.

Let m be a permutation of the lines. For every x ¢ C' that is
(non)adjacent to the vertices of ¢, make it (non)adjacent to the vertices
of w({). The resulting graph is cospectral with T".
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Fano switching
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Fano switching
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Both graphs have spectrum {(—\/5)1, (—v/2)2,(0)3, (v2)?, (\/5)1}
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Design switching

An (r, A)-design is a design where every point is contained in r
blocks and every two points are contained in A blocks.
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Design switching

Definition
An (r, A)-design is a design where every point is contained in r
blocks and every two points are contained in A blocks.

Theorem (lhringer and Simoens, 2025+)

LetI' be a graph with an edgeless or complete subgraph C' whose
vertices are identified as points of an (r, \)-design such that every
vertex z ¢ C' is adjacent to the points of a block.

Let 7 be a permutation of the blocks such that for all blocks B;, B;,

|B; N Bj| = |n(B;) N w(By)] .

For every x ¢ C adjacent to the points of B, make it adjacent to the
points of w(B). The resulting graph is cospectral withT.
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Design switching

is an (r = 3, A\ = 1)-design with incidence matrix
By By Bs By By Bg
op (1 1 1

opr2 |1 1 1
O P3 1 1 1
O P4 1 1 1
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Design switching

is an (r = 4, \ = 2)-design with incidence matrix

By By B3 By Bs Bg
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Design switching

isan (r = 3, \ = 1)-design with incidence matrix

Pl Al
By By Bs By Bs Bg By

oprt 1 1 1

op2 |1 1 1

O P3 1 1 1
O P4 1 1 1
O D5 1 1 1
O D6 1 1 1
o pr 1 1 1

Any permutation of the lines 7 preserves pairwise intersection.
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Design switching

is an (r = 8, \ = 4)-design with incidence matrix

Pl Al
By By Bs By Bs Bg By

oprt 1 1 1

op2 |1 1 1

O P3 1 1 1
O P4 1 1 1

O D5 1 1 1
O D6 1 1 1

o pr 1 1 1

Any permutation of the lines 7 preserves pairwise intersection.

» Fano switching
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Design switching

is an (r = 8, \ = 4)-design with incidence matrix

Pl
By By B3 By Bs Bg By By By B3y By Bs Bg By

o 1 1 1 1 1 1 1 1
O P2 1 1 1 1 1 1 1 1
O P3 1 1 1 1 1 1 1 1
O P4 1 1 1 1 1 1 1 1
O Ps 1 1 1 1 1 1 1 1
O Ps 1 1 1 1 1 1 1 1
o p7 1 1 1 1 1 1 1 1

Any permutation of the lines 7 preserves pairwise intersection.

» Fano switching
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Design switching

Theorem (lhringer and Simoens, 2025+)

Let I be a graph with an ' edgeless or complete subgraph C' whose
vertices are identified as points of an (r, \)-design such that every
vertex b

Let m be a permutation of the blocks such that for all blocks B;, B;,

|Bi N Bj| = [x(Bi) N7 (Bj)| -

For every x ¢ C adjacent to the points of B, make it adjacent to the
points of w(B). The resulting graph is cospectral with T
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|B; N Bj| = |n(B;) Nw(By)| .

For every x ¢ C adjacent to the points of B, make it adjacent to the
points of w(B). The resulting graph is cospectral with T

Proof. Define R = 5 (N(N™)T — \J), where N™ is obtained
from the incidence matrix N by permuting the columns with 7.

Ay AL\ (R O\ [An Ap\ (R O
A/21 A22 - O 1 A21 A22 o 1) ]
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Design switching

Theorem (lhringer and Simoens, 2025+)

Let I be a graph with a  subgraph C' with adjacency matrix Ac such
that R Ac R is again an adjacency matrix whose vertices are
identified as points of an (r, \)-design such that every vertex
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Triangular graphs

The triangular graph T;, has as vertices the 2-subsets of
{1,...,n}, where two vertices are adjacent if they intersect.

In other words, T,, = L(K,,).
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{1,2}
{1,3} {1,4}

{2,3} {2,4}
{3,4}

The octahedral graph 7.
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Triangular graphs

Definition

The triangular graph T;, has as vertices the 2-subsets of
{1,...,n}, where two vertices are adjacent if they intersect.

In other words, T,, = L(K,,).

{1,2}
{1,2}
1,3} 1,4} 5.4} A (4.5}
{2,3} {2,4} ‘.'

6 'A
{2,5} {1,3}

The octahedral graph Tj.

The Petersen graph T5.
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Triangular graphs

Theorem (Chang and Hoffman, independently, 1959)
The triangular graph T, is determined by its spectrum iff n # 8.
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g-triangular graphs

The g-triangular graph T, ,, has as vertices the | 2-dimensional
subspaces of Iy where two vertices are adjacent if they intersect.
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g-triangular graphs

The g-triangular graph T, ,, has as vertices the lines of PG(n—1, q)
where two vertices are adjacent if they intersect.
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g-triangular graphs

The g-triangular graph T, ,, has as vertices the lines of PG(n—1, q)
where two vertices are adjacent if they intersect.
Theorem (lhringer and Munemasa, 2019)

The q-triangular graph T, ,, is not determined by its spectrum if n > 4.

Proof. Consider the subgraph T} 3 of all lines in a given plane
PG(2,q) C PG(n — 1, q) and consider the design D = (P, B) where

P = {lines of PG(2, q)}
B = {point pencils of PG(2, q) }

Apply design switching, using any permutation 7 of B3 that is not an
automorphism. This creates maximal cliques of size ¢ + q. O
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g-triangular graphs

Theorem (lhringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as T .

22/24



g-triangular graphs

Theorem (lhringer and Simoens, 2025+)

There are at least q! graphs with the same spectrum as T .

Proof (same strategy as in [Brouwer, lhringer and Kantor, 2022]).
Let I'; denote the graph obtained from design switching T}, , with
m. Then

Iy =T,
<= m and 2 are in the same double coset of Aut(D) in Sym(B).

There are at least ¢! double cosets. [
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There are at least q! graphs with the same spectrum as T .

Proof (same strategy as in [Brouwer, lhringer and Kantor, 2022]).
Let I'; denote the graph obtained from design switching T}, , with
m. Then

Iy =T,
<= m and 2 are in the same double coset of Aut(D) in Sym(B).

There are at least ¢! double cosets. [

» Many strongly regular graphs with the same parameters.
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Ongoing work

» Many designs to try
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Ongoing work

» Many designs to try
» Alternative proofs of cospectrality results

» g-triangular graphs [lhringer and Munemasa, 2019]
» Collinearity graphs of polar spaces [Brouwer, lhringer and
Kantor, 2022]

» Collinearity graphs of generalised quadrangles [Guo and van
Dam, 2022]
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Ongoing work

» Many designs to try
» Alternative proofs of cospectrality results
» g-triangular graphs [lhringer and Munemasa, 2019]
» Collinearity graphs of polar spaces [Brouwer, lhringer and
Kantor, 2022]
» Collinearity graphs of generalised quadrangles [Guo and van
Dam, 2022]
» All commonly known indecomposable switching methods can
be reformulated as design switching.

» More general: m may also be a bijection between blocks of
different designs.
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Thank you for listening!
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