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Exercise
Let W denote the set of reduced words.
(W, concatenation + reduction) is a group!

W = ⟨1,2 | 11 = 22 = e, 121 = 212⟩.

Exercise
(W, concatenation + reduction) ∼= Sym(3)

1 ↔ (12)
2 ↔ (23)
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Observation
For any w ∈ W and i ∈ {1,2}

Aw ∗ Ai =

{
Awi if ℓ(wi) > ℓ(w)

Awi + (q− 1)Aw if ℓ(wi) < ℓ(w).

Observation
For q = 1 we retrieve Sym(3)!
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Oppositeness

Problem
What is the largest set of pairwise non-opposite flags?

Theorem (Erdős-Ko-Rado 1961)
The largest family of pairwise intersecting k-subsets of an
n-set, n ≥ 2k, has size at most(

n− 1
k − 1

)
.

For n > 2k, equality is attained only by stars.
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.

Kneser graph
Vertex set = k-subsets of an n-set,
Edge set = A ∼ B if A ∩ B = ∅.

v =

(
n
k

)
, d =

(
n− k
k

)
, λ = −

(
n− k − 1
k − 1

)
.



Algebraic proofs

Ratio bound
Let S be an independent set in a d-regular graph on v
vertices whose smallest eigenvalue is λ. Then

|S| ≤ −vλ
d− λ

.

Moreover if equality is attained then 1S ∈ Ed ⊕ Eλ.
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is central in it.
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Theorem (De Beule-M.-Metsch 2022)
Let S be a set of pairwise non-opposite flags and n ≥ 2,
then

|S| ≤ # of flags
q(n+1)/2 + 1

in type An,

|S| ≤ # of flags
qn+e−1 + 1

in (most of) type Bn.

Theorem (De Beule-M.-Metsch 2025+)
We have a description of a spanning set for Eλ in
▶ type A2n+1, n ≥ 1
▶ (most of) type Bn, n ≥ 2.
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For q large enough, equality in type A2n+1 is attained only
by blow-ups of (dual) stars of n-spaces.
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For q large enough, equality (in most cases) in type Bn is
attained only by blow-ups of the set of points in a
generator, or a blow-up of a star of generators,
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