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Exercise

ArxAy = A

Arp x A1 = Ay

A2-| *A-| =1 'A2 + (q - 1) 'A2'|
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On the set of words (finite sequences of 1s and 2s) we
define

> 11=22=c¢ (involutions)
> 121 =212 (the braid rule)
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A word is reduced if any combination of the rules do not
shorten it.

The length ¢(w) of a reduced word is what you think it is.
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Exercise

The reduced words and their lengths are

e 1 2 12 21 121
0 1 1 2 2 3
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Exercise

Let W denote the set of reduced words.
(W, concatenation + reduction) is a group!

W=(1,2]11=22=e,121=212).
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121212 = (12)3 = e
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Exercise

Let W denote the set of reduced words.
(W, concatenation + reduction) is a group!

W=(1,2]1=22=e,121 = 212).

Exercise
(W, concatenation + reduction) = Sym(3)

16 (12)
2 ¢ (23)
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AW*AF:{AM it (wi) > £(w)
Awi+ (g — DAy ifL(wi) < £(w).
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Observation

Foranyw € Wandi € {1,2}

AW*AF:{AM it (wi) > £(w)
Awi+ (g — DAy ifL(wi) < £(w).

Observation
For g = 1 we retrieve Sym(3)!
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((e1), (e1,€2), (e1,€2,€3)) ~ (12) < 1
= ((e2), (e2,€1), (e2,€1,€3))
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Observation

Given a fixed flag
e 1 2 12 21 121
1 g 49 ¢ 7 q°
.
-
Exercise
The reduced words and their lengths are
e 1 2 12 21 121
0 1 1 2 2 3
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The set {Ay }wew generates a (non-commutative) matrix
algebra over C satisfying

1 Ao =1,

2. ZWEWAW - J,
3. (Aw)T = A, 1,
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Summary
We have

>

vvvyyypy

a geometry of flags

a Coxeter group

a Dynkin diagram

an Iwahori-Hecke algebra
a classical group
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Fact
There is a unique word wy of longest length.

Definition
Two flags are opposite if they are in relation wy.

Example

In A, wg = 121
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What is the largest set of pairwise non-opposite flags?
. J
4 )

Theorem (Erd6s-Ko-Rado 1961)

The largest family of pairwise intersecting k-subsets of an
n-set, n > 2k, has size at most

(k1)

For n > 2k, equality is attained only by stars.
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Ratio bound
Let S be an independent set in a d-regular graph on v
vertices whose smallest eigenvalue is A. Then
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Ratio bound

Let S be an independent set in a d-regular graph on v
vertices whose smallest eigenvalue is A. Then
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S| <

Kneser graph

Vertex set = k-subsets of an n-set,
Edgeset=A~BifANB = 0.

=@ =0 05D
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Ratio bound

Let S be an independent set in a d-regular graph on v
vertices whose smallest eigenvalue is A. Then

—VA

< .
SI=g=x

Moreover if equality is attained then 15 € E; @ E,.
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Bad news
The Iwahori-Hecke algebra is not commutative.
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Good news
A%, is central in it.
. J
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Theorem (De Beule-M.-Metsch 2022)

Let S be a set of pairwise non-opposite flags and n > 2,
then

# of flags )
IS| < g2 41 in type Ap,
IS < # of flags in (most of) type B,,.
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Theorem (De Beule-M.-Metsch 2022)

Let S be a set of pairwise non-opposite flags and n > 2,
then

# of flags .

IS| < g2 41 in type Ap,
# of flags .

IS < e in (most of) type B,.

Theorem (De Beule-M.-Metsch 2025+)

We have a description of a spanning set for E) in
> type Azpiq,n > 1
» (most of) type By, n > 2.
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Theorem (Heering-Lansdown-Metsch 2025)

For q large enough, equality in type A, is attained only
by blow-ups of (dual) stars of n-spaces.
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Theorem (Heering-Lansdown-Metsch 2025)

For q large enough, equality in type A, is attained only
by blow-ups of (dual) stars of n-spaces.

Theorem (De Beule-Heering-M.-Metsch 2025+)
For q large enough, equality (in most cases) in type B, is
attained only by blow-ups of the set of points in a
generator, or a blow-up of a star of generators,
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