

Combinatorics of finite spherical buildings

Sam Mattheus

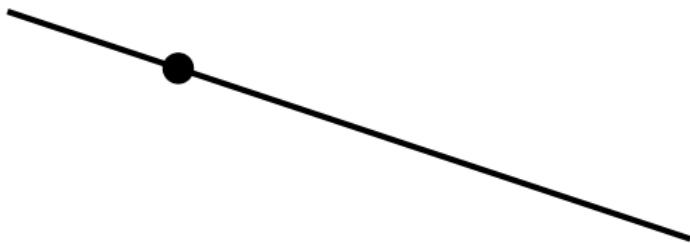
5th Pythagorean Conference
June 3, 2025

fwo

VUB
VRIJE
UNIVERSITEIT
BRUSSEL

Jacques Tits (1930-2021)

Foundations



Foundations

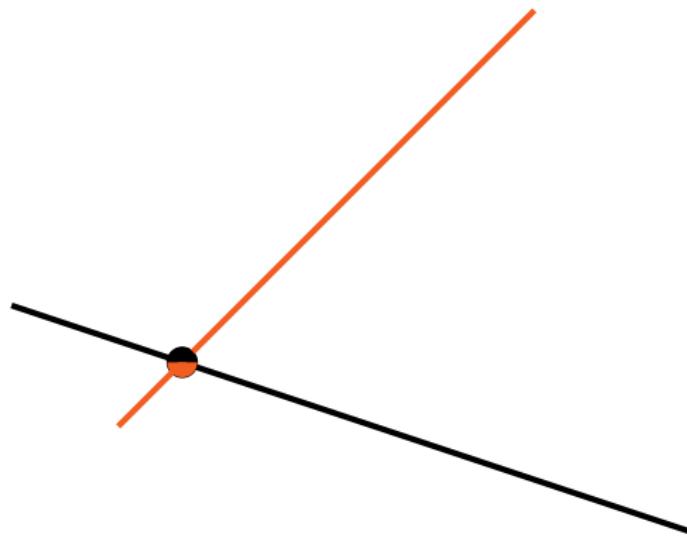
e

Foundations

1

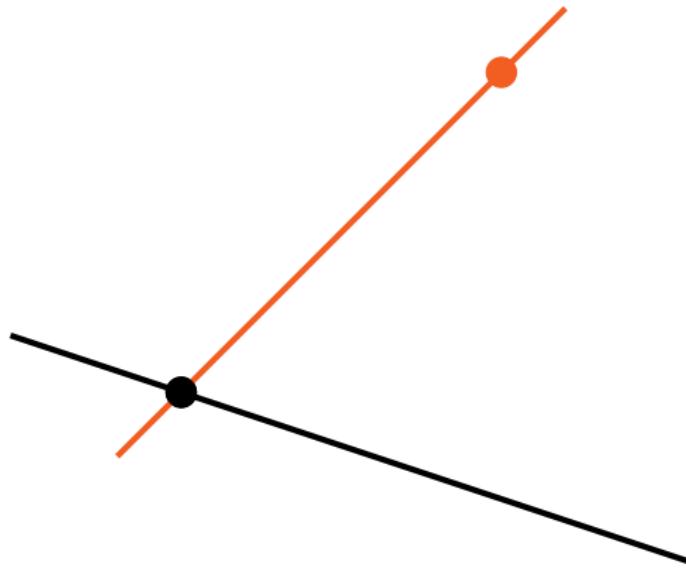
Foundations

2



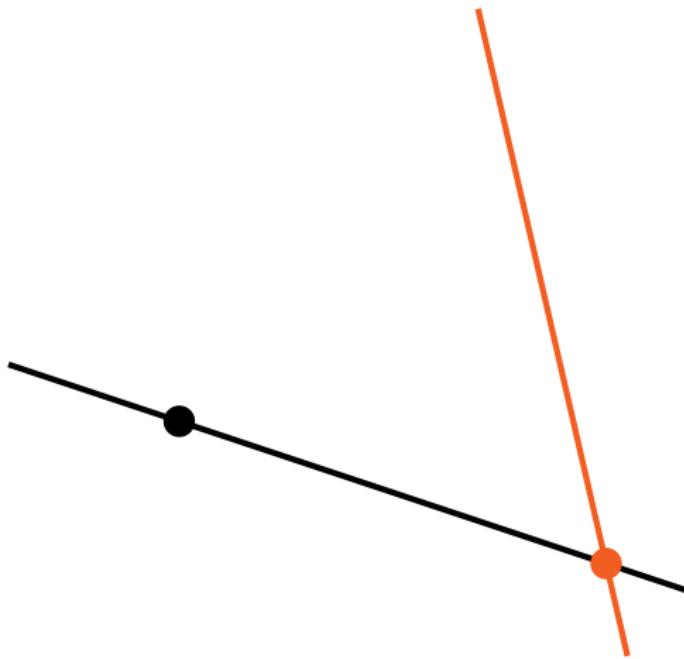
Foundations

21



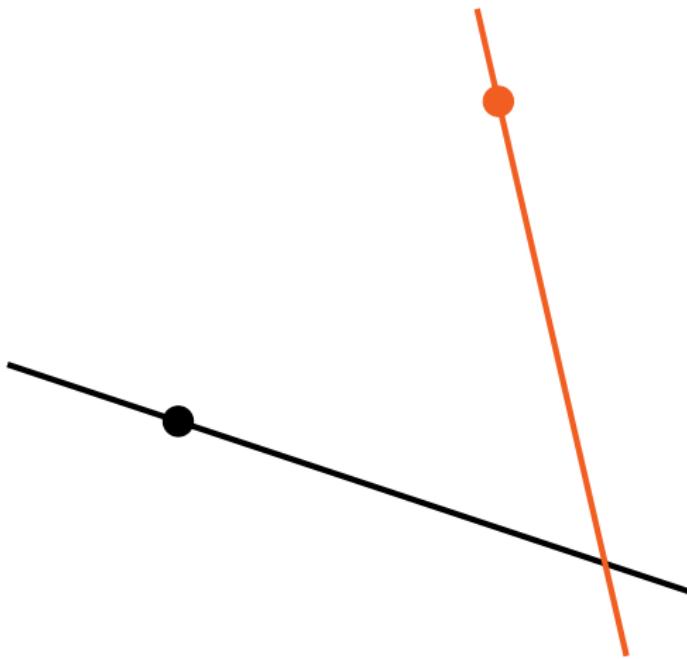
Foundations

12



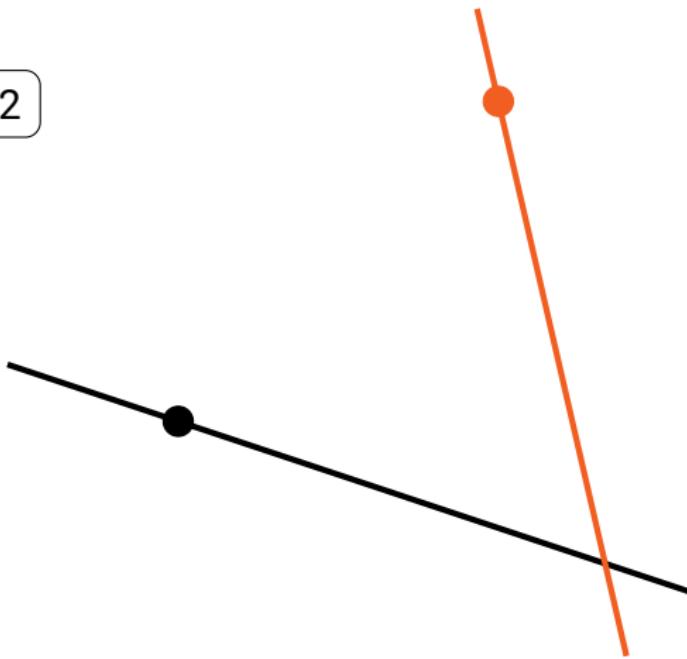
Foundations

121



Foundations

$121 = 212$

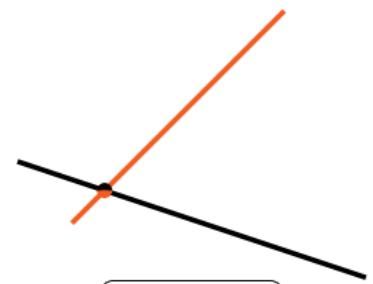


Foundations

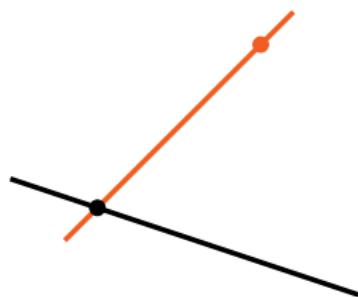
e

1

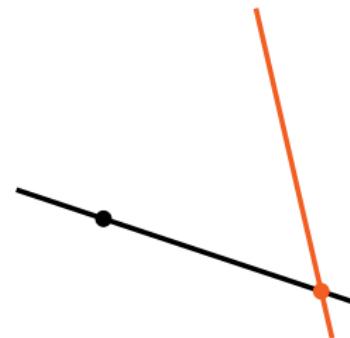
2



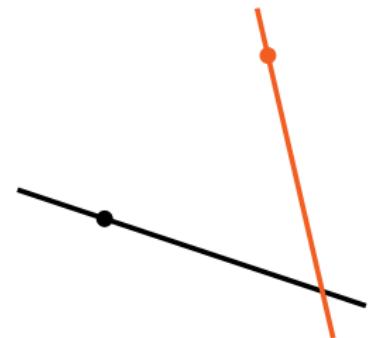
21



12



121 = 212

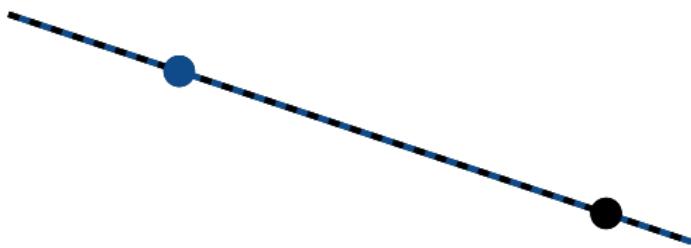


Foundations

1

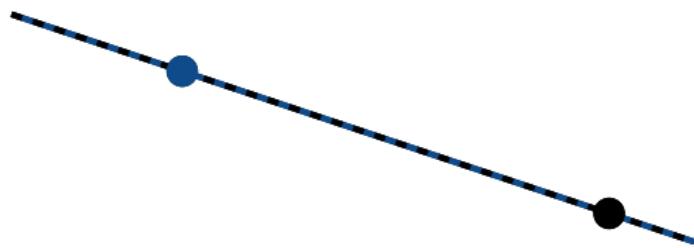
Foundations

1



Foundations

1 * 1

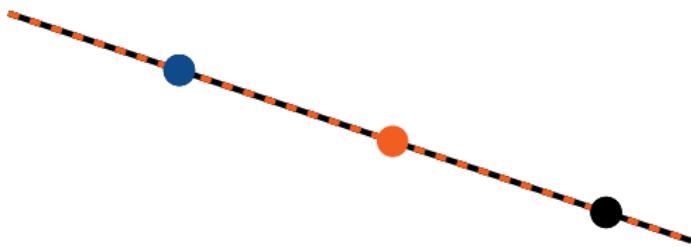


Foundations

$$1 * 1 = e$$

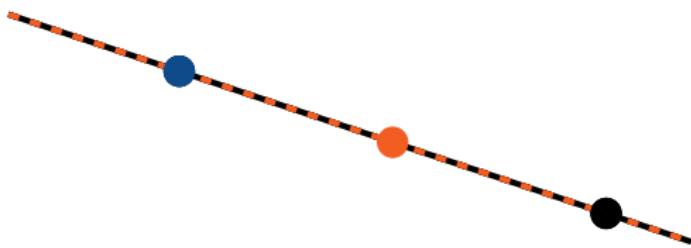
Foundations

$$1 * 1 \in \{e, 1\}$$



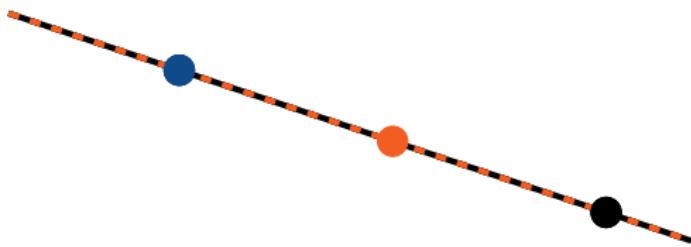
Foundations

$$1 * 1 = 1 \cdot e + (q - 1) \cdot 1$$



Foundations

$$A_1 * A_1 = 1 \cdot A_e + (q - 1) \cdot A_1$$



Foundations

Exercise

$$A_1 * A_2 = A_{12}$$

Foundations

Exercise

$$A_1 * A_2 = A_{12}$$

$$A_{12} * A_1 = A_{121}$$

Foundations

Exercise

$$A_1 * A_2 = A_{12}$$

$$A_{12} * A_1 = A_{121}$$

$$A_{21} * A_1 = 1 \cdot A_2 + (q - 1) \cdot A_{21}$$

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

11121211

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

11121211

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

121211

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

121211

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

1212

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

1212

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

2122

Foundations

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

21 $\textcolor{orange}{22}$

Definition

On the set of **words** (finite sequences of 1s and 2s) we define

- ▶ $11 = 22 = e$ (involutions)
- ▶ $121 = 212$ (the braid rule)

Example

Foundations

Definition

A word is **reduced** if any combination of the rules do not shorten it.

The **length** $\ell(w)$ of a reduced word is what you think it is.

Foundations

Definition

A word is **reduced** if any combination of the rules do not shorten it.

The **length** $\ell(w)$ of a reduced word is what you think it is.

Exercise

The reduced words and their lengths are

e	1	2	12	21	121
0	1	1	2	2	3

Exercise

Let W denote the set of reduced words.
 $(W, \text{concatenation} + \text{reduction})$ is a group!

$$W = \langle 1, 2 \mid 11 = 22 = e, 121 = 212 \rangle.$$

Exercise

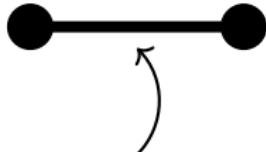
Let W denote the set of reduced words.
 $(W, \text{concatenation} + \text{reduction})$ is a group!

$$W = \langle 1, 2 \mid 11 = 22 = e, 121 = 212 \rangle.$$

Exercise

Let W denote the set of reduced words.
 $(W, \text{concatenation} + \text{reduction})$ is a group!

$$W = \langle 1, 2 \mid 11 = 22 = e, 121 = 212 \rangle.$$



$$121212 = (12)^3 = e$$

Foundations

Exercise

Let W denote the set of reduced words.
 $(W, \text{concatenation} + \text{reduction})$ is a group!

$$W = \langle 1, 2 \mid 11 = 22 = e, 121 = 212 \rangle.$$

Exercise

$(W, \text{concatenation} + \text{reduction}) \cong \text{Sym}(3)$

$$1 \leftrightarrow (12)$$

$$2 \leftrightarrow (23)$$

Foundations

Observation

For any $w \in W$ and $i \in \{1, 2\}$

$$A_w * A_i = \begin{cases} A_{wi} & \text{if } \ell(wi) > \ell(w) \\ A_{wi} + (q-1)A_w & \text{if } \ell(wi) < \ell(w). \end{cases}$$

Foundations

Observation

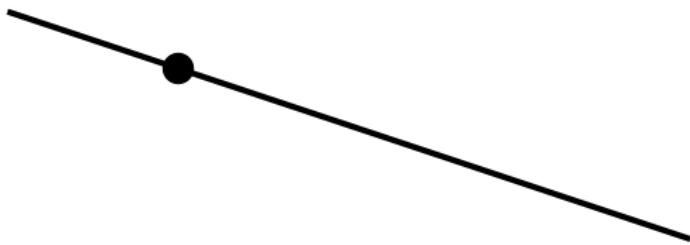
For any $w \in W$ and $i \in \{1, 2\}$

$$A_w * A_i = \begin{cases} A_{wi} & \text{if } \ell(wi) > \ell(w) \\ A_{wi} + (q-1)A_w & \text{if } \ell(wi) < \ell(w). \end{cases}$$

Observation

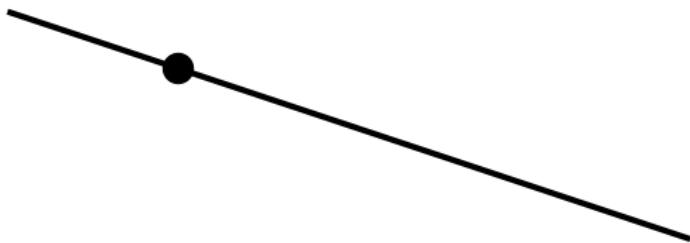
For $q = 1$ we retrieve $\text{Sym}(3)!$

Foundations



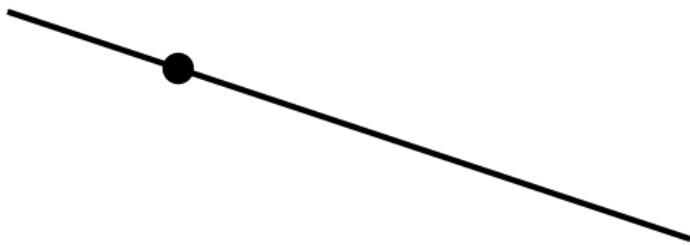
Foundations

$(\langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle)$



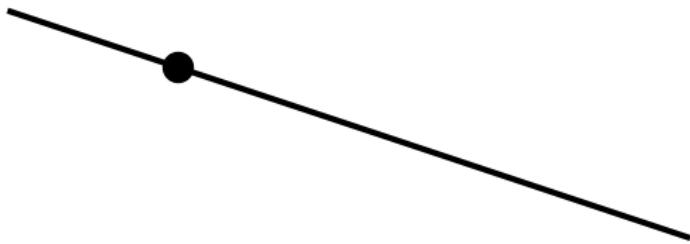
Foundations

$(\langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle) \curvearrowleft (12) \leftrightarrow 1$



Foundations

$$(\langle e_1 \rangle, \langle e_1, e_2 \rangle, \langle e_1, e_2, e_3 \rangle) \curvearrowleft (12) \leftrightarrow 1$$
$$= (\langle e_2 \rangle, \langle e_2, e_1 \rangle, \langle e_2, e_1, e_3 \rangle)$$



Foundations

$(\langle e_2 \rangle, \langle e_2, e_1 \rangle, \langle e_2, e_1, e_3 \rangle)$

Foundations

Observation

Given a fixed flag

e	1	2	12	21	121
1	q	q	q^2	q^2	q^3

Foundations

Observation

Given a fixed flag

e	1	2	12	21	121
1	q	q	q^2	q^2	q^3

Exercise

The reduced words and their lengths are

e	1	2	12	21	121
0	1	1	2	2	3

Foundations

Proposition

The set $\{A_w\}_{w \in W}$

Foundations

Proposition

The set $\{A_w\}_{w \in W}$ generates a (non-commutative) matrix algebra over \mathbb{C} satisfying

1. $A_e = I$,

Proposition

The set $\{A_w\}_{w \in W}$ generates a (non-commutative) matrix algebra over \mathbb{C} satisfying

1. $A_e = I$,
2. $\sum_{w \in W} A_w = J$,

Proposition

The set $\{A_w\}_{w \in W}$ generates a (non-commutative) matrix algebra over \mathbb{C} satisfying

1. $A_e = I$,
2. $\sum_{w \in W} A_w = J$,
3. $(A_w)^T = A_{w^{-1}}$,

Foundations

Summary

We have

- ▶ a geometry of flags

Foundations

Summary

We have

- ▶ a geometry of flags
- ▶ a Coxeter group

Summary

We have

- ▶ a geometry of flags
- ▶ a Coxeter group
- ▶ a Dynkin diagram

Summary

We have

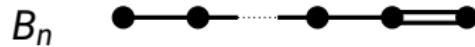
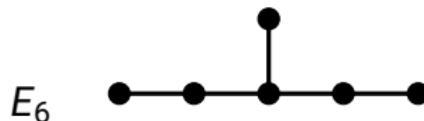
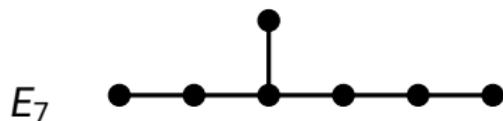
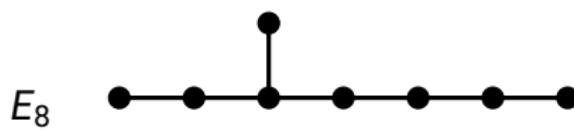
- ▶ a geometry of flags
- ▶ a Coxeter group
- ▶ a Dynkin diagram
- ▶ an Iwahori-Hecke algebra

Summary

We have

- ▶ a geometry of flags
- ▶ a Coxeter group
- ▶ a Dynkin diagram
- ▶ an Iwahori-Hecke algebra
- ▶ a classical group

Spherical buildings



Spherical buildings

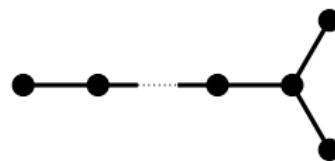
A_n

F_4

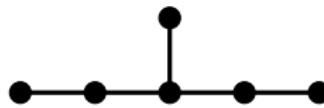
B_n

G_2

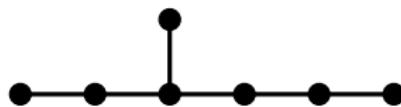
D_n



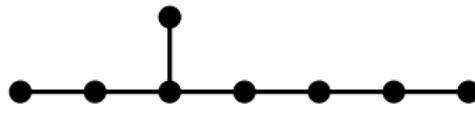
E_6



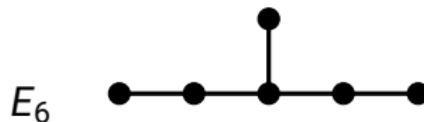
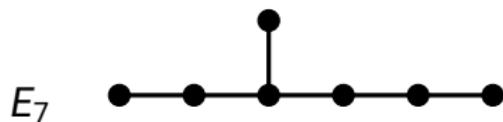
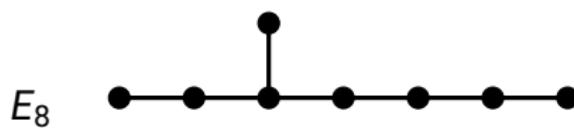
E_7



E_8



Spherical buildings



Oppositeness

Fact

There is a unique word w_0 of longest length.

Oppositeness

Fact

There is a unique word w_0 of longest length.

Definition

Two flags are **opposite** if they are in relation w_0 .

Oppositeness

Fact

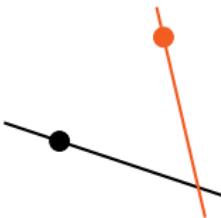
There is a unique word w_0 of longest length.

Definition

Two flags are **opposite** if they are in relation w_0 .

Example

In A_2 , $w_0 = 121$



Oppositeness

Problem

What is the largest set of pairwise non-opposite flags?

Oppositeness

Problem

What is the largest set of pairwise non-opposite flags?

Theorem (Erdős-Ko-Rado 1961)

The largest family of pairwise intersecting k -subsets of an n -set, $n \geq 2k$, has size at most

$$\binom{n-1}{k-1}.$$

For $n > 2k$, equality is attained only by stars.

Algebraic proofs

Ratio bound

Let S be an independent set in a d -regular graph on v vertices whose smallest eigenvalue is λ . Then

$$|S| \leq \frac{-v\lambda}{d - \lambda}.$$

Algebraic proofs

Ratio bound

Let S be an independent set in a d -regular graph on v vertices whose smallest eigenvalue is λ . Then

$$|S| \leq \frac{-v\lambda}{d - \lambda}.$$

Kneser graph

Vertex set = k -subsets of an n -set,
Edge set = $A \sim B$ if $A \cap B = \emptyset$.

$$v = \binom{n}{k}, \quad d = \binom{n-k}{k}, \quad \lambda = -\binom{n-k-1}{k-1}.$$

Algebraic proofs

Ratio bound

Let S be an independent set in a d -regular graph on v vertices whose smallest eigenvalue is λ . Then

$$|S| \leq \frac{-v\lambda}{d - \lambda}.$$

Moreover if equality is attained then $1_S \in E_d \oplus E_\lambda$.

Algebraic proof?

Bad news

The Iwahori-Hecke algebra is not commutative.

Algebraic proof?

Bad news

The Iwahori-Hecke algebra is not commutative.

Good news

$A_{w_0}^2$ is central in it.

Algebraic proof!

Theorem (De Beule-M.-Metsch 2022)

Let S be a set of pairwise non-opposite flags and $n \geq 2$, then

$$|S| \leq \frac{\# \text{ of flags}}{q^{(n+1)/2} + 1} \quad \text{in type } A_n,$$

$$|S| \leq \frac{\# \text{ of flags}}{q^{n+e-1} + 1} \quad \text{in (most of) type } B_n.$$

Algebraic proof!

Theorem (De Beule-M.-Metsch 2022)

Let S be a set of pairwise non-opposite flags and $n \geq 2$, then

$$|S| \leq \frac{\# \text{ of flags}}{q^{(n+1)/2} + 1} \quad \text{in type } A_n,$$

$$|S| \leq \frac{\# \text{ of flags}}{q^{n+e-1} + 1} \quad \text{in (most of) type } B_n.$$

Theorem (De Beule-M.-Metsch 2025+)

We have a description of a spanning set for E_λ in

- ▶ type A_{2n+1} , $n \geq 1$
- ▶ (most of) type B_n , $n \geq 2$.

Algebraic proof!

Theorem (Heering-Lansdown-Metsch 2025)

For q large enough, equality in type A_{2n+1} is attained only by blow-ups of (dual) stars of n -spaces.

Algebraic proof!

Theorem (Heering-Lansdown-Metsch 2025)

For q large enough, equality in type A_{2n+1} is attained only by blow-ups of (dual) stars of n -spaces.

Theorem (De Beule-Heering-M.-Metsch 2025+)

For q large enough, equality (in most cases) in type B_n is attained only by blow-ups of the set of points in a generator, or a blow-up of a star of generators,

Thank you for your attention!

sammatttheus.wordpress.com