

Stable Higher Specht Polynomials

Shaul Zemel

PYTH5 Conference, Kalamata, Greece

June 3, 2025

Notation

S_n - The symmetric group on n elements.

$S_{\mathbb{N}}$ - The symmetric group acting on \mathbb{N}

$S_{\infty} := \{\sigma \in S_{\mathbb{N}} \mid \exists n \ \sigma(m) = m \ \forall m > n\}$

$\mathbb{Q}[\mathbf{x}_n] := \mathbb{Q}[x_1, \dots, x_n]$

$\mathbb{Q}[\mathbf{x}_{\infty}] := \mathbb{Q}[x_1, x_2, \dots]$

$\mathbb{Q}[\![\mathbf{x}_{\infty}]\!] := \mathbb{Q}[\![x_1, x_2, \dots]\!]$ (formal power series)

Λ - The ring of symmetric functions. We thus have:

$$\Lambda = \{F \in \mathbb{Q}[\![\mathbf{x}_{\infty}]\!] \mid \sigma F = F \ \forall \sigma \in S_{\mathbb{N}}, \ \deg F < \infty\}.$$

Actions and Representations

The group S_n acts on $\mathbb{Q}[\mathbf{x}_n]$ by interchanging the variables.

Similarly, $S_{\mathbb{N}}$ acts on $\mathbb{Q}[\mathbf{x}_{\infty}]$, as does its subgroup S_{∞} . They also act trivially on elements of Λ .

Both $\mathbb{Q}[\mathbf{x}_n]$ and $\mathbb{Q}[\mathbf{x}_{\infty}]$ are graded rings, with the usual grading. The actions preserve degrees.

$\mathbb{Q}[\mathbf{x}_n]_d$ - The part of $\mathbb{Q}[\mathbf{x}_n]$ that is homogeneous of degree d .

Similarly $\mathbb{Q}[\mathbf{x}_{\infty}]_d$ and Λ_d .

A Phenomenon

$$\mathbb{Q}[\mathbf{x}_n]_1^0 := \left\{ \sum_{i=1}^n a_i x_i \mid \sum_{i=1}^n a_i = 0 \right\} \subseteq \mathbb{Q}[\mathbf{x}_n]_1.$$

It is an irreducible sub-representation, and we have

$$\mathbb{Q}[\mathbf{x}_n]_1 = \mathbb{Q}[\mathbf{x}_n]_1^0 \oplus \mathbb{Q}e_1^{(n)}, \text{ where } e_1^{(n)} := \sum_{i=1}^n x_i. \text{ Same } \forall n \geq 2.$$

$$\mathbb{Q}[\mathbf{x}_\infty]_1^0 := \left\{ \sum_{i=1}^{\infty} a_i x_i \in \mathbb{Q}[\mathbf{x}_\infty]_1 \mid \sum_{i=1}^{\infty} a_i = 0 \right\}.$$

It is irreducible, of co-dimension 1, but with no complement. The element e_1 is no longer in $\mathbb{Q}[\mathbf{x}_\infty]$, but rather in Λ .

Partitions and Tableaux

$\lambda \vdash n$ indicates that λ is a partition of n (or its Ferrers diagram).

$\text{SYT}(\lambda)$ - The set of standard Young tableaux of shape λ (and content $\{1, \dots, n\}$).

$\text{SSYT}(\lambda)$ - The set of standard Young tableaux of shape λ , containing non-negative integers.

For example, $\lambda = 431 \vdash 8$, then $T \in \text{SYT}(\lambda)$ and $M \in \text{SSYT}(\lambda)$ with

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}, \quad M := \begin{array}{|c|c|c|c|} \hline 0 & 0 & 2 & 5 \\ \hline 1 & 2 & 4 & \\ \hline 4 & & & \\ \hline \end{array}.$$

The Irreducible Representations of S_n

Theorem (classical)

The irreducible representations of S_n are in one-to-one correspondence with partitions of n . The representation \mathcal{S}^λ that is associated with $\lambda \vdash n$ has dimension $f^\lambda := |\text{SYT}(\lambda)|$.

The abstract representation \mathcal{S}^λ (or its classical construction using classes of tableaux) is called a *Specht module*.

Higher Specht polynomials, and their generalizations, span realizations of Specht modules as representations inside $\mathbb{Q}[\mathbf{x}_n]$.

Row and Column Subgroups

Fix $\lambda \vdash n$ and $T \in \text{SYT}(\lambda)$. Then there are subgroups

$R(T) := \{\tau \in S_n \mid \tau \text{ preserves the rows of } T\}$ and

$C(T) := \{\sigma \in S_n \mid \sigma \text{ preserves the columns of } T\}$.

The module \mathcal{S}^λ is spanned by $\{\mathbf{e}_T \mid T \in \text{SYT}(\lambda)\}$, where e_T is the *polytabloid* associated with T . We have $\sigma \mathbf{e}_T = \text{sgn}(\sigma) \mathbf{e}_T$ for $\sigma \in C(T)$.

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}$$

$$R(T) = S_{\{1,2,4,7\}} \times S_{\{3,5,8\}} \subseteq S_8$$

$$C(T) = S_{\{1,3,6\}} \times S_{\{2,5\}} \times S_{\{4,8\}} \subseteq S_8$$

Specht Polynomials

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}$$

$$R(T) = S_{\{1,2,4,7\}} \times S_{\{3,5,8\}} \subseteq S_8$$

$$C(T) = S_{\{1,3,6\}} \times S_{\{2,5\}} \times S_{\{4,8\}} \subseteq S_8$$

$$\sigma \mathbf{e}_T = \text{sgn}(\sigma) \mathbf{e}_T \text{ for } \sigma \in C(T).$$

A natural polynomial is then the *Specht polynomial*

$$F_{C^0, T} := \prod_{c \in \text{Col}(T)} \prod_{i < j \in c} (x_j - x_i)$$

In our example it is $(x_3 - x_1)(x_6 - x_1)(x_6 - x_3)(x_5 - x_2)(x_8 - x_4)$.

Representations on Specht Polynomials

Theorem (old - Specht, Peel, Murphy)

Given $\lambda \vdash n$, set $F_{C^0, T} := \prod_{c \in \text{Col}(T)} \prod_{i < j \in c} (x_j - x_i)$ for every $T \in \text{SYT}(\lambda)$. Then $\{\mathbf{F}_{C^0, T} \mid T \in \text{SYT}(\lambda)\}$ span a representation of S_n that is isomorphic to \mathcal{S}^λ .

The higher Specht polynomials produce additional copies of \mathcal{S}^λ inside $\mathbb{Q}[\mathbf{x}_n]$, originally by Ariki, Terasoma, and Yamada to obtain an explicit expression for the co-invariant ring as a regular representation of S_n . We define directly the generalized higher Specht polynomials.

For Generalized Higher Specht Polynomials

Take $\lambda \vdash n$, $T \in \text{SYT}(\lambda)$, and $M \in \text{SSYT}(\lambda)$.

$v_T(i)$ - The box containing an index $1 \leq i \leq n$ in T .

$M[v]$ - The value showing up in M inside the box $v \in \lambda$.

The *Young symmetrizer* is $\varepsilon_T := \sum_{\sigma \in C(T)} \sum_{\tau \in R(T)} \text{sgn}(\sigma) \sigma \tau$.

We define $p_{M,T} := \prod_{i=1}^n x_i^{M[v_T(i)]}$. In our example

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}, \quad M := \begin{array}{|c|c|c|c|} \hline 0 & 0 & 2 & 5 \\ \hline 1 & 2 & 4 & \\ \hline 4 & & & \\ \hline \end{array},$$

we have $p_{M,T} = x_3 x_4^2 x_5^2 x_6^4 x_7^5 x_8^4$.

Generalized Higher Specht Polynomials

Definition (Generalized Higher Specht Polynomials)

Set $p_{M,T} := \prod_{i=1}^n x_i^{M[v_T(i)]}$, write $s_{M,T}$ for the size of the stabilizer of $p_{M,T}$ in $R(T)$, and define $F_{M,T} := \varepsilon_T p_{M,T} / s_{M,T}$.

When C^0 is the minimal element of $\text{SSYT}(\lambda)$, this reproduces $F_{C^0,T}$.

Theorem (Peel, Murphy, Gillespie–Rhoades)

The space V_M spanned by $\{F_{M,T} \mid T \in \text{SYT}(\lambda)\}$ is a representation of S_n that is isomorphic to \mathcal{S}^λ by $F_{M,T} \leftrightarrow \mathbf{e}_T$.

Dividing by $s_{M,T}$ makes $F_{M,T}$ primitive in $\mathbb{Z}[\mathbf{x}_n]$. This scalar depends on M but not on T , and just rescales the representation at this point.

Extended Column Subgroups

Recall that $C(T) := \{\sigma \in S_n \mid \sigma \text{ preserves the columns of } T\}$.

Write $\tilde{C}(T)$ for the group containing $C(T)$ but in which full columns of the same size can also be permuted. It is the normalizer $N_{S_n}(C(T))$, and a semi-direct product $(R(T) \cap \tilde{C}(T)) \rtimes C(T)$.

The sign character on $C(T)$ and the trivial character on $R(T) \cap \tilde{C}(T)$ combine to a character $\widetilde{\text{sgn}} : \tilde{C}(T) \rightarrow \{\pm 1\}$.

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}$$

$$C(T) = S_{\{1,3,6\}} \times S_{\{2,5\}} \times S_{\{4,8\}} \subseteq S_8$$

$R(T) \cap \tilde{C}(T) = \langle (24)(58) \rangle$, $\tilde{C}(T)$ is the semi-direct product.

Actions of Extended Column Subgroups

Let $\lambda \vdash n$, $T \in \text{SYT}(\lambda)$, and $M \in \text{SSYT}(\lambda)$ be given. Recall the group $\tilde{C}(T) = (R(T) \cap \tilde{C}(T)) \rtimes C(T)$ and its character $\widetilde{\text{sgn}} : \tilde{C}(T) \rightarrow \{\pm 1\}$.

Proposition

The generalized higher Specht polynomial $F_{M,T}$ is in the $\widetilde{\text{sgn}}$ -eigenspace of the action of $\tilde{C}(T)$.

Corollary

The quotient $Q_{M,T} := F_{M,T}/F_{C^0,T}$ is $\tilde{C}(T)$ -invariant.

Conjecture

The symmetric functions inside $\mathbb{Q}[\mathbf{x}_n]$ and the quotients $Q_{C,T}$, where C runs over the cocharge tableaux of shape λ , generate the ring of $\tilde{C}(T)$ -invariants inside $\mathbb{Q}[\mathbf{x}_n]$.

Extending Tableaux

Definition

- For $\lambda \vdash n$, let $\lambda_+ \vdash n+1$ be λ plus another box in the first row.
- Given $T \in \text{SYT}(\lambda)$, we denote by $\iota T \in \text{SYT}(\lambda_+)$ the tableau filled as T plus $n+1$ in the new box.
- If $M \in \text{SSYT}(\lambda)$ then $\hat{\iota} M \in \text{SSYT}(\lambda_+)$ is obtained from M by shoving the first row one box to the right, and filling with a 0.

$$T := \begin{array}{|c|c|c|c|} \hline 1 & 2 & 4 & 7 \\ \hline 3 & 5 & 8 & \\ \hline 6 & & & \\ \hline \end{array}$$
$$M := \begin{array}{|c|c|c|c|} \hline 0 & 0 & 2 & 5 \\ \hline 1 & 2 & 4 & \\ \hline 4 & & & \\ \hline \end{array}$$
$$\iota T := \begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 4 & 7 & 9 \\ \hline 3 & 5 & 8 & & \\ \hline 6 & & & & \\ \hline \end{array}$$
$$\hat{\iota} M := \begin{array}{|c|c|c|c|c|} \hline 0 & 0 & 0 & 2 & 5 \\ \hline 1 & 2 & 4 & & \\ \hline 4 & & & & \\ \hline \end{array}$$

The Key Relation

Let $\lambda \vdash n$, $T \in \text{SYT}(\lambda)$, and $M \in \text{SSYT}(\lambda)$ be given, and set $\lambda_+ \vdash n+1$, $\iota T \in \text{SYT}(\lambda_+)$, and $\hat{\iota} M \in \text{SSYT}(\lambda_+)$ be as above. We then have $F_{M,T} \in \mathbb{Q}[\mathbf{x}_n]$ and $F_{\hat{\iota} M, \iota T} \in \mathbb{Q}[\mathbf{x}_{n+1}]$.

Proposition

We have the equality $F_{\hat{\iota} M, \iota T}(x_{n+1} = 0) = F_{M,T}$. Moreover, if M contains enough zeros, then $F_{\hat{\iota} M, \iota T}$ is the only element of the $\widetilde{\text{sgn}}$ -eigenspace of $\tilde{C}(\iota T)$ which satisfies this equality.

The division by $s_{M,T}$ in the definition is crucial here. By repeated applications, we get the following result.

Theorem

There is a homogeneous power series $F_{\hat{M}, \hat{T}} \in \mathbb{Q}[[\mathbf{x}_\infty]]$ that is symmetric in $\{x_m \mid m > n\}$ and satisfies $F_{\hat{M}, \hat{T}}(x_m = 0 \ \forall m > n) = F_{M,T}$.

The series $F_{\hat{M}, \hat{T}}$ is an inverse limit of $\{F_{\hat{\iota} M, \iota T} \rightarrow F_{M,T}\}$.

Eventually Symmetric Functions

We denote by $\tilde{\Lambda}$ the ring of *eventually symmetric functions*. Namely if $S_{\mathbb{N}}^{(n)} := \{\sigma \in S_{\mathbb{N}} \mid \sigma(i) = i \ \forall 1 \leq i \leq n\}$ then

$$\tilde{\Lambda} := \{F \in \mathbb{Q}[\![\mathbf{x}_\infty]\!] \mid \exists n \text{ s.t. } \sigma F = F \ \forall \sigma \in S_{\mathbb{N}}^{(n)}, \deg F < \infty\}.$$

These are also known as *almost symmetric functions*.

Proposition

- The ring $\tilde{\Lambda}$ is generated inside $\mathbb{Q}[\![\mathbf{x}_\infty]\!]$ by $\mathbb{Q}[\mathbf{x}_\infty]$ and Λ in an algebraically independent manner.
- Representations inside $\tilde{\Lambda}$ are the same for $S_{\mathbb{N}}$ and for S_∞ .

Stable Representations

For $\lambda \vdash n$ and $d \geq 0$, write $\text{SSYT}_d(\lambda)$ for the set of those $M \in \text{SSYT}(\lambda)$ whose entry sum is d .

Theorem

For every n and d , a decomposition of $\mathbb{Q}[\mathbf{x}_n]_d$ into irreducibles as a representation of S_n is given by $\bigoplus_{\lambda \vdash n} \bigoplus_{M \in \text{SSYT}_d(\lambda)} V_M$.

Proposition

If $n > 2d$ then $\hat{\iota} : \bigcup_{\lambda \vdash n} \text{SSYT}_d(\lambda) \rightarrow \bigcup_{\mu \vdash n+1} \text{SSYT}_d(\mu)$ is a bijection.

Combined with the theorem, this presents $\{\mathbb{Q}[\mathbf{x}_n]_d\}_n$ as a *stable representation*, also known as a *finitely generated FI-module*.

This is the “same $\forall n \geq 2$ ” assertion for $d = 1$ from above.

Infinite Tableaux

Definition

- An *infinite Ferrers diagram* is a Ferrers diagram in which the first row is infinite. We denote that by $\hat{\lambda} \vdash \infty$.
- An element \hat{T} of $\text{SYT}(\hat{\lambda})$ is a filling of $\hat{\lambda}$ in a standard manner.
- We write $\hat{M} \in \text{SSYT}(\hat{\lambda})$ for a semi-standard filling of $\hat{\lambda}$, with an indication of the finitely many non-zero entries at the “end” of the first, infinite line.

$$\hat{T} := \begin{array}{|c|c|c|c|c|c|c|} \hline 1 & 2 & 4 & 7 & 9 & \cdots \\ \hline 3 & 5 & 8 & & & & \\ \hline 6 & & & & & & \\ \hline \end{array}, \quad \hat{M} := \begin{array}{|c|c|c|c|c|c|c|} \hline 0 & 0 & 0 & 0 & 0 & \cdots \\ \hline 1 & 2 & 4 & & & & \\ \hline 4 & & & & & & \\ \hline \end{array},$$

where in \hat{M} we also consider a 2 and a 5 at the “end” of the infinite row.

Representations of Infinite Symmetric Groups

Theorem

- For $\hat{\lambda} \vdash \infty$, $\hat{T} \in \text{SYT}(\hat{\lambda})$, and $\hat{M} \in \text{SSYT}(\hat{\lambda})$ there is a construction of an element $F_{\hat{M}, \hat{T}} \in \hat{\Lambda}$ as the image of a monomial $p_{\hat{M}, \hat{T}}$ under a “Young symmetrizer $\varepsilon_{\hat{T}}$ modulo stabilizer”.
- This construction produces precisely the inverse limits of $\{F_{\hat{M}, \iota T} \rightarrow F_{M, T}\}$.
- The space $V_{\hat{M}}$ spanned by $\{F_{\hat{M}, \hat{T}} \mid \hat{T} \in \text{SYT}(\hat{\lambda})\}$, as a basis, is an irreducible representation of both $S_{\mathbb{N}}$ and S_{∞} .
- The isomorphism classes of irreducible representations obtained in this way is in bijection with infinite Ferrers diagrams $\hat{\lambda} \vdash \infty$.

Limits of Stable Representations

We let $\text{SSYT}_d(\hat{\lambda})$ consist of those $\hat{M} \in \text{SSYT}(\hat{\lambda})$ whose entry sum (including the entries at the “end” of the infinite row) is d .
We can now present the direct limit of $\{\mathbb{Q}[\mathbf{x}_n]_d\}_n$.

Theorem

The sum $\sum_{\hat{\lambda} \vdash \infty} \sum_{\hat{M} \in \text{SSYT}(\hat{\lambda})} V_{\hat{M}}$ is finite and direct, and produces the maximal completely reducible sub-representation $\tilde{\Lambda}_d^0$ inside $\tilde{\Lambda}_d$.

For $d = 1$ we have $\tilde{\Lambda}_1^0 = \mathbb{Q}[\mathbf{x}_\infty]_1^0 \oplus \mathbb{Q}e_1$ (see above).

There is also a conjectural finite filtration, with explicit maximal completely reducible sub-quotients, yielding the full representation $\tilde{\Lambda}_d$.
Intersecting this filtration with $\mathbb{Q}[\mathbf{x}_\infty]_d$ presents it, or its semi-simplification, as the inverse limit of this stable representation.

<https://arxiv.org/abs/2505.07097>

<https://arxiv.org/abs/2505.07098>

<https://arxiv.org/abs/2505.07099>

Thank you very much for your attention!
shaul.zemel@mail.huji.ac.il