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GENUS 2 CURVES I
Every genus 2 curve C over a field k of characteristic in char k ̸= 2 has affine equation

Y 2 = a6X 6 + a5X 5Z + · · ·+ a1X + a0

Its invariants are:

J2 := − 240a0a6 + 40a1a5 − 16a2a4 + 6a2
3

J4 :=48a0a3
4 + 48a3

2a6 + 4a2
2a2

4 + 1620a2
0a2

6 + 36a1a2
3a5 − 12a1a3a2

4 − 12a2
2a3a5 + 300a2

1a4a6 + 300a0a2
5a2

+ 324a0a6a2
3 − 504a0a4a2a6 − 180a0a4a3a5 − 180a1a3a2a6 + 4a1a4a2a5 − 540a0a5a1a6 − 80a2

1a2
5

J6 := − a2
5a2

4a2
2 + 1600a3

1a5a4a6 + 1600a1a3
5a0a2 − 2240a2

1a2
5a0a6 + 20664a2

0a4a2
6a2 − 640a0a4a2

2a2
5 − 18600a0a4a2

1a2
6 + 76a1a3a2a3

4 − 198a1a3
3a2a6

+ 26a1a3a2
2a2

5 + 616a3
2a5a1a6 + 28a1a2

4a2
2a5 − 640a2

1a2
4a2a6 + 26a2

1a2
4a3a5 + 616a1a3

4a0a5 + 59940a2
0a5a2

6a1 + 330a0a2
5a2

3a2 + 8a2
2a2

3a2
4 − 24a2

2a2
3a5

+ 60a3
2a2

3a6 + 60a0a3
4a2

3 − 192a3
2a0a2

6 − 320a4
2a4a6 + 176a2

1a2
5a2

3 + 2250a3
1a3a2

6 − 900a2
2a2

1a2
6 − 900a2

0a2
5a2

4 − 10044a2
0a2

6a2
3 + 162a0a6a4

3 − 36a4
2a2

5

− 36a2
1a4

4 + 76a3
2a2 − 320a3

1a3
5 + 484a + 492a0a2

4a2a3a5 + 492a0a2
4a2a3a5 + 3060a2

0a4a6a3a5 − 468a0a4a2
3a2a6 + 3472a0a4a2a5a1a6 + 492a1a3a2

2a4a6

− 238a1a2
3a2a4a5 + 1818a1a2

3a0a6a5 − 876a2
2a0a6a3a5 − 3a5 − 198a0a4a3

3a5 + 330a2
1a2

3a6a4 + 72a1a4
3a5 − 24a1a3

3a2
4 + 2250a2

0a3
5a3 − 1860a1a4a0a2

5a3

+ 3060a1a3a0a2
6a2 − 876a0a2

4a1a6a3 − 1860a2
1a3a2a5a6 − 18600a2

0a2
5a6a2 − 24a3

2a3
4 − 119880a3

0a3
6

J10 :=a−1
6 ResX

(
f ,

∂f

∂X

)

Two genus 2 curves X and X ′ are isomorphic over k if and only if exists λ ∈ k⋆ such that

J2i (X ) = λ2i J2i (X ′).



Let the space of all tuples (J2, J4, J6, J10) be S. Define the following relation in S as follows. Two tuples

(J2, J4, J6, J10) ∼
(
J′

2, J
′
4, J

′
6, J

′
10
)

⇐⇒ ∃λ ∈ k⋆, (J2, J4, J6, J10) =
(
λ2J′

2, λ
4J′

4, λ
6J′

6, λ
10J′

10

)
The set of equivalence classes is called a weighted projective space denoted by WP(2,4,6,10),k .

It can be mapped to the projective space P3 via the Veronese map

WP(2,4,6,10),k → P3
k , via

[J2 : J4 : J6 : J10] −→
[
J30

2 : J15
4 : J10

6 : J6
10

]
.

Since J10 is the discriminant then J10 ̸= 0 and we can get ”affine” invariants as

[
J30

2 : J15
4 : J10

6 : J6
10

]
=

[
J30

2

J6
10

:
J15

4

J6
10

:
J10

6

J6
10

: 1

]

Thus, two genus curves are isomorphic if and only if they have the same invariants

i1 :=
J30

2

J6
10
, i2 :=

J15
4

J6
10
, i3 :=

J10
6

J6
10

Such invariants i1, i2, i3 are GL2(k)-invariants and sometimes are called absolute invariants.



(N, N)-SPLIT JACOBIANS I
Let C genus 2 curve, E elliptic curve and ψ1 : C → E1 be a degree n map(covering). I is called a maximal
covering or optimal covering if it does not factor through a nontrivial isogeny.
Let ψ1 : C −→ E1 be maximal.

Then there exists an injective map ψ∗
1 : E1 → JC . Let E2 := JC/E1. Hence,

E2 is an elliptic curve. From the natural projection

JC → E2, we obtain ψ2 : C → E2

We say that JC is (n, n)-split. The set of all curves with (n,n)-split Jacobians is
an irreducible, 2-dimensional locus in the moduli space M2, denoted by Ln.

C

�� ��
E1 E2

The locus L2 is a closed subvariety of M2 with equation

−J7
2 J4

4 + 8748J10J4
2 J2

6 507384000J2
10J2

4 J2 − 19245600J2
10J4J3

2 − 592272J10J4
4 J2

2 + 77436J10J3
4 J4

2 − 78J5
2 J5

4 − 81J3
2 J4

6

−3499200J10J2J3
6 + 4743360J10J3

4 J2J6 − 870912J10J2
4 J3

2 J6 + 3090960J10J4J2
2 J2

6 − 5832J10J5
2 J4J6 + 1332J4

2 J4
4 J6 − 125971200000J3

10

+384J6
4 J6 + 41472J10J5

4 − 236196J2
10J5

2 − 54J5
2 J2

4 J2
6 − 47952J2J4J4

6 + 104976000J2
10J2

2 J6 − 1728J5
4 J2

2 J6 + 6048J4
4 J2J2

6 − 9331200J10J2
4 J2

6

+108J4
2 J4J3

6 + 12J6
2 J3

4 J6 + 29376J2
2 J2

4 J3
6 − 8910J3

2 J3
4 J2

6 − 2099520000J2
10J4J6 + 31104J5

6 − 6912J3
4 J3

6 4 + 972J10J6
2 J2

4 − 80J7
4 J2 + 159J6

4 J3
2 =0

Notice the weighted degree is 30



(N, N)-SPLIT JACOBIANS II
The equation of L3 is:

C8J8
10 + C7J7

10 + · · ·+ C1J10 + C0 = 0, where C0, . . . ,C8 are:

C8 = 24 · 331·55 · 1910 · 295

C7 = 24 · 327 · 195 (−194894640029511J5
2 − 55588661819356000J2

4 J2 − 12239149540657725J3
2 J4 + 223103526505680000J4J6 + 40811702108053500J2

2 J6
)

C6 = 22 · 321(−35802284468757765858432J5
4 − 1756270399106587730391J2

4 J6
2 − 28638991859523006654J4J8

2 − 84091225203760159441286J3
4 J4

2

+ 400895959391006953561032J4
4 J2

2 − 61773685738999443J10
2 − 3673201396072259603756160J3

4 J2J6 + 7879491755218264984387200J2
4 J2

6

+ 15251447355608658629952J5
2 J4J6 + 1179903008384844066250272J3

2 J2
4 J6 − 5566672398589809889658760J2

2 J4J2
6 + 112024289372554183680J7

2 J6

− 32116769409722716182888J4
2 J2

6 + 8512171877754962249155200J2J3
6 )

C5 = 22 · 319(−12630004382695462653J4
4 J7

2 + 320839252764287362560J7
4 J2 − 1876069272397136886448J6

4 J3
2 + 606742866220456356580J5

4 J5
2 − 124173485719052715J3

4 J9
2

+ 22241034512101438944000J5
4 J2

2 J6 − 88546736703938826304512J4
4 J2J2

6 − 10712078926420753449984J4
2 J4

4 J6 + 68904635323303664511264J3
2 J3

4 J2
6

− 192353895694677164016384J2
2 J2

4 J3
6 + 197449733923926905783808J2J4J4

6 − 1916173047371645223936J6
4 J6 + 116211018774997425051648J3

4 J3
6

− 132143597697786172416J5
6 + 1361403542457288J1

2 0J4J6 − 5005765118740492656J7
2 J4J2

6 + 232819061639483430720J6
2 J3

4 J6 − 1576319894694585178452J5
2 J2

4 J2
6

+ 4655239459208764553088J4
2 J4J3

6 − 226900590409548J11
2 J2

4 − 2042105313685932J9
2 J2

6 + 6261632755967872800J6
2 J3

6 − 5065734796478275576176J3
2 J4

6 + 1352318109350828796J8
2 J2

4 J6)

C4 = 315(1417825317153277312J9
4 J2

2 + 2391308818408811717J6
4 J8

2 + 718590303030600J10
2 J5

4 − 638760745337170544640J4J6
6 + 440759275303802880J10

4

− 8118717280771686540192J5
4 J4

2 J2
6 + 42668434906863398019072J2

4 J2J5
6 − 57054664814020640574336J3

4 J2
2 J4

6 + 30546774740158581676032J4
4 J3

2 J3
6

+ 8601814215123831275904J6
4 J2

2 J2
6 − 1449562700682195916800J7

4 J3
2 J6 + 1067928354124249303104J6

4 J5
2 J6 − 10443896263024316301312J3

2 J4J5
6

+ 7247970315150439028112J4
2 J2

4 J4
6 − 21769241176751736619008J5

4 J2J3
6 − 2640201919999154595648J5

2 J3
4 J3

6 − 55893562424445261312J7
2 J5

4 J6

+ 531409635241191119304J6
2 J4

4 J2
6 − 1012614205133520J8

2 J4
6 − 2454855015326199552J5

2 J5
6 − 12501409939920J12

2 J4
4 − 675076136755680J10

2 J2
4 J2

6

− 33390518666828400J9
2 J4

4 J6 + 3188363568027498432J6
2 J4J4

6 − 1569001498547402304J7
2 J2

4 J3
6 − 275375222428239820800J7

4 J2
6 + 19809849095518050330624J4

4 J4
6

+ 6179516061983740183680J2
2 J6

6 + 150016919279040J11
2 J3

4 J6 + 87799481406335621136J8
4 J4

2 + 1350152273511360J9
2 J4J3

6 − 55496611186132800648J7
4 J6

2 + 39911809855842557952J8
4 J2J6 + 353362680242481096J8

2 J3
4 J2

6 )



(N, N)-SPLIT JACOBIANS III
C3 = 24 · 312(−19225816442103600J10

4 J5
2 + 6433952690394144J4

2 J7
6 − 2917203075615J11

2 J7
4 + 62951605613640J10

2 J6
4 J6 + 7900854051362368J11

4 J3
2 − 873165547551982J9

2 J8
4 + 13234982161044480J12

4 J2

+ 4077902864550187008J5
4 J5

6 + 7506792545698293J9
4 J7

2 − 55019014994202624J11
4 J6 − 3415519987075510272J2

4 J7
6 − 932605137272623104J8

4 J3
6 − 6607177263254292480J2J8

6 − 1394785406520J7
2 J6

6 − 1913285880J13
2 J6

4

− 258293593800J11
2 J4

4 J2
6 − 1976299597616301504J8

4 J3
2 J2

6 + 1337598192058041744J7
4 J5

2 J2
6 − 2324642344200J9

2 J2
4 J4

6 + 2789570813040J8
2 J4J5

6 − 243015467955111198J7
2 J6

4 J2
6 + 22136761801348668J8

2 J7
4 J6

− 155463896437263612J8
4 J6

2 J6 + 16101033796183004352J5
4 J3

2 J4
6 + 16367298631796450304J3

4 J2J6
6 + 8433152J7

4 J2
2 J3

6 − 8254965178021469184J6
4 J2J4

6 + 34439145840J12
2 J5

4 J6 − 576988130682378J9
2 J5

4 J2
6 + 2912934238489260J8

2 J4
4 J3

6

− 8749875412454175J7
2 J3

4 J4
6 + 15637511592200340J6

2 J2
4 J5

6 − 127105068829245696J10
4 J2

2 J6 + 614908581517421568J9
4 J2J2

6 − 23374419431360207616J4
4 J2

2 J5
6 + 1508868948605946984J6

2 J5
4 J3

6 − 5795040294470623824J5
2 J4

4 J4
6

+ 14094983896511630112J4
2 J3

4 J5
6 + 1033174375200J10

2 J3
4 J3

6 + 314069798204069472J9
4 J4

2 J6 − 61501104J6
4 J4

2 J3
6 − 21194163080222025024J3

2 J2
4 J6

6 + 18002402119176332544J2
2 J4J7

6 − 15392091937240080J5
2 J4J6

6 )

C2 = 25 · 38(−159732958548480J13
4 J2J6 − 27945192968593920J2J4J9

6 + 238596124150086J10
4 J7

2 J6 + 3224288J3
2 J9

6 − 36311136215244J9
2 J9

4 J6 − 996173640J12
2 J6

4 J2
6 + 5977041840J11

2 J5
4 J3

6 − 22413906900J10
2 J4

4 J4
6 − 37501414009508J13

4 J4
2

+ 14210312049697149J6
2 J6

4 J4
6 + 86354918885580768J4

2 J4
4 J6

6 − 111444977082978432J3
2 J3

4 J7
6 + 27908893977856J14

4 J2
2 + 83768141083825152J2

2 J2
4 J8

6 − 42942980968765488J5
2 J5

4 J5
6 − 10736445647473J11

4 J8
2 + 61746352553318400J4

4 J2J7
6

+ 410958880454688J12
4 J3

2 J6 − 14059252057660416J3
4 J8

6 − 1643659809866496J11
4 J2

2 J2
6 + 441832778741790J8

2 J8
4 J2

6 − 3128599551108636J7
2 J7

4 J3
6 + 2815950495430656J10

4 J2J3
6 + 12291244885171152J8

4 J5
2 J3

6 + 1579225145J12
2 J9

4

− 2286353789913249J9
4 J6

2 J2
6 − 40300476525629352J7

4 J4
2 J4

6 + 81707043798929088J6
4 J3

2 J5
6 − 25936092270J6

2 J8
6 − 98257765274489088J5

4 J2
2 J6

6 + 3318887207480832J10
4 J4

2 J2
6 − 478511899451856J11

4 J5
2 J6 + 28476287051677J1

4 2J6
2

− 12153253649302656J9
4 J3

2 J3
6 + 24757975700165376J8

4 J2
2 J4

6 − 26570902457981952J7
4 J2J5

6 − 6755065089024J15
4 + 10883911680J10

6 + 53793376560J9
2 J3

4 J5
6 − 80690064840J8

2 J2
4 J6

6 + 69162912720J7
2 J4J7

6 + 94873680J13
2 J7

4 J6

+ 227109129291J10
2 J7

4 J2
6 − 628213747356J9

2 J6
4 J3

6 − 1389130574661J8
2 J5

4 J4
6 + 16465793988870J7

2 J4
4 J5

6 − 56794191944715J6
2 J3

4 J6
6 + 102713329135152J5

2 J2
4 J7

6 − 98529746457492J4
2 J4J8

6 − 30650938650J11
2 J8

4 J6

− 1716480768J9
4 J4

6 + 11718053954519040J6
4 J6

6 + 220752428322816J12
4 J2

6 + 1322792799725J10
2 J10

4 − 3953070J14
2 J8

4 )

C1 = −28 · 35(61736960J8
4 J2 − 182135808J7

4 J6 + 16021872J7
4 J3

2 − 211022400J6
4 J2

2 J6 − 26594919J6
4 J5

2 + 899159040J5
4 J2J2

6 + 330458928J5
4 J4

2 J6 − 215198J7
2 J5

4 − 1227405312J4
4 J3

6 − 1535734368J4
4 J3

2 J2
6

+ 2930532J4
4 J6

2 J6 − 363J9
2 J4

4 + 3162070656J3
4 J2

2 J3
6 − 16471998J3

4 J5
2 J2

6 + 4356J3
4 J8

2 J6 − 19602J2
4 J7

2 J2
6 − 2433162240J2

4 J2J4
6 + 47961936J2

4 J4
2 J3

6 + 39204J4J6
2 J3

6 − 72369936J4J3
2 J4

6 + 746496J4J5
6 − 29403J5

2 J4
6

+ 45116352J2
2 J5

6 )(J3
4 − J2

2 J2
4 + 6J2J6J4 − 9J2

6 )3

C0 = 28(768J2
4 − 416J4J2

2 − J4
2 + 1536J2J6)(J

3
4 − J2

2 J2
4 + 6J2J6J4 − 9J2

6 )6



(N,N)-SPLIT JACOBIANS AND ISOGENY BASED CRYPTOGRAPHY

Isogeny based cryptography: Analogous to the Diffie–Hellman key exchange, but based on walks in a
supersingular isogeny graph and was designed to resist cryptanalytic attack by an adversary in possession of a
quantum computer.

Supersingular Isogeny Diffie–Hellman key exchange (SIDH or SIKE)
1997 Couveignes introduces the Hard Homogeneous Spaces framework. (unpublished for 10 years.)
2006 Rostovtsev & Stolbunov suggest isogeny-based Diffie–Hellman as a quantum-resistant primitive.
2011-2012 De Feo, Jao & Plut introduce SIDH, an efficient post–quantum key exchange
2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
2022 SIDH is broken by Castryck, Decru.

Isogeny-based cryptography based on (n,n)-split Jacobians: Now the isogenies are (n, n, )-isogenies between
Jacobian surfaces (Jacobians of genus 2 curves).

Such curves are exactly curves with (n, n)-split Jacobians, parameterized by the loci Ln, (n = 2, 3, 5), as their
splitting property enables the construction of isogenies with kernel (Z/nZ)2.

Advanced Research Workshop : Isogeny based post-quantum cryptography,
Hebrew University of Jerusalem, July 29-31, 2024.

Next we outline a method to compute such (n, n)-isogenies over a finite field Fq , utilizing the structure of Ln.



COMPUTING (n,n)-ISOGENIES I
To compute an (n, n)-isogeny ϕ : J(C) → E1 × E2 for a genus 2 curve C over Fq with J(C) (n, n)-split, we utilize
the locus Ln in Pw = P(2, 4, 6, 10), defined by Fn(J2, J4, J6, J10) = 0. The process is outlined as follows.
▶ Pick a rational point p ∈ Ln over Fq

p = [J2 : J4 : J6 : J10] ∈ Ln(Fq),

▶ Construct the genus two curve C: y2 = f (x) using (Malmendier and Shaska, 2017).
▶ Compute the Jacobian J(C) as the group of degree-0 divisor classes on C, represented via Mumford’s

coordinates (pairs (u(x), v(x)).
▶ Determine the n-torsion subgroup J(C)[n]: The n-torsion subgroup J(C)[n] over an algebraic closure is

isomorphic to (Z/nZ)4, though its size over Fq depends on the Frobenius polynomial

P(T ) = T 4 − s1T 3 + s2T 2 − qs1T + q2.

For P ∈ J(C)[n], [n]P = 0, and |J(C)(Fq)| = P(1).
▶ Pick a subgroup K ⊂ J(C)[n] of order n2 isotropic under the Weil pairing

en : J(C)[n]× J(C)[n] → µn,

where en(P,Q) = 1 for all P,Q ∈ K . This involves:
1. Generating a basis for J(C)[n] over Fq (or an extension if needed), computing points Pi = (ui (x), vi (x)) − ∞ such

that nPi = 0 using Cantor’s addition algorithm over Fqd (where n | qd − 1),



COMPUTING (n,n)-ISOGENIES II
2. Selecting a subgroup K of order n2 via linear algebra over Z/nZ, e.g., K = ⟨P1, P2⟩ with P1, P2 linearly independent,

forming K = {aP1 + bP2 | a, b = 0, . . . , n − 1},
3. Verifying isotropy by computing the Weil pairing on K ’s generators, en(Pi , Pj ) = (−1)⟨Pi ,Pj ⟩n , where ⟨Pi , Pj⟩n is the

intersection number modulo n. Adjust if en(P1, P2) ̸= 1. Since C ∈ Ln(Fq), K ∼= (Z/nZ)2 exists.

▶ Compute the quotient J(C)/K
The quotient J(C)/K is expected to be isomorphic to E1 × E2. For n odd, use Vélu-type formulas adapted
for genus 2, generalizing Richelot isogenies for n = 2, by:
▶ Representing divisors in J(C) using Mumford coordinates, e.g.,

D = (u(x), v(x)) − 2∞,

▶ Applying K ’s action to form equivalence classes, D ∼ D + P for P ∈ K , via addition laws (e.g., for P = (x1, y1) − ∞,
D + P = (u′(x), v ′(x)) − ∞),

▶ Constructing the codomain J(C)/K as a product of elliptic curves via explicit equations or theta functions. For n = 3,
if K = ⟨P1, P2⟩, J(C)/K yields E1 : y2 = x3 + a1x + b1, E2 : y2 = x3 + a2x + b2, derived from K ’s orbit.

▶ Verify the isogeny One can verify the isogeny

ϕ : J(C) → J(C)/K ∼=E1 × E2

by computing the j-invariants of E1 and E2 or testing ϕ(nP) = 0 for sample P ∈ J(C), confirming
ker(ϕ) = K .
This method applies uniformly to n = 2, 3, 5, with |Ln(Fq)| determining the availability of suitable curves, a
key factor in cryptographic design. For n = 2, this is well known by Richelot isogenies; see
(?2021-1, Prop. 2.1) for a detailed discussion.



WEIGHTED PROJECTIVE SPACES AND VARIETIES I
Main Problem: Find rational points on weighted varieties over Fq .

Let F be a field and w = (w0,w1, . . . ,wn) a tuple of positive integers, called weights. The weighted projective
space Pw(F) is the quotient space An+1(F) \ {0}/ ∼, where

(α0, α1, . . . , αn) ∼ (β0, β1, . . . , βn) if there is λ ∈ F∗ s.t. αi = λwiβi , i = 0, 1, . . . , n.

We denote the equivalence class by [α0 : α1 : · · · : αn]w.
Consider the graded polynomial ring F[x0, . . . , xn]w, where variable xi has degree wi . A polynomial f (x0, . . . , xn)

is weighted homogeneous of degree d if every monomial xa0
0 · · · xan

n satisfies
∑n

i=0 ai wi = d or equivalently:

f (λw0 x0, λ
w1 x1, . . . , λ

wn xn) = λd f (x0, x1, . . . , xn) for all λ ∈ F∗.

A weighted variety is a subvariety of Pw defined by weighted homogeneous polynomials. A weighted
hypersurface X ⊂ Pw is the zero set of a weighted homogeneous polynomial f :

X = {[α0 : α1 : · · · : αn]w ∈ Pw | f (α0, α1, . . . , αn) = 0}.

The Fq-rational points, denoted X(Fq), are equivalence classes [x0 : · · · : xn]w with xi ∈ Fq , not all zero,
satisfying X ’s defining equations.
Lang-Weil Estimate: For a geometrically irreducible variety X ⊂ Pn of dimension d from (Lang and Weil, 1954)

|X(Fq)| ≈ qd + O(qd−1/2)



WEIGHTED PROJECTIVE SPACES AND VARIETIES II

Weil Conjectures: For a smooth projective variety, the zeta function is rational, with roots tied to Betti numbers
(Deligne, 1974).

Z (X , t) = exp

( ∞∑
d=1

|X(Fqd )|
td

d

)

Serre’s Inequality: For a hypersurface in Pn with degree d < n + 1, or adjusted for weights in Pw, (Li, 2019)

|X(Fq)| ≡ 1 (mod p), where p = char(Fq)

Point Count Bounds: For a hypersurface in Pn, refined by degree and singularities (Aubry et al., 2017).

|X(Fq)| ≤
qn − 1
q − 1

,

The F∗
q -Action and Orbit Sizes

The weighted projective space Pw(Fq) is defined by the F∗
q -action on An+1(Fq) \ {0}, where for λ ∈ F∗

q and point
x = (α0, . . . , αn):

λ · x = (λw0α0, λ
w1α1, . . . , λ

wnαn).

Points [α0 : · · · : αn]w are orbits under this action. For a point x with support set S = {i | αi ̸= 0} ⊆ {0, . . . , n},
the stabilizer is:

Stab(x) = {λ ∈ F∗
q | λkS = 1},



WEIGHTED PROJECTIVE SPACES AND VARIETIES III

where kS = gcd({wi | i ∈ S}). Since F∗
q is cyclic of order q − 1, |Stab(x)| = gcd(kS , q − 1). By the

orbit-stabilizer theorem, the orbit size is:

|Orb(x)| =
|F∗

q |
|Stab(x)|

=
q − 1

gcd(kS , q − 1)
.

Challenges in Weighted Projective Spaces
Non-Uniform Orbits. The F∗

q -action on points in Pw(Fq) yields orbit sizes (q − 1)/ gcd(kS , q − 1), where
kS = gcd({wi | i ∈ S}) for support set S ⊆ {0, . . . , n}. This non-uniformity, unlike in standard projective spaces,
complicates the enumeration of rational points.
Singularity Analysis. Weighted hypersurfaces exhibit quotient singularities, such as at [1 : 0 : · · · : 0], requiring
adjusted tangent spaces to analyze their local geometry (Reid, 1987). These singularities affect point counts and
demand specialized techniques.
Bound Adaptation. The orbifold structure of Pw limits the effectiveness of classical bounds like Lang-Weil.
Aubry et al. propose

|X(Fq)| ≤ min

{
qm+1 − 1

q − 1
,

d
w0

qm−1 +
qm−1 − 1

q − 1

}
for hypersurfaces of degree d and minimal weight w0 (Aubry et al., 2017).
Computational Complexity. Enumerating rational points requires stratifying by support sets S ⊆ {0, . . . , n},
with computational complexity increasing due to the diversity of weights wi . This stratification poses significant
computational challenges.



COUNTING POINTS ON WEIGHTED PROJECTIVE SPACES

To compute |Pw(Fq)|, stratify points by support sets S ⊆ {0, . . . , n}, where xi ̸= 0 for i ∈ S, xi = 0 otherwise.
Define

NS = |{(x0, . . . , xn) ∈ (F∗
q )

|S| × {0}n+1−|S| | xi ̸= 0 for i ∈ S}| = (q − 1)|S|.

The stabilizer under F∗
q consists of λ ∈ F∗

q with λwi = 1 for i ∈ S, giving order gcd(kS , q − 1), where
kS = gcd({wi | i ∈ S}).
By the orbit-stabilizer theorem, the orbit size is q−1

gcd(kS ,q−1) . The number of orbits for support S is:

NS
q−1

gcd(kS ,q−1)

= (q − 1)|S|−1 gcd(kS , q − 1).

Thus:
|Pw(Fq)| =

∑
S ̸=∅

(q − 1)|S|−1 gcd(kS , q − 1).

For wi = 1, kS = 1, so |Pn(Fq)| = qn+1−1
q−1 .

This stratification underpins hypersurface counts.



CONJECTURES ON RATIONAL POINTS

1. Serre’s Inequality (Serre, 1991): For a hypersurface X ⊂ P(w0, . . . ,wn) of degree d < n + 1, adjusted for
weights (e.g., d <

∑
wi ), the number of rational points satisfies:

|X(Fq)| ≡ 1 (mod p), p = char(Fq).

This extends Chevalley-Warning to weighted spaces. The affine solutions N(f ) = |{(x0, . . . , xn) ∈ Fn+1
q | f = 0}|

are divisible by p if d < n + 1, projecting to Pw with congruence adjusted for the origin (Li, 2019). For d ≥ n + 1,
alternative constraints are needed.
2. Aubry et al.’s Conjecture (Aubry et al., 2017): If a hyperplane H ⊂ Pw exists with X ∩ H = ∅, then:

|X(Fq)| ≤ min

{
pm,

d
w0

qm−1 + pm−2

}
,

where m = n, pm = qm+1−1
q−1 , pm−2 = qm−1−1

q−1 , and w0 = min{wi}. This adapts classical bounds, with
d

w0
qm−1 + pm−2 scaling by degree and minimal weight. Proven for P(1, 1,w2, . . . ,wn), with equality conjectured

for d ≤ w0(q + 1) (Aubry et al., 2017).
Implications: These guide our orbit-stabilizer algorithm, refining estimates like Lang-Weil’s for weighted
contexts.



ZETA FUNCTIONS

The zeta function of a variety X over Fq encodes point counts over extensions, revealing arithmetic properties.
For X ⊂ Pn:

Z (X , t) = exp

( ∞∑
d=1

|X(Fqd )|
td

d

)
.

Properties for Projective Varieties (Deligne, 1974):

1. Rationality: Z (X , t) = P(t)
Q(t) , with P(t),Q(t) ∈ Z[t]. For a smooth variety of dimension m:

Z (X , t) =

∏2m
i=1,odd Pi (t)∏2m
i=0,even Pi (t)

,

where Pi (t) =
∏

j (1 − αi,j t), αi,j tied to Betti numbers.

2. Functional Equation: For smooth X , Z (X , 1/(qmt)) = ±qmχ/2tχZ (X , t), where χ is the Euler
characteristic.

3. Riemann Hypothesis: Roots αi,j satisfy |αi,j | = qi/2.

For a hypersurface of dimension m = n − 1, |X(Fq)| ≈ qn−1 + O(qn−3/2) (Lang and Weil, 1954).



ZETA FUNCTIONS FOR WEIGHTED PROJECTIVE VARIETIES

For X ⊂ Pw, the zeta function is:

Z (X , t) = exp

( ∞∑
d=1

|X(Fqd )|
td

d

)
.

Properties and Challenges:

1. Rationality: Z (X , t) = P(t)
Q(t) , with polynomials reflecting the orbifold structure. For a hypersurface of

dimension m − 1, the denominator often includes (1 − t)(1 − qt) · · · (1 − qm−1t), adjusted for weights
(Aubry et al., 2017).

2. Singularity Effects: Quotient singularities (e.g., [1 : 0 : · · · : 0]) alter pole structures, deviating from Betti
number patterns (Reid, 1987).

3. Weight-Dependent Counts: The weighted F∗
q -action complicates |X(Fqd )|, requiring stratification by

support sets.

4. Functional Equation: Holds under smoothness, but χ accounts for weighted singularities.

Implications: Links counts to cohomology, guiding bounds and computations.



ALGORITHM FOR COUNTING RATIONAL POINTS

For a hypersurface X = V (f ) ⊂ Pw over Fq , with f ∈ Fq [x0, . . . , xn] of degree d , compute |X(Fq)|. The
orbit-stabilizer algorithm uses the F∗

q -action.
Algorithm Steps:

1. Compute NS for each S ⊆ {0, . . . , n},S ̸= ∅:

NS =
∣∣∣{(x0, . . . , xn) ∈ Fn+1

q | f = 0, xi ̸= 0 for i ∈ S, xi = 0 for i /∈ S
}∣∣∣ .

Evaluate f on (F∗
q )

|S| × {0}n+1−|S|, leveraging f (λw0 x0, . . . , λ
wn xn) = λd f .

2. Compute kS: The stabilizer consists of λ ∈ F∗
q with λwi = 1 for i ∈ S, order gcd(kS , q − 1), where

kS = gcd({wi | i ∈ S}).

3. Sum contributions: Orbit size is q−1
gcd(kS ,q−1) , so:

|X(Fq)| =
∑
S ̸=∅

NS · gcd(kS , q − 1)
q − 1

.



APPLICATION TO Ln: I
We present point counts |Ln(Fq)| for n = 2, 3, zeta functions as in (Mello et al., 2025).
▶ Apply the algorithm to compute |Ln(Fq)|.
▶ Derive Z (Ln, t) to analyze point growth.

using the above

|Ln(Fq)| =
∑
S ̸=∅

NS · gcd(kS , q − 1)
q − 1

,

where NS = |{(x0, . . . , x3) ∈ F4
q | Fn = 0, xi ̸= 0 for i ∈ S, xi = 0 else}|, kS = gcd({wi | i ∈ S}),

w = (2, 4, 6, 10),

Results for for n = 2, p = 5:
▶ F5: 64 points (S = {0}, {1}, {0, 1, 2, 3}; 20% singular).
▶ F25: 1304 points (S = {0}, {0, 1, 2}, {0, 1, 2, 3}; 40% singular).
▶ F125: 31504 points (S = {0}, {0, 1, 2}, {0, 1, 2, 3}; 40% singular).

Results for n = 2, p = 3: Degeneration to a curve:
▶ F3: 62 points (70% singular).
▶ F9: 508 points (68% singular).
▶ F27: 4430 points.
▶ F81: 39540 points (68% singular).



APPLICATION TO Ln: II

Results for n = 3, p = 5:
▶ F5: 74 points (S = {0}, {0, 1, 2}, {0, 1, 2, 3}; 66% singular).
▶ F25: 1294 points (S = {0}, {0, 1, 2}, {0, 1, 2, 3}; 68% singular).

Results for n = 3, p = 3: Identical to L2, e.g., 62 (F3), 508 (F9).
Note: Degeneration in p = 3 shows algorithm’s adaptability to reduced dimensions.

Zeta Functions: For L2, p = 5: Z (L2, t) ≈ 1+38t
(1−t)(1−25t) , matching 64, 652 (Mello et al., 2025). For p = 3:

Z (L2, t ; p = 3) =
1 + 49t − 747t2

(1 − t)(1 − 3t)(1 − 9t)
,

same for L3. For L3, p = 5: Z (L3, t) ≈ 1+48t
(1−t)(1−25t) , matching 74, 647.

Bounds: (Aubry et al., 2017)
▶ L2: |L2(Fq)| ≤ 15q2 + q + 1, e.g., 381 ¿ 64 (F5).
▶ L3: |L3(Fq)| ≤ 40q2 + q + 1, e.g., 1006 ¿ 74 (F5).



FUTURE WORK

▶ Develop a theory of rational points of weighted projective varieties over Fq .
▶ Given a weighted projective curve Xw and X its image under the Veronese map

Xw → X

Determine the relation between the number of rational points of Xw and the number of rational points of X .

Here are some of our latest papers/preprints that lead to this problem or trying to address this problem :

▶ S. Salami, T. Shaska, Vojta’s conjecture on weighted projective varieties, European Journal of Mathematics,
11, 12 (2025).

▶ E. Shaska, T. Shaska, Machine learning for moduli space of genus two curves and an application to isogeny
based cryptography, Journal of Algebr Comb 61, 23 (2025).

▶ A. Clingher, A. Malmendier, T. Shaska, Isogenies, Kummer surfaces, and theta functions, NATO Sci. Peace
Secur. Ser. D Inf. Commun. Secur.

▶ J. Mello, S. Salami, E. Shaska, T. Shaska, Rational Points and Zeta Functions of Humbert Surfaces with
Square Determinant over Fq , NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur.

▶ J. Mello, T. Shaska, Counting of Rational Points on Weighted Projective Spaces

Hopefully more exciting results to be announced soon
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