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GENUS 2 CURVES I
Every genus 2 curve C over a field k of characteristic in char k # 2 has affine equation

Y2 = g X8 + asX5Z + -+ a1 X+ a
Its invariants are:

Jp i= — 240agag + 40aq a5 — 16apa, + 623
Jy ::48aoai + 4Saga6 + 4a§a§ + 162038a§ + 86ay a§a5 — 12a4 asai - 1235a335 + 300a$a4a6 + 300a0a§32
+ 324a0a6a§ — 504agagapag — 180agagazas — 180aqagapag + 4a1a4apas — 540apagasag — 80512a§
Jg = — a2l ah + 160023 a5 ay ag + 16008y adagap — 22408 agagag + 20864aga4agap — 640agasagae — 1860080 a,as ag + 76aqagapay — 198a; a3apag
+ 26aqag agag + S1Sagasa1 ag + 28a4 aiag ag — 640a$ aiazae + 26a$a‘21 agag + 616a4 ai agas + 5994058 as aga1 + 330ag a%a%az + 8a§ a%ai - 24a§a§ E
+ 60a3a38G + 60agag s — 192a3agae — 320a3a4ag + 17645 a2 a3 + 225023 agag — 9004542 ag — 900ag a2ds — 1004420 agas + 162agagay — 36amae
— 36a24} + 76a3ay — 320a3a3 + 484a + 49230 a5 apag a5 + 4928 a3 apagas + 3060453, agagay — 468agasagapag + 3472308, ayasay ag + 492a; agas ayag
— 238a4 a%aza4a5 + 1818a a%auasas - 878agaoaeasa5 — 3ag — 19830a4aga5 + BSOagagaea‘; + 72a4 agas — 24a4 agai + 2250agaga3 — 1860a4 a4aoagas

+ 3060a; agagagap — 876agaga; agag — 18605 agapasag — 1860042 a2dgay — 24a3ay — 1198802389

1 of
Jyg = 5 Resy | f, a

Two genus 2 curves X and X are isomorphic over k if and only if exists A € k* such that

Joi(X) = N i(X7).



Let the space of all tuples (J», Js, Js, J10) be S. Define the following relation in S as follows. Two tuples
(Jay Jas o, J10) ~ (Jh, il i) = 3N € K*, (o, da, I, J10) = (/\2 SN/ >\1°J1’0)
The set of equivalence classes is called a weighted projective space denoted by WP(2 4 6 10) -
It can be mapped to the projective space P° via the Veronese map
WP(2.46,10)k — Py, via
[ s s o+ ol —> [0 5 j 1 L0 )
Since Jyq is the discriminant then J;g # 0 and we can get "affine” invariants as

[0 j% 0 s ] = Le. e
10 10 10

Thus, two genus curves are isomorphic if and only if they have the same invariants

30 15 10
— J2 P oe— J4 e JG

i : Ip == —— I3 := ——
A

=g
J10

Such invariants iy, i», i3 are GLp(k)-invariants and sometimes are called absolute invariants.



(N, N)-SPLIT JACOBIANS I
Let C genus 2 curve, E elliptic curve and ¢ : C — E; be a degree n map(covering). | is called a maximal
covering or optimal covering if it does not factor through a nontrivial isogeny.
Let ¢ : C — Eq be maximal.

Then there exists an injective map ¢*; : E1 — Jo. Let E; := Jg/Eq. Hence,
E; is an elliptic curve. From the natural projection
Jec — Eo, weobtain ¢, : C— E
We say that J¢ is (n, n)-split. The set of all curves with (n,n)-split Jacobians is E Ep
an irreducible, 2-dimensional locus in the moduli space Mo, denoted by Lp.

The locus £, is a closed subvariety of M with equation
—JBJF + 8748 U8 JE5073840000% S5 Uy — 192456000243 — 592272104 I3 + 77436010 505 — 78J5UF — 8158
—3499200J1 g Jp Jg + 47433600193 p g — 870912102 J3Jg + 30909601 s J3UZ — 5832105 g + 1332J5 S5 Jg — 1256712000003
6 5 2 5 22 4 2 2 52 4,2 22
38405 g + 41472017 — 2361965005 — 5405 UFUE — 47952054 I8 + 1049760000503 g — 17285 3 g + 60485 JpJR — 9331200405 2

1083 U4 IR + 1208 3 g + 2087602 U2 U2 — 891003 S U2 — 200952000007 Jg + 3110403 — 691203034 + 9720108 U2 — 80UL Uy + 159055 =0

Notice the weighted degree is 30



(N, N)-SPLIT JACOBIANS II
The equation of L3 is:

CgJ8) + C7Jly + -+ + Cidio + Co = 0, where Cy,...,Cg are:

Cy = 2% 33155 . 1910 . 29°
7 = 2% . 8% . 19° (—194894640029511J5 — 55588661819356000.5 J, — 12239149540857725.3J -+ 223103526505680000J g -+ 40811702108053500.3 Jg )

Cg = 22 - 3%1 (—35802284468757765858432.5

— 1756270399106587730391.5.5 — 28638991859523006654.4J3 — 84091225203760159441286J3 J3
+ 400895959391006953561032JF J3 — 61773685738999443.30 — 3673201396072259603756160J3 JpJg + 7879491755218264984387200.5 J2
+ 15251447355608658629952J5 U Jg -+ 1179903008384844066250272U5 J2 g — 5566672398589809889658760J3 /8 -+ 112024289372554183680J3 g
— 32116769400722716182888.4 J2 + 85121718777549622491552005 )
C5 = 22 - 3"9(—126300043826954626537 J5 + 320839252764287362560.; J, — 1876069272397136886448.5 J3 -+ 606742866220456356580.5 J5 — 124173485719052715.J3 J5
+ 22241034512101438944000J5 J3 Jg — BB546736703938826304512.4 JpJ — 10712078926420753449984.5 J3 Jg + 68904635323303664511264.3 J3 U3
— 192853895694677164016384J3 J2 J3 + 197449733923026905783808p 4 Jg — 19161730473716452239365 Jg + 116211018774997425051648.3 3
— 132143507697786172416J3 -+ 1361403542457288J3 0J4Jg — 5005765118740492666J5 J4 JE + 23281906163948343072005 J3 Jg — 1576319894694585178452.5 J3 J2
+ 4655280450208764553088.4 J4 Jg — 226900590409548.3 U2 — 20421053136859325 JZ + 626163275506767280005 J — 5065734796478275576176J5 Jg + 13523181093508
C4 = 8'5(14178253171583277312J9 J2 + 2391308818408811717J5 3 + 718590303030600J30 5 — 638760745337170544640J4 08 + 440756275303802880J;°
— 8118717280771686540192.3 J3 J2 + 42668434906863308019072J2 JJS — 57054664814020640574336.3 J3 Jg + 30546774740158581676032.4 J5 Jg
+ 8601814215123831275904.5 U2 J2 — 1449562700682195916800J J3 Jg + 1067928354124249303104.5 U5 Jg — 10443896263024316301312.5 Uy /S
+ 7247970315150438028112J4 J2 J§ — 21760241176751736619008.3 JpJg — 2640201919999154595648J5 J3 J3 — 55893562424445261312J5 J3 Jg

+ 531409635241191119304J5 J§ U8 — 101261420513352005 8 — 2454855015326199552J5 /3 — 125014099399200324 — 6750761367556803 0 U7 2

. 111QOR1RRGRR9R40{1.19 l‘}.l,\ L 21Q9°RARAQAIND 7402420 I§ lf.1 1A RRANN1A0RRAT7ANDRANA | Ig 4 1annqﬂmnqamRnsm'xnau.f.‘.f}

L DOTRATEDODOADQANAANLNN |



(N, N)-SPLIT JACOBIANS III

10 5 11,7 0

Cy = 2% . 312(—19225816442103600J}C 5 + 6433952690394144J5 J — 291720307561543 ] + 62951605613640.) 4

6 13 8
J§Jg + 7900854051362368., ' J3 — 873165547551982.3 J3

+ 4077902864550187008.5 J2 + 75067925456982935 J5 — 55019014994202624.} ' Uy — 3415519987075510272J3J% — 932605137272623104.3J — 6607177263254292480J
1142 832 752 924 8, 76

— 2582035938003 U4 U2 — 1976299507616301504.5 U3 U2 + 1337598192058041744.] JS U2 — 232464234420005 J2 JE + 278957081304008 s J§ — 2430154679551111983 JS.
85 5,3 /4 3, 6 723 6 /4 125

— 155463896437263612.5 5 Jg + 16101033796183004352.5 J3 Jg + 16367298631796450304J5 JpJS + 84331525 J3US — 825496517802146918405 Jp g + 3443914584032 3.
— 874987541245417503 J3 Jg + 1563751159220034008 J2 U2 — 127105068829245696J] 0 U2 Jg + 614908581517421568J5 JpJg — 23374419431360207616J4 J3 U3 + 1508868948¢
+ 14094983896511630112J3 J3 U + 1033174375200030 /3 U + 314069798204069472J3 J3 Jg — 615011045 U4 JS — 21184163080222025024.3 J2 JE + 18002402119176332544
Cy = 25 . 38(—150732058548480.] 3 Uy Jg — 27945192068503920pJ4 U5 + 238506124150086J;0 U2 Jg + 32242885 J3 — 36311136215244J5 J5 g — 9961736400325 U2 + 5077«
+ 14210312049697140J5 JS % + 863549188855807685 J JE — 111444977082078432U3 J3 UG + 2790889397856} J3 + 83768141083825152/5J5 J8 — 42942980968765488.5
246 24 24 %6 42 24 2

+ 410958880454688.J} 23 Jg — 14050252057660416.3 J3 — 1643659809866496.] " U3 U8 + 44183277874179005 JS U2 — 31285005611086363 Jj JS + 2815950495430656.30
— 2286353789913249J3 JS UE — 40300476525620352.5 J4 J§ + 81707043798929088.5 U3 S — 2593609227005 U8 — 08257765274480088.5 3 U + 3318887207480832)0 U4 U2

— 121532536493026565 J3JS + 24757975700165376.5 J3 Jg — 26570902457981952J] Jp S — 67550650890243° + 1088391168010 + 537933765605 J5J2 — 80680064840,

107 2 963 8.5 A 745 6,36 5,27
+ 2271091292913 0U] U2 — 6282187473565 J5 U3 — 1389130574661J5 U5 J§ + 164657939888705 J§ U5 — 5679419194471505 J3 J§ + 1027133291851525 U3 L — 985297464
— 17164807683 /8 + 11718053954510040.5 U + 220752428322816J)2 U2 + 1322792799725.30U}0 — 3953070U3%3)

¢y = —28 . 35(6173606005 U, — 1821358087 Jg + 160218725 J3 — 21102240005 U2 Jg — 2659491905 5 + 8991580403 JpJ2 + 330458928, J3 Jg — 215198J5 J7 — 1227405

+ 293053205 JS g — 363U5JF + 31620706565 J5US — 164719985 J5UZ + 43565 S5 Jg — 19602055 J2 — 243316224005 Jp Jg + 479619865 J4 Jg + 392044 JS S — 7236¢
25 8 _ 22 23
+ 4511635203 8)(J5 — JBUZ + 6Uplgdy — 9U3)

Co = 28(768UF — 416403 — U3 + 1586Up)(J; — J5UZ + BUp gy — 9U2)°



(N,N)-SPLIT JACOBIANS AND ISOGENY BASED CRYPTOGRAPHY

Isogeny based cryptography: Analogous to the Diffie—Hellman key exchange, but based on walks in a
supersingular isogeny graph and was designed to resist cryptanalytic attack by an adversary in possession of a
quantum computer.

Supersingular Isogeny Diffie—Hellman key exchange (SIDH or SIKE)

1997 Couveignes introduces the Hard Homogeneous Spaces framework. (unpublished for 10 years.)
2006 Rostovtsev & Stolbunov suggest isogeny-based Diffie—Hellman as a quantum-resistant primitive.
2011-2012 De Feo, Jao & Plut introduce SIDH, an efficient post—quantum key exchange

2017 SIDH is submitted to the NIST competition (with the name SIKE, only isogeny-based candidate).
2022 SIDH is broken by Castryck, Decru.

Isogeny-based cryptography based on (n,n)-split Jacobians: Now the isogenies are (n, n, )-isogenies between
Jacobian surfaces (Jacobians of genus 2 curves).

Such curves are exactly curves with (n, n)-split Jacobians, parameterized by the loci £, (n = 2,3, 5), as their
splitting property enables the construction of isogenies with kernel (Z/nz)3.
Advanced Research Workshop : Isogeny based post-quantum cryptography,
Hebrew University of Jerusalem, July 29-31, 2024.

Next we outline a method to compute such (n, n)-isogenies over a finite field Fq, utilizing the structure of Ly.



COMPUTING (n, n)-ISOGENIES I
To compute an (n, n)-isogeny ¢ : J(C) — E4 x Ep for a genus 2 curve C over Fq with J(C) (n, n)-split, we utilize
the locus £, in Pw = P(2,4,6,10), defined by Fn(Js, Js, Js, J10) = 0. The process is outlined as follows.
> Pick a rational point p € Lp over Fq

p= [J2 cdy i dg J10] € [:n(Fq),

> Construct the genus two curve C: y? = f(x) using (Malmendier and Shaska, 2017).

> Compute the Jacobian J(C) as the group of degree-0 divisor classes on C, represented via Mumford’s
coordinates (pairs (u(x), v(x)).

» Determine the n-torsion subgroup J(C)[n]: The n-torsion subgroup J(C)[n] over an algebraic closure is
isomorphic to (Z/nZ)*, though its size over Fy depends on the Frobenius polynomial
P(T)=T*—5;T®+ 5,72 — g1 T+ ¢*
For P € J(C)[n], [n]P = 0, and |J(C)(Fq)| = P(1).
> Pick a subgroup K C J(C)[n] of order n? isotropic under the Weil pairing
en : J(C)[n] x J(C)[n] — pn,

where ep(P, Q) = 1 forall P, Q € K. This involves:
1. Generating a basis for J(C)[n] over IF4 (or an extension if needed), computing points P; = (u;(x), vi(x)) — oo such
that nP; = 0 using Cantor’s addition algorithm over Foa (where n | g% — 1),



COMPUTING (n, n)-ISOGENIES II

2. Selecting a subgroup K of order n? via linear algebra over Z/nZ, e.g., K = (Py, P») with Py, P; linearly independent,
forming K = {aPy + bP> | a,b=0,...,n— 1},
3. Verifying isotropy by computing the Weil pairing on K’s generators, en(P;, P;) = (—1)<P"’Pi>”, where (P;, P;), is the
intersection number modulo n. Adjust if en(P;, P2) # 1. Since C € Ln(Fq), K 2 (Z/nZ)? exists.
» Compute the quotient J(C)/K

The quotient J(C)/K is expected to be isomorphic to E; x E,. For nodd, use Vélu-type formulas adapted
for genus 2, generalizing Richelot isogenies for n = 2, by:

> Representing divisors in J(C) using Mumford coordinates, e.g.,
D = (u(x), v(x)) — 200,
> Applying K’s action to form equivalence classes, D ~ D + P for P € K, via addition laws (e.g., for P = (x4, y1) — oo,
D+ P = (U'(x),v'(x)) — o0),
> Constructing the codomain J(C)/K as a product of elliptic curves via explicit equations or theta functions. For n = 3,
it K = (P1, P2), J(C)/K yields Ej : y2 =x®+ax+b, E: y2 = X% + apx + by, derived from K’s orbit.
> Verify the isogeny One can verify the isogeny

¢ :J(C) = J(C)/K=E; x E;

by computing the j-invariants of Ey and E; or testing ¢(nP) = 0 for sample P € J(C), confirming

ker(¢) = K.

This method applies uniformly to n = 2, 3, 5, with |£s(IFg)| determining the availability of suitable curves, a
key factor in cryptographic design. For n = 2, this is well known by Richelot isogenies; see

(?2021-1, Prop. 2.1) for a detailed discussion.



WEIGHTED PROJECTIVE SPACES AND VARIETIES I

Main Problem: Find rational points on weighted varieties over Fy.

Let F be a field and w = (wp, wy, . .., Wn) a tuple of positive integers, called weights. The weighted projective
space Pw () is the quotient space A™1(F) \ {0}/ ~, where
(ao,a1,...,an) ~ (ﬁ0,51,...,ﬁn) if thereis A € F* s.t. aj = )\Wfﬁ/, i=0,1,...,n.
We denote the equivalence class by [ag : a1 @ -+ & an]w.
Consider the graded polynomial ring F[xq, . . . , Xn]w, Where variable x; has degree w;. A polynomial f(xg, ..., Xn)

is weighted homogeneous of degree d if every monomial xg" -+ xpn satisfies S°7 aiw; = d or equivalently:
(Ao x0, A" X1, ..., A" xp) = A%(xo, X1,...,X:) forall A € F*.

A weighted variety is a subvariety of Py defined by weighted homogeneous polynomials. A weighted
hypersurface X C Py is the zero set of a weighted homogeneous polynomial f:

X={lag:cq:-:anlw €Pw | flag,1,...,an) =0}

The Fq4-rational points, denoted X(FFq), are equivalence classes [xp : - - - : Xp]w With x; € Fq, not all zero,
satisfying X’s defining equations.
Lang-Weil Estimate: For a geometrically irreducible variety X C P" of dimension d from (Lang and Weil, 1954)

IX(Fq)l = 7 + O(q?~"/?)



WEIGHTED PROJECTIVE SPACES AND VARIETIES II

Weil Conjectures: For a smooth projective variety, the zeta function is rational, with roots tied to Betti numbers
(Deligne, 1974).
Z(X,t) = exp (Z X(qu)|d>
d=1

Serre’s Inequality: For a hypersurface in P" with degree d < n + 1, or adjusted for weights in Py, (Li, 2019)
|[X(Fq)l =1 (mod p), where p = char(Fq)
Point Count Bounds: For a hypersurface in P”, refined by degree and singularities (Aubry et al., 2017).

q"—1
q—1

IX(Fq)| < )
The Fg-Action and Orbit Sizes
The weighted projective space Pw(Fq) is defined by the Fg-action on AMH1(Fg) \ {0}, where for X € g and point
X= (Oéo,...,Oén):

Ax=(M0ag, \"ay,...,\""ap).
Points [ap : - - - : an]w are orbits under this action. For a point x with support set S = {i | a; # 0} C {0, ..., n},
the stabilizer is:

Stab(x) = {\ € Fj | Aks =1},



WEIGHTED PROJECTIVE SPACES AND VARIETIES III

where ks = ged({w; | i € S}). Since I is cyclic of order q — 1, |Stab(x)| = gcd(ks, g — 1). By the
orbit-stabilizer theorem, the orbit size is:
3| qg-—1

|O|’b(x)| = |Stab(X)| - ng(k87 q-— 1)

Challenges in Weighted Projective Spaces
Non-Uniform Orbits. The IFg-action on points in Pw(Fq) yields orbit sizes (q — 1)/ ged(ks, g — 1), where

ks = ged({w; | i € S}) for support set S C {0,..., n}. This non-uniformity, unlike in standard projective spaces,
complicates the enumeration of rational points.
Singularity Analysis. Weighted hypersurfaces exhibit quotient singularities, such as at [1 : 0 : - - - : 0], requiring

adjusted tangent spaces to analyze their local geometry (Reid, 1987). These singularities affect point counts and
demand specialized techniques.

Bound Adaptation. The orbifold structure of Pw limits the effectiveness of classical bounds like Lang-Weil.
Aubry et al. propose

m+1 _ 1 m—1 _ 1
XE)| <min{ T2, Egnty 1
q-1 w q-—1
for hypersurfaces of degree d and minimal weight wy (Aubry et al., 2017).
Computational Complexity. Enumerating rational points requires stratifying by support sets S C {0,..., n},

with computational complexity increasing due to the diversity of weights w;. This stratification poses significant
computational challenges.



COUNTING POINTS ON WEIGHTED PROJECTIVE SPACES

To compute |Pw(Fg)|, stratify points by support sets S C {0, ..., n}, where x; # 0 for i € S, x; = 0 otherwise.
Define

Ns = [{(x0, . Xn) € (F)!SI x {0}™1-1S1 | x; £ 0 for i € S}| = (g — 1)!S.
The stabilizer under Iy consists of A € Fj with \"i = 1 for i € S, giving order gcd(ks, g — 1), where
ks = ged({w; | i € S}).
By the orbit-stabilizer theorem, the orbit size is Wh' The number of orbits for support S is:

N —
qij:(q_nw ' ged(ks, g — 1).
ged(ks,q—1)
Thus:
IPw(Fq)l = > (g —1)151"" ged(ks, g — 1).
S#0
n g1
Forw; =1, kg =1, so |P"(Fq)| = e

This stratification underpins hypersurface counts.



CONJECTURES ON RATIONAL POINTS

1. Serre’s Inequality (Serre, 1991): For a hypersurface X C P(wy, ..., ws) of degree d < n+ 1, adjusted for
weights (e.g., d < > w;), the number of rational points satisfies:

[X(Fq)l =1 (mod p), p = char(Fg).

This extends Chevalley-Warning to weighted spaces. The affine solutions N(f) = |{(xo, ..., Xn) € IFZ“ | f=0}
are divisible by p if d < n+ 1, projecting to Pw with congruence adjusted for the origin (Li, 2019). Ford > n+ 1,
alternative constraints are needed.

2. Aubry et al’s Conjecture (Aubry et al., 2017): If a hyperplane H C Pw exists with X N H = 0, then:

. d .
IX(Fq)| < min {pm, A gt pm_z},
Wo

where m = n, pm = it P — 1 andwp = min{w;}. This adapts classical bounds, with
s 9—1 'm—2 — ) 0 if- p s
Wioq’"‘1 + pm—2 scaling by degree and minimal weight. Proven for P(1,1, ws, ..., wp), with equality conjectured

for d < wyp(g+ 1) (Aubry et al., 2017).

Implications: These guide our orbit-stabilizer algorithm, refining estimates like Lang-Weil’s for weighted
contexts.



ZETA FUNCTIONS

The zeta function of a variety X over Fq encodes point counts over extensions, revealing arithmetic properties.

For X C P":
Z(X, ) =exp > IX(Fga)l = | -
da=1 d

Properties for Projective Varieties (Deligne, 1974):
. Rationality: Z(X,t) = Q [), with P(t), Q(t) € Z[t]. For a smooth variety of dimension m:
Z(X.1) = 121oddP(t)
/ Oeven P(t)
where Pi(t) = [[;,(1 — ajjt), o tied to Betti numbers.

2. Functional Equation: For smooth X, Z(X,1/(q™t)) = £q™x/2txZ(X, t), where  is the Euler
characteristic.

3. Riemann Hypothesis: Roots «; ; satisfy |o ;| = ¢'/2.

For a hypersurface of dimension m = n — 1, | X(Fq)| = "' 4+ O(g"~3/2) (Lang and Weil, 1954).



ZETA FUNCTIONS FOR WEIGHTED PROJECTIVE VARIETIES

For X C Pw, the zeta function is:
Z(X,t) = exp (Z X(qu)|d> .
d=1
Properties and Challenges:
1. Rationality: Z(X,t) = %, with polynomials reflecting the orbifold structure. For a hypersurface of

dimension m — 1, the denominator often includes (1 — t)(1 — qt) --- (1 — g™ t), adjusted for weights
(Aubry et al., 2017).

2. Singularity Effects: Quotient singularities (e.g., [1 : 0 : - - - : 0]) alter pole structures, deviating from Betti
number patterns (Reid, 1987).

3. Weight-Dependent Counts: The weighted [F3-action complicates | X(F ,)|, requiring stratification by
support sets.

4. Functional Equation: Holds under smoothness, but x accounts for weighted singularities.
Implications: Links counts to cohomology, guiding bounds and computations.



ALGORITHM FOR COUNTING RATIONAL POINTS

For a hypersurface X = V/(f) C Pw over Fq, with f € Fg[xo, . .., Xn] of degree d, compute | X(Fq)|. The
orbit-stabilizer algorithm uses the Fj-action.
Algorithm Steps:

1. Compute Ns foreach S C {0,...,n}, S # 0:

Ns = |{(x0,. ., xa) €F§*" | F=0,x # 0fori € §,x = 0fori ¢ S}|.

Evaluate f on (F3)!SI x {0}™+1-151, leveraging f(A%xg, . .., A" xp) = \°F.
2. Compute ks: The stabilizer consists of A € F with \"i = 1 for i € S, order ged(ks, q — 1), where
ks = ged({w; | i € S}).
- - . P g—1 .
3. Sum contributions: Orbit size is Zed(ks,g=T) SO

Nsg - ged(ks, g — 1
X(Fg) = 3" s -8 (_s1 g-1)
570 q



APPLICATION TO Lp: 1

We present point counts |Ln(Fq)| for n = 2, 3, zeta functions as in (Mello et al., 2025).
> Apply the algorithm to compute |L£n(Fq)|-
> Derive Z(Ln, t) to analyze point growth.
using the above
[en(ig)| = Y- P Bl =)
S#0

where Ng = [{(Xo,...,X3) € F§ | Fn =0,x # 0fori € S,x; = 0 else}|, ks = ged({w; | i € S}),
w = (2,4,6,10),

)

Results forforn=2,p =5:
> Fs5: 64 points (S = {0}, {1}, {0, 1,2,3}; 20% singular).
> Fos: 1304 points (S = {0}, {0,1,2},{0,1,2,3}; 40% singular).
> Fq25: 31504 points (S = {0}, {0, 1,2}, {0, 1,2, 3}; 40% singular).

Results for n = 2, p = 3: Degeneration to a curve:
> TF3: 62 points (70% singular).
> Fg: 508 points (68% singular).
> TFo7: 4430 points.
> Fgy: 39540 points (68% singular).



APPLICATION TO Lp: 11

Results for n=3,p = 5:
> Fs: 74 points (S = {0}, {0, 1,2}, {0, 1,2, 3}; 66% singular).
> Fa5: 1294 points (S = {0}, {0,1,2},{0, 1,2, 3}; 68% singular).
Results for n = 3, p = 3: Identical to £, e.g., 62 (F3), 508 (Fg).
Note: Degeneration in p = 3 shows algorithm’s adaptability to reduced dimensions.

Zeta Functions: For £y, p = 5: Z(L2,1) ~ % matching 64, 652 (Mello et al., 2025). For p = 3:

1+ 49t — 74712
(1 -1 =31 —9t)’

Z(Lo tip=23) =

same for £3. For £3,p = 5: Z(L3, 1) = %, matching 74, 647.
Bounds: (Aubry et al., 2017)

> Lo:|Lo(Fg)| < 15¢° + g+ 1, e.g., 381 ¢, 64 (Fs).

> L3:|L3(Fq)| <40¢% + g+ 1, e.g., 1006 ¢, 74 (Fs).



FUTURE WORK

> Develop a theory of rational points of weighted projective varieties over Fq.
> Given a weighted projective curve Xy and X its image under the Veronese map

Xw — X

Determine the relation between the number of rational points of Xw and the number of rational points of X'.
Here are some of our latest papers/preprints that lead to this problem or trying to address this problem :

> S. Salami, T. Shaska, Vojta’s conjecture on weighted projective varieties, European Journal of Mathematics,
11, 12 (2025).

» E. Shaska, T. Shaska, Machine learning for moduli space of genus two curves and an application to isogeny
based cryptography, Journal of Algebr Comb 61, 23 (2025).

> A. Clingher, A. Malmendier, T. Shaska, Isogenies, Kummer surfaces, and theta functions, NATO Sci. Peace
Secur. Ser. D Inf. Commun. Secur.

» J. Mello, S. Salami, E. Shaska, T. Shaska, Rational Points and Zeta Functions of Humbert Surfaces with
Square Determinant over Fq, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur.

> J. Mello, T. Shaska, Counting of Rational Points on Weighted Projective Spaces

Hopefully more exciting results to be announced soon
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