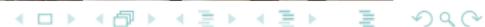


PARTIAL AUTOMORPHISMS OF COMBINATORIAL STRUCTURES

Tatiana Jajcayová

Comenius University, Bratislava

5th Pythagorean Conference
KALAMATA, GREECE
June 2, 2025



Combinatorial structure - classical approach to symmetries

- ▶ For a **combinatorial structure** $\mathcal{C} = (V, \mathcal{F})$

Examples: graphs, directed graphs, hypergraphs, geometries, designs, ...

- ▶ For a **combinatorial structure** $\mathcal{C} = (V, \mathcal{F})$

Examples: graphs, directed graphs, hypergraphs, geometries, designs, ...

- ▶ symmetries - **automorphisms** of (V, \mathcal{F})

Combinatorial structure - classical approach to symmetries

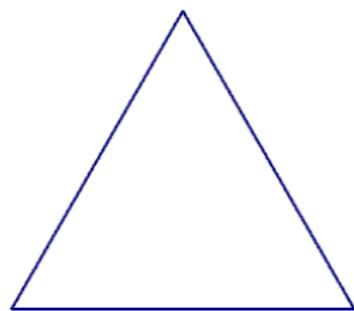
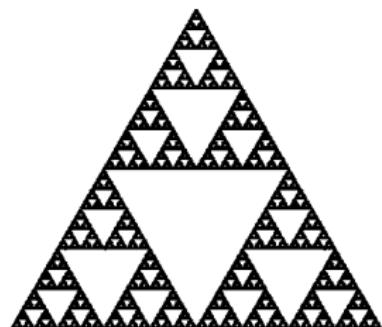
- ▶ For a **combinatorial structure** $\mathcal{C} = (V, \mathcal{F})$

Examples: graphs, directed graphs, hypergraphs, geometries, designs, ...

- ▶ symmetries - **automorphisms** of (V, \mathcal{F})

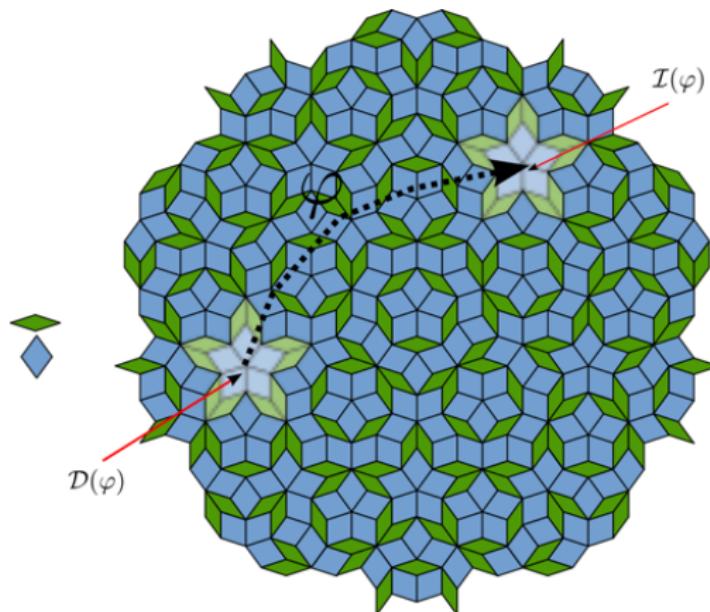
- ▶ Automorphisms form a group, $\text{Aut}(\mathcal{C}) \leq \text{Sym}(V)$.

Partial Symmetries



Partial Symmetries

Penrose tiling



Graphs

- (Erdős, Rényi, 1963)
Almost all graphs are asymmetric

Graphs

- ▶ (Erdős, Rényi, 1963)
Almost all graphs are asymmetric
- ▶ (Kim, Sudakov, Vu, 2002)
Almost all regular graphs are asymmetric

Graphs

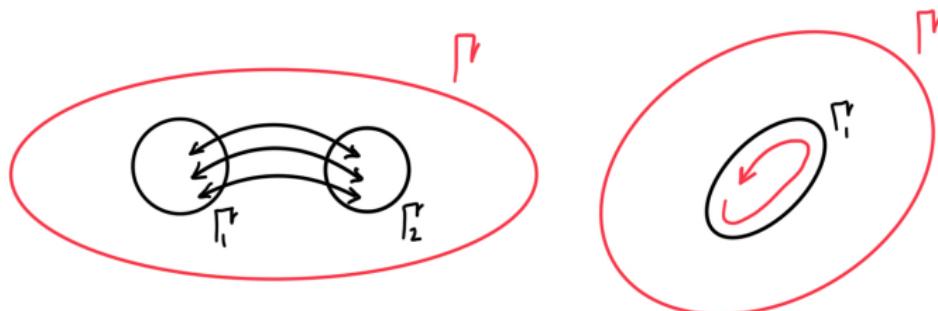
- ▶ (Erdős, Rényi, 1963)
Almost all graphs are asymmetric
- ▶ (Kim, Sudakov, Vu, 2002)
Almost all regular graphs are asymmetric
- ▶ in particular, $Aut(\Gamma)$ is trivial for all those graphs

Partial Automorphisms

A **partial automorphism** of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.

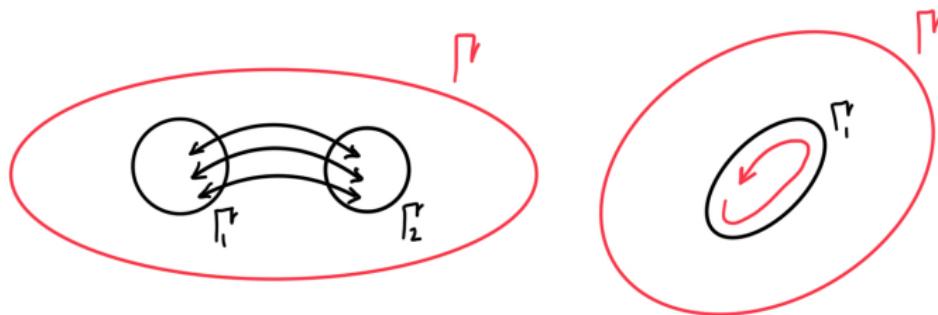
Partial Automorphisms

A **partial automorphism** of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.



Partial Automorphisms

A **partial automorphism** of $\Gamma = (V, \mathcal{E})$ is an isomorphism between two *induced* subgraphs.



A **partial automorphism** of a combinatorial structure \mathcal{C} is an isomorphism between two *induced* substructures.

Inverse Monoid of Partial Automorphisms

The set of **all partial automorphisms**, denoted $\text{PAut}(\Gamma)$ with the composition and partial inverse of partial maps forms an inverse monoid.

$$\text{PAut}(\Gamma) \leq \text{PSym}(V)$$

A **rank** of a partial automorphism is given by the size of its domain.

Inverse Monoid of Partial Automorphisms

- ▶ No finite graph of order greater than 1 has a trivial inverse monoid of partial automorphisms $\text{PAut}(\Gamma)$

Inverse Monoid of Partial Automorphisms

- ▶ No finite graph of order greater than 1 has a trivial inverse monoid of partial automorphisms $\text{PAut}(\Gamma)$
- ▶ The inverse monoid $\text{PAut}(\Gamma)$ is a complete algebraic description of Γ

Inverse Monoid of Partial Automorphisms

- ▶ No finite graph of order greater than 1 has a trivial inverse monoid of partial automorphisms $\text{PAut}(\Gamma)$
- ▶ The inverse monoid $\text{PAut}(\Gamma)$ is a complete algebraic description of Γ
- ▶ $\text{PAut}(\Gamma)$ contains $\text{Aut}(\Gamma)$ as its subgroup

Wagner-Preston representation

While groups can be represented as **symmetries**:

Theorem (Cayley)

Every group can be embedded in the set of one to one transformations on a set.

Inverse semigroups can be represented as **partial symmetries**:

Theorem (Wagner-Preston)

*Every inverse semigroup can be embedded in the set of **partial** one to one transformations on a set.*

Problem

Given a class of combinatorial structures and an inverse monoid M , is there a combinatorial structure \mathcal{C} from our class whose full partial automorphism monoid $\text{PAut}(\mathcal{C})$ is isomorphic to M ?

Analogue of Frucht's theorem for groups.

Classification Problem

Given a class of combinatorial structures, classify finite inverse monoids M for which there exists a structure \mathcal{C} from the considered class whose full partial automorphism monoid $\text{PAut}(\mathcal{C})$ is isomorphic to M .

Analogue of GRR's for groups.

Structure of $\text{PAut}(\Gamma)$ for graph (digraph, colored graph, multigraph,...) Γ

Proposition (R.Jajcay, T.Jajcayova, N.Szakács, M.Szendrei 2021)

For any graph Γ , the \mathcal{D} -classes of $\text{PAut}(\Gamma)$ correspond to the isomorphism classes of induced subgraphs of Γ , that is, two elements are \mathcal{D} -related if and only if the subgraphs induced by their respective domains (or images) are isomorphic.

Partial order for \mathcal{D} -classes: "subgraph" relation

Example

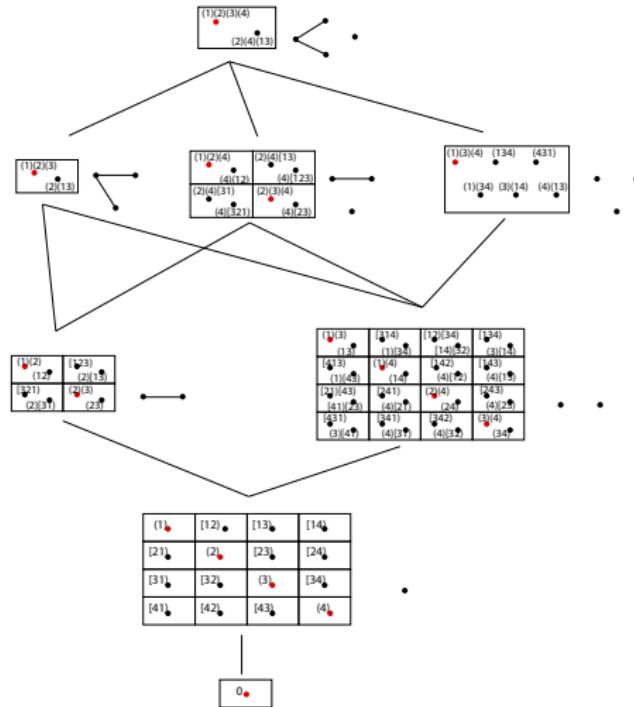


Figure: The Green-class structure of partial graph automorphisms

When is an inverse monoid of partial permutations the partial automorphism monoid of a graph?

Theorem (R.Jajcay,T.Jajcayova,N.Szakács,M.Szendrei 2021)

Given an inverse submonoid $S \leq \text{PSym}(X)$, where X is a finite set, there exists a graph with vertex set X whose partial automorphism monoid is S if and only if the following conditions hold:

1. S is a full inverse submonoid of $\text{PSym}(X)$,
2. for any compatible subset $A \subseteq S$ of rank 1 partial permutations, if S contains the join of any two elements of A , then S contains the join of the set A ,
3. the rank 2 elements of S form at most two \mathcal{D} -classes,
4. the \mathcal{H} -classes of rank 2 elements are nontrivial.

When is an (abstract) inverse monoid *isomorphic* to the partial automorphism monoid of a graph?

Theorem (R.Jajcay, T.Jajcayova, N.Szakács, M.Szendrei 2021)

Given a finite inverse monoid S , there exists a finite graph whose partial automorphism monoid is isomorphic to S if and only if the following conditions hold:

1. S is Boolean,
2. S is fundamental,
3. for any subset $A \subseteq S$ of compatible 0-minimal elements, if all 2-element subsets of A have a join in S , then the set A has a join in S ,
4. S has at most two \mathcal{D} -classes of height 2,
5. the \mathcal{H} -classes of the height 2 \mathcal{D} -classes of S are nontrivial.

Symmetry Level of a Graph

Definition

The **level of symmetry** of a graph Γ of order n is the ratio between the largest rank of a non-trivial partial automorphism of Γ and its order n .

Definition

The **level of symmetry** of a graph Γ of order n is the ratio between the largest rank of a non-trivial partial automorphism of Γ and its order n .

Symmetry Level of a Graph

Definition

The **level of symmetry** of a graph Γ of order n is the ratio between the largest rank of a non-trivial partial automorphism of Γ and its order n .

- ▶ A graph Γ admitting a non-trivial automorphism has level of symmetry 1

Definition

The **level of symmetry** of a graph Γ of order n is the ratio between the largest rank of a non-trivial partial automorphism of Γ and its order n .

- ▶ A graph Γ admitting a non-trivial automorphism has level of symmetry 1
- ▶ The level of symmetry of Γ is equal to the level of symmetry of its complement

Symmetry Level of a Graph

Question 1: Given $k \geq 1$, does there exist a graph Γ of order n with level of symmetry equal to $\frac{n-k}{n}$?

Computational results (J.Pastorek, V.Cingel 2023+):

- ▶ through exhaustive search: for $n \leq 10$ all graphs have the level of symmetry at least $\frac{n-1}{n}$.
- ▶ he has complete list of graphs on $n = 11$ vertices with the level of symmetry $\frac{n-2}{n}$ and there are no graphs with the level of symmetry $\frac{n-3}{n}$ or less, for $n = 11$.
- ▶ through constructions: constructed graphs with the smaller level of symmetry; his record is $\frac{n-6}{n}$, for $n = 27$.

Symmetry Level of a Graph

Question 1: Given $k \geq 1$, does there exist a graph Γ of order n with level of symmetry equal to $\frac{n-k}{n}$?

Computational results (J.Pastorek, V.Cingel 2023+):

- ▶ through exhaustive search: for $n \leq 10$ all graphs have the level of symmetry at least $\frac{n-1}{n}$.
- ▶ he has complete list of graphs on $n = 11$ vertices with the level of symmetry $\frac{n-2}{n}$ and there are no graphs with the level of symmetry $\frac{n-3}{n}$ or less, for $n = 11$.
- ▶ through constructions: constructed graphs with the smaller level of symmetry; his record is $\frac{n-6}{n}$, for $n = 27$.

Question 2: What is the minimal level of symmetry of a graph Γ of order n as a function of n ?

Connection to Isomorphism Problem

- ▶ Computationally, one of the big problems in determining $Aut(\Gamma)$ is the part where one needs to prove that the list of automorphisms already found is complete.

Connection to Isomorphism Problem

- ▶ Computationally, one of the big problems in determining $Aut(\Gamma)$ is the part where one needs to prove that the list of automorphisms already found is complete.
- ▶ Result by Rudi Mathon: Determining orbits of $Aut(\Gamma)$ of a graph is polynomially equivalent to determining $Aut(\Gamma)$

Connection to Isomorphism Problem

- ▶ Computationally, one of the big problems in determining $Aut(\Gamma)$ is the part where one needs to prove that the list of automorphisms already found is complete.
- ▶ Result by Rudi Mathon: Determining orbits of $Aut(\Gamma)$ of a graph is polynomially equivalent to determining $Aut(\Gamma)$
- ▶ Well-known Weisfeiler-Leman (W-L and k-W-L) Algorithm that approximates orbits $Aut(\Gamma)$ of a graph. Stable coloring can be computed in time $O(n^k \log n)$

Connection to Isomorphism Problem

- ▶ Given an inverse monoid of partial automorphisms of Γ , if one wishes to determine whether it is the complete $PAut(\Gamma)$, one should ask whether it satisfies the “JJSS” characterization

Connection to Isomorphism Problem

- ▶ Given an inverse monoid of partial automorphisms of Γ , if one wishes to determine whether it is the complete $PAut(\Gamma)$, one should ask whether it satisfies the “JJSS” characterization
- ▶ A partial automorphism φ of Γ is **complete** if there exists no partial automorphism ψ of Γ that is an extension of φ

Connection to Isomorphism Problem

- ▶ Given an inverse monoid of partial automorphisms of Γ , if one wishes to determine whether it is the complete $PAut(\Gamma)$, one should ask whether it satisfies the “JJSS” characterization
- ▶ A partial automorphism φ of Γ is **complete** if there exists no partial automorphism ψ of Γ that is an extension of φ
- ▶ The level of symmetry of Γ of order n is the ratio between the biggest rank of a *complete* partial automorphism of Γ and n

Algorithmic aspects of determining $PAut(\Gamma)$

- ▶ A partial automorphism φ of Γ is **complete** if and only if there exists **no** pair of vertices u, v , $u \notin \text{dom}\varphi$ and $v \notin \text{ran}\varphi$ such that $u \sim w$ if and only $v \sim \varphi(w)$, for all $w \in \text{dom}\varphi$.

Algorithmic aspects of determining $PAut(\Gamma)$

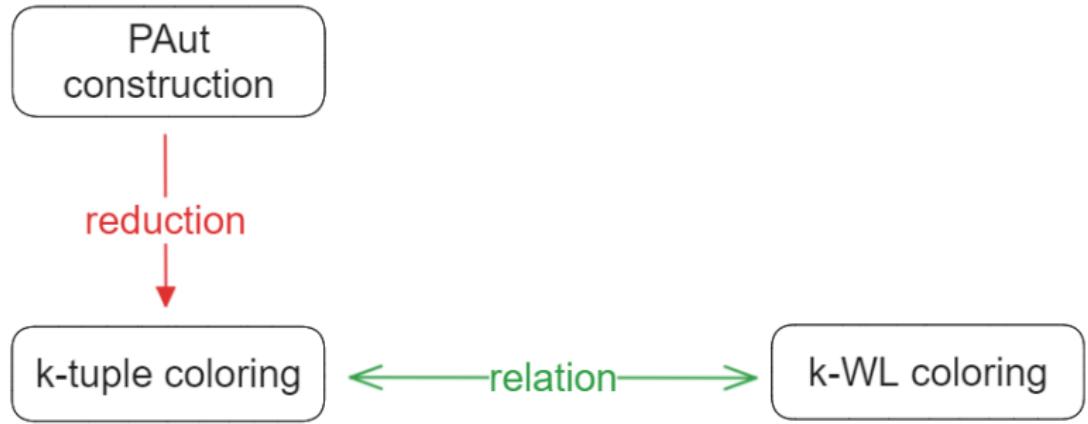
- ▶ A partial automorphism φ of Γ is **complete** if and only if there exists **no** pair of vertices u, v , $u \notin \text{dom}\varphi$ and $v \notin \text{ran}\varphi$ such that $u \sim w$ if and only $v \sim \varphi(w)$, for all $w \in \text{dom}\varphi$.
- ▶ If a partial automorphism φ of Γ is not complete due to a pair u, v , the partial automorphism $\tilde{\varphi} : \text{dom}\varphi \cup \{u\} \rightarrow \text{ran}\varphi \cup \{v\}$ is an **extension** of φ

Algorithmic aspects of determining $PAut(\Gamma)$

- ▶ A partial automorphism φ of Γ is **complete** if and only if there exists **no** pair of vertices u, v , $u \notin \text{dom}\varphi$ and $v \notin \text{ran}\varphi$ such that $u \sim w$ if and only $v \sim \varphi(w)$, for all $w \in \text{dom}\varphi$.
- ▶ If a partial automorphism φ of Γ is not complete due to a pair u, v , the partial automorphism $\tilde{\varphi} : \text{dom}\varphi \cup \{u\} \rightarrow \text{ran}\varphi \cup \{v\}$ is an **extension** of φ
- ▶ Determining whether a partial automorphism is complete and forming all of its extensions of rank increased by 1 is polynomial in the order of Γ

Comparison of the Two Algorithms

- ▶ The algorithm for constructing $PAut(\Gamma)$ can be adjusted to determine the orbits of $Aut(\Gamma)$ as follows:
The vertices u, v receive different colors at level k if no partial isomorphism of rank k can be extended by adding $u \mapsto v$
- ▶ We are working on comparing the complexity of the two algorithms, and its performance on various graph classes.



Thank you for listening!

