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Steiner triple systems

A Steiner triple system STS(v) of order v is a pair (V , T ) where
V is a set of v points (usually, V = [1, v ] := {1, . . . , v})
T is a set of triples of V

such that any two points lie in exactly one triple of T
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Steiner triple systems

A Steiner triple system STS(v) of order v is a pair (V , T ) where
V is a set of v points (usually, V = [1, v ] := {1, . . . , v})
T is a set of triples of V

such that any two points lie in exactly one triple of T

Here is an STS(7) where

V = {1, 2, 3, 4, 5, 6, 7}

T =
{
{1, 2, 4}, {2, 3, 5}, {3, 4, 6},
{4, 5, 7}, {5, 6, 1},
{6, 7, 2}, {7, 1, 3}

}
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Steiner triple systems

A Steiner triple system STS(v) of order v is a pair (V , T ) where
V is a set of v points (usually, V = [1, v ] := {1, . . . , v})
T is a set of triples of V

such that any two points lie in exactly one triple of T

Here is an STS(9) where

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

T =
{
{1, 2, 3}, {4, 5, 6}, {7, 8, 9},
{1, 4, 7}, {2, 5, 8}, {3, 6, 9},
{1, 5, 9}, {2, 6, 7}, {3, 4, 8},
{1, 6, 8}, {2, 4, 9}, {3, 5, 7}

}
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Steiner triple systems

A Steiner triple system STS(v) of order v is a pair (V , T ) where
V is a set of v points (usually, V = [1, v ] := {1, . . . , v})
T is a set of triples of V

such that any two points lie in exactly one triple

▶ The existence problem was posed by Julius Plücker 1839,
Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

▶ Plücker 1839: necessarily, v ≡ 1, 3 (mod 6)

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)
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Steiner triple systems
▶ The existence problem was posed by Julius Plücker 1839,
Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

▶ Plücker 1839: necessarily, v is odd and |T | = v(v−1)
6

⇕
v ≡ 1, 3 (mod 6)

▶ Plücker 1839: necessarily, v ≡ 1, 3 (mod 6)

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)

Tommaso Traetta Highly symmetric STSs and KTSs



Steiner triple systems
▶ The existence problem was posed by Julius Plücker 1839,
Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

▶ Plücker 1839: necessarily, v ≡ 1, 3 (mod 6)

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)
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Steiner triple systems

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)

▶ Kirkman’s proof employs two recursive constructions that
build STS(2v + 1) and STS(2v − 5) from an STS(v)

▶ It is remarkable that STSs for every admissible order are
built starting only with the trivial system on one element
▶ Further constructions were found by Lothar W.J. Heffter
1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and
Rose P. Peltesohn 1939

Therefore, a systematic classification of these systems became
of critical importance
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Steiner triple systems

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)

▶ Kirkman’s proof employs two recursive constructions that
build STS(2v + 1) and STS(2v − 5) from an STS(v)

▶ It is remarkable that STSs for every admissible order are
built starting only with the trivial system on one element

▶ Further constructions were found by Lothar W.J. Heffter
1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and
Rose P. Peltesohn 1939

Therefore, a systematic classification of these systems became
of critical importance
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Steiner triple systems

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)

▶ Further constructions were found by Lothar W.J. Heffter
1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and
Rose P. Peltesohn 1939

Therefore, a systematic classification of these systems became
of critical importance
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Steiner triple systems

Theorem (Thomas P. Kirkman 1847)
There is an STS(v) IFF v ≡ 1, 3 (mod 6)

▶ Further constructions were found by Lothar W.J. Heffter
1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and
Rose P. Peltesohn 1939

Therefore, a systematic classification of these systems became
of critical importance

Tommaso Traetta Highly symmetric STSs and KTSs



Steiner triple systems

A Steiner triple system STS(v) of order v is a pair (V , T ) with
V = [1, v ] (set of points), and
T = set of triples of V

such that any two points lie in exactly one triple

Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′

Up to isomorphism, there is exactly one STS(7), which
coincides with the point-line incidence structure of the
projective plane PG(2, 2) over GF(2)
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′

Up to isomorphism, there is exactly one STS(9), which
coincides with the point-line incidence structure of the
affine plane AG(2, 3) over GF(3)
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′

Up to isomorphism
▶ there is one STS(7) and one STS(9)
▶ there are two STS(13) [De Pasquale 1899, Brunel 1902]

▶ there are 80 STS(15) [Cole, Cummings, White 1917-19]

▶ there are 11,084,874,829 STS(19) [Kaski, Östergård 2004]

▶ there are 14,796,207,517,873,771 STS(21)
[Heinlein, Östergård 2024]
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′

Up to isomorphism
▶ there is one STS(7) and one STS(9)
▶ there are two STS(13) [De Pasquale 1899, Brunel 1902]

▶ there are 80 STS(15) [Cole, Cummings, White 1917-19]

▶ there are 11,084,874,829 STS(19) [Kaski, Östergård 2004]

▶ there are 14,796,207,517,873,771 STS(21)
[Heinlein, Östergård 2024]
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.

α(T ) = T ′

Up to isomorphism
▶ there is one STS(7) and one STS(9)
▶ there are two STS(13) [De Pasquale 1899, Brunel 1902]

▶ there are 80 STS(15) [Cole, Cummings, White 1917-19]

▶ there are 11,084,874,829 STS(19) [Kaski, Östergård 2004]

▶ there are 14,796,207,517,873,771 STS(21)
[Heinlein, Östergård 2024]
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.
α(T ) = T ′

An automorphism of S is an isomorphism from S to itself
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.
α(T ) = T ′

An automorphism of S is an isomorphism from S to itself
Aut(S) is the full automorphism group of S (i.e., the set of all
automorphisms of S)
Any sybgroup of Aut(S) is an automorphim group of S
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Steiner triple systems
Consider two STS(v), say S = (V , T ) and S′ = (V , T ′)

An isomorphism from S to S′ is a permutation α of V s.t.
α(T ) = T ′

An automorphism of S is an isomorphism from S to itself
Aut(S) is the full automorphism group of S (i.e., the set of all
automorphisms of S)
Any sybgroup of Aut(S) is an automorphim group of S

▶ Aut(STS(7)) = PGL(2, 2) = GL(3, 2)
▶ Aut(STS(9)) = AGL(2, 3) = (32)× GL(2, 3)
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T

▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 1, 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T
▶ Hence, v ≡ 3 (mod 6)

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v

▶ |P| = |T |
v/3 = v(v−1)/6

v/3 = v−1
2
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v

The existence problem was posed by T.P. Kirkman in 1850

Theorem (Lu Jiaxi 1960s, Ray-Chaudhuri, Wilson 1971)
There exists a KTS(v) IFF v ≡ 3 (mod 6)
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v

The existence problem was posed by T.P. Kirkman in 1850

The case v = 15, known as the “Kirkman schoolgirl problem”,
was first solved by Cayley in 1850
A different solution was
given by Kirkman in 1851

Theorem (Lu Jiaxi 1960s, Ray-Chaudhuri, Wilson 1971)
There exists a KTS(v) IFF v ≡ 3 (mod 6)
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Kirkman triple systems
Let S = (V , T ) be an STS(v), with v ≡ 3 (mod 6)
A parallel class of S is a set of v

3 pairwise disjoint triples in T

Given a partition P of T into parallel classes, we say that
K := (V ,P) is a Kirkman triple system KTS(v) of order v

The existence problem was posed by T.P. Kirkman in 1850

Theorem (Lu Jiaxi 1960s, Ray-Chaudhuri, Wilson 1971)
There exists a KTS(v) IFF v ≡ 3 (mod 6)
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Kirkman triple systems
Consider two KTS(v), say K = (V ,P) and K′ = (V ,P ′)

An isomorphism from K to K′ is a permutation α of V s.t.
α(P) = P ′
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Kirkman triple systems
Consider two KTS(v), say K = (V ,P) and K′ = (V ,P ′)

An isomorphism from K to K′ is a permutation α of V s.t.
α(P) = P ′

An automorphism of K is an isomorphism from K to itself
Aut(K) is the full automorphism group of K (i.e., the set of all
automorphisms of K)
Any sybgroup of Aut(K) is an automorphim group of K
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Kirkman triple systems
Consider two KTS(v), say K = (V ,P) and K′ = (V ,P ′)

An isomorphism from K to K′ is a permutation α of V s.t.
α(P) = P ′

An automorphism of K is an isomorphism from K to itself
Aut(K) is the full automorphism group of K (i.e., the set of all
automorphisms of K)
Any sybgroup of Aut(K) is an automorphim group of K

Up to isomorphism
▶ there is exactly one KTS(9) and Aut(KTS(9)) = AGL(2, 3)
▶ there are 7 KTS(15); but together they yield

4 nonisomorphic STS(15)s
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Steiner and Kirkman triple systems
• Triple systems (Oxford Math Monographs) [Colbourn, Rosa 1999]
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Steiner and Kirkman triple systems
• Triple systems (Oxford Math Monographs) [Colbourn, Rosa 1999]
▶ 3-pyramidal Steiner triple systems [Buratti, Rinaldi, Traetta 2017]
▶ Direct constructions of large sets of Kirkman triple systems

[Zheng, Chang, Zhou 2017]
▶ KTS(n) with Minimum Block Sum Equal to n, for Access Balancing

in Distributed Storage [Brummond 2019]
▶ Access balancing in storage systems by labeling partial Steiner systems

[Meng Chee, Colbourn, Dau, Gabrys, Ling, Lusi, Milenkovic 2020]
▶ The first families of highly symmetric KTSs whose orders fill a

congruence class [Bonvicini, Buratti, Garonzi, Rinaldi, Traetta 2021]
▶ Novàk’s conjecture on cyclic STSs and its generalization

[Feng, Horsley, Wang 2021]
▶ Automorphism groups of Steiner triple systems [Doyen, Kantor 2022]
▶ The spectrum of resolvable Bose triple systems [Lusi, Colbourn 2023]
▶ Weak colourings of Kirkman triple systems

[Burgess, Cavenagh, Danziger, Pike 2025]
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
Assume that V = {∞1, . . . ,∞f } ∪ [1, v − f ]

Let G ≤ Aut(B) be an automorphism group of B
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
Assume that V = {∞1, . . . ,∞f } ∪ [1, v − f ]

Let G ≤ Aut(B) be an automorphism group of B

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

(that is, G acts sharply transitively on [1, v − f ])
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

▶ Necessarily, |G | = v − f

▶ Kotzig first introduced the terminology
‘pyramidal’ or ‘bypiramidal’ for
1-factorizations

▶ Mazzuoccolo and Rinaldi (2007)
considered f -pyramidal 1-factorizations
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Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

▶ Necessarily, |G | = v − f

▶ Kotzig first introduced the terminology
‘pyramidal’ or ‘bypiramidal’ for
1-factorizations

▶ Mazzuoccolo and Rinaldi (2007)
considered f -pyramidal 1-factorizations
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

0-pyramidal = sharply transitive

The unique STS(7) is sharply transitive over G ≃ Z7

V = Z7

G = {τg | g ∈ Z7} ≃ Z7

where τg (x) = x + g , for every x ∈ G

G is an automorphism group of STS(7) acting
sharply transitively on the point-set V
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

0-pyramidal = sharply transitive
The unique STS(7) is sharply transitive over G ≃ Z7

V = Z7

G = {τg | g ∈ Z7} ≃ Z7

where τg (x) = x + g , for every x ∈ G

G is an automorphism group of STS(7) acting
sharply transitively on the point-set V
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f -pyramidal STSs and KTSs
Let B = (V ,B) be an STS(v) or a KTS(v)
V = {∞1, . . . ,∞f } ∪ [1, v − f ] and G ≤ Aut(B)

B is called f -pyramidal under G if
▶ γ(∞i) = ∞i , ∀i ∈ [1, f ] and γ ∈ G

▶ ∀j , k ∈ [1, v − f ] there is exactly one γ ∈ G s.t. γ(j) = k

The unique STS(7) is 3-pyramidal over G ≃ G

V = {∞1,∞2,∞3} ∪
G︷ ︸︸ ︷

Z2 × Z2

G = {τg | g ∈ G} ≃ G where

τg (x) =

{
x + g if x ∈ G ,

x if x ∈ {∞1,∞2,∞3}
G is an automorphism group of STS(7)
having a 3-pyramidal action on V
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f -pyramidal STSs and KTSs
The unique STS(7) is 3-pyramidal over G ≃ G = Z2 × Z2

V = {∞1,∞2,∞3} ∪ G

G = {τg | g ∈ G} ≃ G where

τg (x) =

{
x + g if x ∈ G ,

x if x ∈ {∞1,∞2,∞3}

G is an automorphism group of STS(7)
having a 3-pyramidal action on V

Given an f -pyramidal STS(v), the set of f fixed points forms
an STS(f ) =⇒ f = 0, or f ≡ 1, 3 (mod 6) and f < v

2

The most studied cases: f = 0, 1, 3
▶ 0-pyramidal = sharply transitive
▶ 1-pyramidal = 1-rotational
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f -pyramidal STSs and KTSs
The unique STS(7) is 3-pyramidal over G ≃ G = Z2 × Z2

V = {∞1,∞2,∞3} ∪ G

G = {τg | g ∈ G} ≃ G where

τg (x) =

{
x + g if x ∈ G ,

x if x ∈ {∞1,∞2,∞3}

G is an automorphism group of STS(7)
having a 3-pyramidal action on V

Given an f -pyramidal STS(v), the set of f fixed points forms
an STS(f ) =⇒ f = 0, or f ≡ 1, 3 (mod 6) and f < v

2

The most studied cases: f = 0, 1, 3
▶ 0-pyramidal = sharply transitive
▶ 1-pyramidal = 1-rotational
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}

G := Z15 and F1 = {0, 1, 4},F2 = {0, 2, 7} ⊂ G
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}

G := Z15, F1 = {0 ±1, 1 ±3, 4 ±4}, F2 = {0 ±2, 2 ±5, 7 ±7} ⊂ G

∆F1 = ±{1, 3, 4} and ∆F2 = ±{2, 5, 7}
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}

G := Z15, F1 = {0 ±1, 1 ±3, 4 ±4}, F2 = {0 ±2, 2 ±5, 7 ±7} ⊂ G

∆F1 = ±{1, 3, 4} and ∆F2 = ±{2, 5, 7}

▶ The list of differences of a family F of subsets of G is
the multiset ∆F =

⋃
F∈F ∆F

Let F = {F1,F2}. Then

∆F = ∆F1 ∪∆F2 = Z15 \ {0,±6}
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}

▶ The list of differences of a family F of subsets of G is
the multiset ∆F =

⋃
F∈F ∆F

▶ A partial spread (PS) Σ of G of type (f , 2e) is a symmetric
(i.e. −Σ = Σ) subset of G containing the zero element of G ,
f elements of order 2, and 2e elements of order 3.
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A characterization of f -pyramidal STSs
Let (G ,+) be an additive group

▶ The list of differences of F ⊆ G is the multiset

∆F = ±{a − b | a, b ∈ F , a ̸= b}

▶ The list of differences of a family F of subsets of G is
the multiset ∆F =

⋃
F∈F ∆F

▶ A partial spread (PS) Σ of G of type (f , 2e) is a symmetric
(i.e. −Σ = Σ) subset of G containing the zero element of G ,
f elements of order 2, and 2e elements of order 3.

Σ = {0} is a partial spread of (G ,+) of type (0, 0)

Σ = {0, 6,±4} is a partial spread of Z12 of type (1, 2)
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A characterization of f -pyramidal STSs

A set F of triples of G s.t. ∆F = G \ S is a (G , S , 3)-DF
(Difference Family)
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A characterization of f -pyramidal STSs

A set F of triples of G s.t. ∆F = G \ S is a (G , S , 3)-DF
(Difference Family)

Let F = {F1,F2} where F1 = {0, 1, 4},F2 = {0, 2, 7} ⊂ Z15

Since
∆F = ∆F1 ∪∆F2 = Z15 \ {0,±6},

then F is a (Z15, S = {0,±6}, 3)-DF
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A characterization of f -pyramidal STSs

A set F of triples of G s.t. ∆F = G \ S is a (G , S , 3)-DF
(Difference Family)

Let F = {F1,F2} where F1 = {0, 1, 4},F2 = {0, 2, 7} ⊂ Z15

Since ∆F = ∆F1 ∪∆F2 = Z15 \ {0,±6}, then

F is a (Z15, S = {0,±6}, 3)-DF

Theorem1. There exists an f -pyramidal STS(v) under G ,
with f < v

2 , if and only if
1 |G | = v − f

2 G has exactly f involutions, and
3 there exists a (G ,Σ, 3)-DF, where Σ is a partial spread

of G of type (f , 2e)

1M. Buratti, G. Rinaldi, TT, Ars Math. Contemp. 13 (2017)
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A characterization of f -pyramidal STSs
Theorem. (Buratti, Rinaldi, TT 2017) There exists an
f -pyramidal STS(v) under G , with f < v

2 , IFF |G | = v − f ,
G has exactly f involutions, and there exists a (G ,Σ, 3)-DF
where Σ is a partial spread of G of type (f , 2e)

Example. Constructing a 3-pyramidal STS from a DF

G := Z2 × Z2 × Z3

Σ :=
{
(0, 0, 0), s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (1, 1, 0),
s4 = (0, 0, 1),−s4

}
is a PS of G of type (3, 2)

F :=
{
{(0, 0, 0), (1, 0, 1), (1, 1, 2)}

}
▶ ∆F = ±{(1, 0, 1), (0, 1, 1), (1, 1, 2)} = G \ Σ

⇒ F is a (G ,Σ, 3)-DF ⇒ ∃ a 3-pyramidal STS(15)
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A characterization of f -pyramidal STSs
Example. Constructing an 3-pyramidal STS from a DF

G := Z2 × Z2 × Z3

Σ :=
{
(0, 0, 0), s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (1, 1, 0),
s4 = (0, 0, 1),−s4

}
is a PS of G of type (3, 2)

F :=
{
{(0, 0, 0), (1, 0, 1), (1, 1, 2)}

}
is a (G ,Σ, 3)-DF

⇓
Letting Σ+ :=

{
{∞1, (0, 0, 0), s1}, {∞2, (0, 0, 0), s2},
{∞3, (0, 0, 0), s3}, {(0, 0, 0), s4,−s4}

}

then, the set T of all the distinct translates of triples in

F ∪ Σ+ ∪
{
{∞1,∞2,∞3}

}
is a 3-pyramidal STS(15)
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The spectrum problem for f -pyramidal TSs

Let f = 0 or f ≡ 1, 3 (mod 6). Determine all v for which
there exists an f -pyramidal STS(v) (resp. KTS(v))

The case f = 0: sharply transitive STS(v)

▶ There is a sharply transitive STS(v) IFF v ≡ 1, 3 (mod 6)
[Peltesohn 1939]

▶ There is a sharply transitive STS over G whenever

▶ G ̸= Z9 is abelian [Tannenbaum 1976, Gallina 1978]

▶ G ̸= Z9 is nilpotent [Gallina 1978, Scapellato 1981]

▶ A doubly transitive STS is either PG (n, 2) or AG (n, 3)
[Key, Shult, 1984 – Hall, 1985 – Kantor 1985]
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The spectrum problem for f -pyramidal TSs

Let f = 0 or f ≡ 1, 3 (mod 6). Determine all v for which
there exists an f -pyramidal STS(v) (resp. KTS(v))

The case f = 0: sharply transitive STS(v)

▶ There is a sharply transitive STS(v) IFF v ≡ 1, 3 (mod 6)
[Peltesohn 1939]

▶ There is a sharply transitive STS over G whenever

▶ G ̸= Z9 is abelian [Tannenbaum 1976, Gallina 1978]

▶ G ̸= Z9 is nilpotent [Gallina 1978, Scapellato 1981]

▶ A doubly transitive STS is either PG (n, 2) or AG (n, 3)
[Key, Shult, 1984 – Hall, 1985 – Kantor 1985]
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The spectrum problem for f -pyramidal STS

Let f = 0 or f ≡ 1, 3 (mod 6). Determine all v for which
there exists an f -pyramidal STS(v) (resp. KTS(v))

The case f = 1: 1-rotational STS(v)

• 1-rotational/pyramidal over G = G is an automorphism group of the
system fixing one point and acting sharply transitively on the remaining
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The spectrum problem for f -pyramidal STS

Let f = 0 or f ≡ 1, 3 (mod 6). Determine all v for which
there exists an f -pyramidal STS(v) (resp. KTS(v))

The case f = 1: 1-rotational STS(v)

• 1-rotational/pyramidal over G = G is an automorphism group of the
system fixing one point and acting sharply transitively on the remaining

▶ There is a 1-rotational STS(v) over a group G , with G

▶ cyclic IFF v ≡ 3, 9 (mod 24) [Phelps, Rosa, 1981]

▶ abelian IFF v ≡ 1, 3, 9, 19, 27, 33, 51, 57 (mod 72)
[Buratti, 2001]

▶ dicyclic IFF v ≡ 9 (mod 24) [Mishima, 2008]
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1-rotational STS(v): open cases
▶ There is a 1-rotational STS(v) over a group G , with G

▶ cyclic IFF v ≡ 3, 9 (mod 24) [Phelps, Rosa, 1981]

▶ abelian IFF v ≡ 1, 3, 9, 19, 27, 33, 51, 57 (mod 72)
[Buratti, 2001]

▶ dicyclic IFF v ≡ 9 (mod 24) [Mishima, 2008]

Theorem1. The existence of a 1–rotational STS(v) is undecided if
simultaneously

a. v − 1 = (p3 − p)n ≡ 0 (mod 96), with p prime and n ̸≡ 0 (mod 4)

b. the odd part of v − 1 is square free and all prime divisors are ̸≡ 1
(mod 6)

1Bonvicini, Buratti, Rinaldi, TT, Des. Codes Cryptogr. 62 (2012)
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1-rotational STS(v): open cases

Theorem1. The existence of a 1–rotational STS(v) is undecided if
simultaneously

a. v − 1 = (p3 − p)n ≡ 0 (mod 96), with p prime and n ̸≡ 0 (mod 4)

b. the odd part of v − 1 is square free and all prime divisors are ̸≡ 1
(mod 6)

The first two open cases:

n p v Admissible groups

2 23 24289 “extension of PGL2(23) by Z2”

1 47 103777 SL2(47)

1Bonvicini, Buratti, Rinaldi, TT, Des. Codes Cryptogr. 62 (2012)
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1-rotational STS(v): open cases
Theorem1. The existence of a 1–rotational STS(v) is undecided if
simultaneously

a. v − 1 = (p3 − p)n ≡ 0 (mod 96), with p prime and n ̸≡ 0 (mod 4)

b. the odd part of v − 1 is square free and all prime divisors are ̸≡ 1
(mod 6)

Undecided cases with n and p small:

n p (< 1000) Admissible groups

1 47, 353, 383, 479, 641... SL2(p)

≡4 1, 3 .. SL2(p)× Zn ..

2 23, 47, 137, 263, 353, 383, 479, 641, 983... G

≡4 2 .. G × Z n
2

..

G = “extension of PGL2(p) by Z2”
1Bonvicini, Buratti, Rinaldi, TT, Des. Codes Cryptogr. 62 (2012)Tommaso Traetta Highly symmetric STSs and KTSs



The spectrum problem for 3–pyramidal STSs
An STS(v) is 3-pyramidal over G if G is an automorphism group of
the system fixing 3 points and acting sharply transitively on the
remaining. Necessarily, |G | = v − 3
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The spectrum problem for 3–pyramidal STSs
An STS(v) is 3-pyramidal over G if G is an automorphism group of
the system fixing 3 points and acting sharply transitively on the
remaining. Necessarily, |G | = v − 3

Theorem1. There is a 3-pyramidal STS(v) IFF
v ≡ 7, 9, 15 (mod 24) or 7 ≤ v ≡ 3, 19 (mod 48)

v Existence Group

24n + 3 Yes ⇐⇒ n is even Z4 × Z6n

24n + 7 Yes Z2
2 × Z6n+1

24n + 9 Yes D6 × Z4n+1

24n + 15 Yes Z2
2 × Z3 × Z2n+1

24n + 19 Yes ⇐⇒ n is even Z4 × Z6n+4

1M. Buratti, G. Rinaldi, TT, Ars Math. Contemp. 13 (2017)
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The spectrum problem for 3–pyramidal STSs

Theorem1. There is a 3-pyramidal STS(v) IFF
v ≡ 7, 9, 15 (mod 24) or 7 ≤ v ≡ 3, 19 (mod 48)

v Existence Group

24n + 3 Yes ⇐⇒ n is even Z4 × Z6n

24n + 7 Yes Z2
2 × Z6n+1

24n + 9 Yes D6 × Z4n+1

24n + 15 Yes Z2
2 × Z3 × Z2n+1

24n + 19 Yes ⇐⇒ n is even Z4 × Z6n+4

▶ There is an abelian 3-pyramidal STS(v) IFF
v ≡ 7, 15 (mod 24) or 7 ≤ v ≡ 3, 19 (mod 48)

1M. Buratti, G. Rinaldi, TT, Ars Math. Contemp. 13 (2017)
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f –pyramidal STSs over abelian groups
There exists an f –pyramidal STS(v), with 0 ≤ f ≤ 3,
over some abelian group IFF

▶ f = 0 and v ≡ 1, 3 (mod 6) [Peltesohn 1939]

▶ f = 1 and v ≡ 1, 3, 9, 19, 27, 33, 51, 57 (mod 72)
[Phelps, Rosa 1981 - Buratti 2001]

▶ f = 3, and v ≡ 7, 15 (mod 24) or v ≡ 3, 19 (mod 48)
[Buratti, Rinaldi, TT 2017]
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f –pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

▶ v ≡ 2m+1 − 1 (mod 2m3), or

▶ m is even and v ≡ 2m − 1 (mod 2m3), or

▶ m is odd and v ≡ 2m − 1 (mod 2m9)
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f –pyramidal STSs over abelian groups
Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

▶ v ≡ 2m+1 − 1 (mod 2m3), or

▶ m is even and v ≡ 2m − 1 (mod 2m3), or

▶ m is odd and v ≡ 2m − 1 (mod 2m9)

Proof. (⇒) Assume there is an f –pyramidal STS(v) (f > 3) over
an abelian group G .
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f –pyramidal STSs over abelian groups
Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

▶ v ≡ 2m+1 − 1 (mod 2m3), or

▶ m is even and v ≡ 2m − 1 (mod 2m3), or

▶ m is odd and v ≡ 2m − 1 (mod 2m9)

Proof. (⇒) Assume there is an f –pyramidal STS(v) (f > 3) over
an abelian group G .

Theorem1. There is an f -pyramidal STS(v) under G IFF
v = |G |+ f , G has exactly f involutions, and there exists a
(G ,Σ, 3)-DF where Σ is a PS of type (f , 2e)

1Buratti, Rinaldi, TT, Ars Math. Contemp. 13 (2017)
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f –pyramidal STSs over abelian groups
Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

▶ v ≡ 2m+1 − 1 (mod 2m3), or

▶ m is even and v ≡ 2m − 1 (mod 2m3), or

▶ m is odd and v ≡ 2m − 1 (mod 2m9)

Proof. (⇒) Assume there is an f –pyramidal STS(v) (f > 3) over
an abelian group G . Necessarily,

v = |G |+ f , G has exactly f involutions, and there exists a
(G ,Σ, 3)-DF, say F , where Σ is a PS of type (f , 2e)

Then, f + 1 = 2m (m ≥ 3),

|G | = 2md and v = 2md︸︷︷︸
|G |

+ 2m − 1︸ ︷︷ ︸
f
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|G |

+ 2m − 1︸ ︷︷ ︸
f
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f –pyramidal STSs over abelian groups
Proof. (⇒) Assume there is an f –pyramidal STS(v) (f > 3) over
an abelian group G . Necessarily,

v = |G |+ f , G has exactly f involutions, and there exists a
(G ,Σ, 3)-DF where Σ is a PS of type (f , 2e)

Then, f + 1 = 2m (m ≥ 3), |G | = 2md and v = 2md + 2m − 1
Furthermore, e ≡ 2m−1(d − 1) (mod 3).

▶ If d ̸≡ 0 (mod 3), then e = 0 and 2m−1(d − 1) ≡ 0 (mod 3),
that is, d ≡ 1 (mod 3), say d = 3n + 1.

Therefore,

v = 2m(3n + 1) + 2m − 1 = 2m3n + 2m+1 − 1

▶ If d ≡ 0 (mod 3), say d = 3n, then v = 2m3n + 2m − 1

▶ If d ≡ 0 (mod 3) and m is odd, then e ≡ 2m ≡ 2 (mod 3),
hence e ≥ 2 and G has at least 4 elements of order 3.

Hence d ≡ 0
(mod 9), say d = 9n, and v = 2m9n + 2m − 1
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f –pyramidal STSs over abelian groups
Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

1 v ≡ 2m+1 − 1 (mod 2m3), or

2 m is even and v ≡ 2m − 1 (mod 2m3), or

3 m is odd and v ≡ 2m − 1 (mod 2m9)

Proof. (⇒) . . . f = 2m − 1 (m ≥ 3) and v = 2md + 2m − 1 . . .

▶ If d ̸≡ 0 (mod 3), then d ≡ 1 (mod 3), say d = 3n + 1, hence
v = 2m3n + 2m+1 − 1 ⇒ 1

▶ If d ≡ 0 (mod 3), say d = 3n, then v = 2m3n + 2m − 1 ⇒ 2

▶ If d ≡ 0 (mod 3) and m is odd, then d ≡ 0 (mod 9),
say d = 9n, and v = 2m9n + 2m − 1 ⇒ 3 KTS
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f –pyramidal STSs over abelian groups
Theorem. (Chang, TT, Zhou, 2025+)
There exists an f –pyramidal STS(v), with 3 < f < v

2 , over some
abelian group IFF f = 2m − 1, for some m ≥ 3, and

▶ v ≡ 2m+1 − 1 (mod 2m3), or . . .

Proof. (⇐) Let v = 2m3n + 2m+1 − 1.

Taking m = 4 and n = 3,
we build an f -pyramidal STS(175), with f = 2m − 1 = 15, under
the abelian group

G = Z2
2 × Z2 × Z20

of order |G | = v − f = 160

We need a (G ,Σ, 3)-DF, say F , where Σ is a PS of type (15, 0).
In other words, Σ = Z2

2 × Z2 × 10Z20

▶ For every S ⊆ G , set S∗ = S \ Σ. Hence, ∆F = G ∗

Since G ∗ = |G \ Σ| = 160 − 16 = 144, then |F| = 144
6 = 24.
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A 15–pyramidal STS(175) over G
Proof. (⇐) G = Z2

2 × Z2 × Z20 and Σ = Z2
2 × Z2 × 10Z20

We need a (G ,Σ, 3)-DF, say F , to build a 15-pyramidal STS(175)
over G . Hence, |F| = 24 and ∆F = G ∗ = G \ Σ

Set Z2
2 = {0, α, β, γ} and H = Z2 × Z20. Hence, G = Z2

2 × H

Note that G ∗ =
⋃

x∈Z2
2
{x} × H∗, where |H∗| = 36

First, we build a set T of triples such that ∆T ⊃ {α, β, γ} × H∗

Let T = T ′ ∪ T ′′, with |T ′| = 16 and |T ′′| = 3, where

T ′ = {. . .T ′ = {(0, ∗, ∗), (α, ∗, ∗), (γ, ∗, ∗)} . . .}

∆T ′ = ±{(α, ∗, ∗), (β, ∗, ∗), (γ, ∗, ∗)}

T ′′ = {T ′′ = {(0, ∗, ∗), (0, ∗, ∗), (x , ∗, ∗)} | x = α, β, γ}

∆T ′′ = ±{(0, ∗, ∗), (x , ∗, ∗), (x , ∗, ∗)}

Then, ∆T =
(
{α, β, γ} × H∗) ∪ ±{(0, 1, 2), (0, 1, 4), (0, 1, 6)}
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∆T ′ = ±{(α, ∗, ∗), (β, ∗, ∗), (γ, ∗, ∗)}

T ′′ = {T ′′ = {(0, ∗, ∗), (0, ∗, ∗), (x , ∗, ∗)} | x = α, β, γ}

∆T ′′ = ±{(0, ∗, ∗), (x , ∗, ∗), (x , ∗, ∗)}

Then, ∆T =
(
{α, β, γ} × H∗) ∪ ±{(0, 1, 2), (0, 1, 4), (0, 1, 6)}
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A 15–pyramidal STS(175) over G
Proof. (⇐) G = Z2

2 × Z2 × Z20 and Σ = Z2
2 × Z2 × 10Z20

We need a (G ,Σ, 3)-DF, say F , to build a 15-pyramidal STS(175)
over G . Hence, |F| = 24 and ∆F = G ∗ = G \ Σ

▶ Set Z2
2 = {0, α, β, γ} and H = Z2 × Z20. Hence, G = Z2

2 × H

Note that G ∗ =
⋃

x∈Z2
2
{x} × H∗, where |H∗| = 36
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A 15–pyramidal STS(175) over G
Proof. (⇐) G = Z2

2 × Z2 × Z20 and Σ = Z2
2 × Z2 × 10Z20

We need a (G ,Σ, 3)-DF, say F , to build a 15-pyramidal STS(175)
over G . Hence, |F| = 24 and ∆F = G ∗ = G \ Σ

▶ cSet Z2
2 = {0, α, β, γ} and H = Z2 × Z20. Hence, G = Z2

2 × H

Note that G ∗ =
⋃

x∈Z2
2
{x} × H∗, where |H∗| = 36

▶ First, we build a set T of 19 triples such that

∆T =
(
{α, β, γ} × H∗) ∪ ±{(0, 1, 2), (0, 1, 4), (0, 1, 6)}

It is left to build a set W = {W1, . . . ,W5} of 5 triples such that

∆W =
(
{0} × H∗) \ ±{(0, 1, 2), (0, 1, 4), (0, 1, 6)} = ∆1 ∪ ∆2

where ∆1 = {(0, 0)} × Z∗
20 and ∆2 = {(0, 1)} × (Z∗

20 \ ±{2, 4, 6})
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A 15–pyramidal STS(175) over G
Proof. (⇐) G = Z2

2 × Z2 × Z20 and Σ = Z2
2 × Z2 × 10Z20

We need a (G ,Σ, 3)-DF, say F , to build a 15-pyramidal STS(175)
over G . Hence, |F| = 24 and ∆F = G ∗ = G \ Σ

▶ First, we build a set T of 19 triples such that ∆T = · · ·

▶ It is left to build a set W = {W1, . . . ,W5} of 5 triples such that
∆W = ∆1 ∪ ∆2 where

∆1 = {(0, 0)} × Z∗
20 and ∆2 = {(0, 1)} × (Z∗

20 \ ±{2, 4, 6})

Note that |∆1| = 18 and |∆2| = 12

Wi =

{
{(0, 0, ∗), (0, 0, ∗), (0, 0, ∗)} i = 1, 2
{(0, 0, ∗), (0, 0, ∗), (0, 1, ∗)} i = 3, 4, 5.

∆Wi =

{{
(0, 0, ∗)6

}
if i = 1, 2,{

(0, 0, ∗)2, (0, 1, ∗)4
}

if i = 3, 4, 5.
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A 15–pyramidal STS(175) over G
Proof. (⇐) G = Z2

2 × Z2 × Z20 and Σ = Z2
2 × Z2 × 10Z20

We need a (G ,Σ, 3)-DF, say F , to build a 15-pyramidal STS(175)
over G . Hence, |F| = 24 and ∆F = G ∗ = G \ Σ
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▶ It is left to build a set W = {W1, . . . ,W5} of 5 triples such that
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{(0, 0, ∗), (0, 0, ∗), (0, 0, ∗)} i = 1, 2
{(0, 0, ∗), (0, 0, ∗), (0, 1, ∗)} i = 3, 4, 5.

▶ F = T ∪ W is the desired (G ,Σ, 3)-DF

▶ To fill the ∗ we might need Langford sequences
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The spectrum problem for f -pyramidal KTSs

The case f = 0: sharply transitive KTS(v)

▶ A necessary condition for a cyclic KTS(6n + 3) to exist:

2n + 1 is not a prime power ≡ 5 (mod 6)

▶ There is a cyclic KTS(6n + 3) whenever:

▶ each prime factor of 2n + 1 is ≡ 1 (mod 6)
[Genma, Mishima, Jimbo 1997]

▶ 6n + 3 < 200 [Meszka, Rosa 2007]

STS
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The spectrum problem for f -pyramidal KTSs

The case f = 1: 1-rotational KTS(v)

▶ AG (n, 3) is a 1-rotational KTS(3n)

▶ There is a 1-rotational KTS(2n + 1) whenever each prime
factor of n is ≡ 1 (mod 12) [Buratti 1998]

▶ Up to isomorphisms, there are exactly 500 1-rotational
KTS(33) [Buratti, Zuanni 2000]

▶ There is a 1-rotational KTS(8n + 1) whenever each prime
factor of n is ≡ 1 (mod 6) [Buratti, Zuanni 2001]
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The spectrum problem for 3–pyramidal KTSs
Admissible orders: v ≡24 9, 15 or v ≡ 4m · 48 + 3 (mod 4m · 96)
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The spectrum problem for 3–pyramidal KTSs
Admissible orders: v ≡24 9, 15 or v ≡ 4m · 48 + 3 (mod 4m · 96)

Theorem1. There is a 3-pyramidal KTS(v) over G whenever

▶ v = 24n + 9 = 6(4n + 1) + 3

4n + 1 = q1q2 · · · qt and each qi is a prime power ≡ 1 (mod 4)

▶ v = 24n + 15 = 12(2n + 1) + 3, 2n + 1 = q1q2 · · · qt , and

3 | 2n + 1, or the square free part of 2n + 1 has no prime ≡12 11

▶ v ≡ 4m · 48 + 3 (mod 4m · 96)

1Bonvicini, Buratti, Garonzi, Rinaldi, TT, Des. Codes Cryptogr. 89
(2021)
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The spectrum problem for 3–pyramidal KTSs
Admissible orders: v ≡24 9, 15 or v ≡ 4m · 48 + 3 (mod 4m · 96)

Theorem1. There is a 3-pyramidal KTS(v) over G whenever

▶ v = 24n + 9 = 6(4n + 1) + 3

4n + 1 = q1q2 · · · qt and each qi is a prime power ≡ 1 (mod 4)

G = Sym(3)× Fq1 × · · · × Fqt First open case: KTS(129 = 6 · 21 + 3)

▶ v = 24n + 15 = 12(2n + 1) + 3, 2n + 1 = q1q2 · · · qt , and

3 | 2n + 1, or the square free part of 2n + 1 has no prime ≡12 11

G = Alt(4)× Fq1 × · · · × Fqt First open case: KTS(135 = 12 · 11 + 3)

▶ v ≡ 4m · 48 + 3 (mod 4m · 96)

G =
(
Zm+2

4 ⋉ Z3
)
× Fq1 × · · · × Fqt where q1 · · · qt = v−3

4m·48

1Bonvicini, Buratti, Garonzi, Rinaldi, TT, Des. Codes Cryptogr. 89
(2021)
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The spectrum problem for 3–pyramidal KTSs
Admissible orders: v ≡24 9, 15 or v ≡ 4m · 48 + 3 (mod 4m · 96)

Theorem1. There is a 3-pyramidal KTS(v) over G whenever

▶ v = 24n + 9 = 6(4n + 1) + 3

4n + 1 = q1q2 · · · qt and each qi is a prime power ≡ 1 (mod 4)

▶ v = 24n + 15 = 12(2n + 1) + 3, 2n + 1 = q1q2 · · · qt , and

3 | 2n + 1, or the square free part of 2n + 1 has no prime ≡12 11

▶ v ≡ 4m · 48 + 3 (mod 4m · 96)

Corollary1.

There exists a KTS(v) with at least v − 3 automorphisms whenever

v ≡ 39 (mod 72) or v ≡ 4m · 48 + 3 (mod 4m · 96)

1Bonvicini, Buratti, Garonzi, Rinaldi, TT, Des. Codes Cryptogr. 89
(2021)
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