

Highly symmetric Steiner and Kirkman triple systems

Tommaso Traetta
University of Brescia, Italy

5th Pythagorean conference
June 4, 2025

Steiner triple systems

A Steiner triple system $STS(v)$ of order v is a pair (V, \mathcal{T}) where

- V is a set of v **points** (usually, $V = [1, v] := \{1, \dots, v\}$)
- \mathcal{T} is a set of **triples** of V

such that **any two points lie in exactly one triple of \mathcal{T}**

Steiner triple systems

A Steiner triple system $STS(v)$ of order v is a pair (V, \mathcal{T}) where

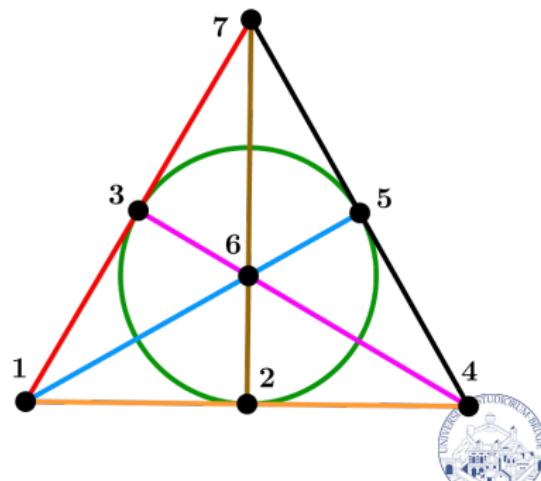
- V is a set of v **points** (usually, $V = [1, v] := \{1, \dots, v\}$)
- \mathcal{T} is a set of **triples** of V

such that **any two points lie in exactly one triple of \mathcal{T}**

Here is an $STS(7)$ where

$$V = \{1, 2, 3, 4, 5, 6, 7\}$$

$$\mathcal{T} = \{\{1, 2, 4\}, \{2, 3, 5\}, \{3, 4, 6\}, \{4, 5, 7\}, \{5, 6, 1\}, \{6, 7, 2\}, \{7, 1, 3\}\}$$



Steiner triple systems

A Steiner triple system $STS(v)$ of order v is a pair (V, \mathcal{T}) where

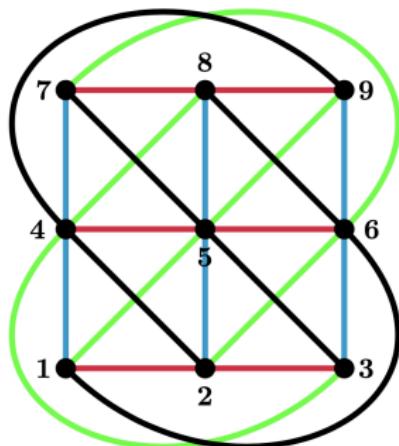
- V is a set of v **points** (usually, $V = [1, v] := \{1, \dots, v\}$)
- \mathcal{T} is a set of **triples** of V

such that **any two points lie in exactly one triple of \mathcal{T}**

Here is an $STS(9)$ where

$$V = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$\mathcal{T} = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}, \{1, 4, 7\}, \{2, 5, 8\}, \{3, 6, 9\}, \{1, 5, 9\}, \{2, 6, 7\}, \{3, 4, 8\}, \{1, 6, 8\}, \{2, 4, 9\}, \{3, 5, 7\}\}$$



Steiner triple systems

A Steiner triple system $STS(v)$ of order v is a pair (V, \mathcal{T}) where

- V is a set of v **points** (usually, $V = [1, v] := \{1, \dots, v\}$)
- \mathcal{T} is a set of **triples** of V

such that **any two points lie in exactly one triple**

► The existence problem was posed by Julius Plücker 1839, Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

Steiner triple systems

- The existence problem was posed by Julius Plücker 1839, Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

- Plücker 1839: necessarily, v is odd and $|\mathcal{T}| = \frac{v(v-1)}{6}$
 \Updownarrow
 $v \equiv 1, 3 \pmod{6}$

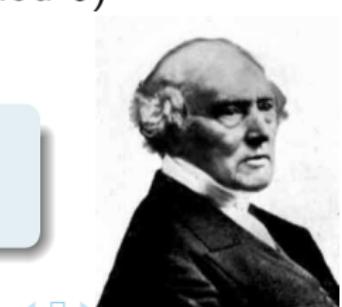
Steiner triple systems

- The existence problem was posed by Julius Plücker 1839, Wesley S. B. Woolhouse 1844 and Jacob Steiner 1853

- Plücker 1839: necessarily, $v \equiv 1, 3 \pmod{6}$

Theorem (Thomas P. Kirkman 1847)

There is an STS(v) IFF $v \equiv 1, 3 \pmod{6}$



Steiner triple systems

Theorem (Thomas P. Kirkman 1847)

There is an $\text{STS}(v)$ IFF $v \equiv 1, 3 \pmod{6}$

- ▶ Kirkman's proof employs two recursive constructions that build $\text{STS}(2v + 1)$ and $\text{STS}(2v - 5)$ from an $\text{STS}(v)$

Steiner triple systems

Theorem (Thomas P. Kirkman 1847)

There is an STS(v) IFF $v \equiv 1, 3 \pmod{6}$

- ▶ Kirkman's proof employs two recursive constructions that build STS($2v + 1$) and STS($2v - 5$) from an STS(v)
- ▶ It is remarkable that STSs for every admissible order are built starting only with the trivial system on one element

Steiner triple systems

Theorem (Thomas P. Kirkman 1847)

There is an STS(v) IFF $v \equiv 1, 3 \pmod{6}$

- ▶ Further constructions were found by Lothar W.J. Heffter 1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and Rose P. Peltesohn 1939

Steiner triple systems

Theorem (Thomas P. Kirkman 1847)

There is an STS(v) IFF $v \equiv 1, 3 \pmod{6}$

- ▶ Further constructions were found by Lothar W.J. Heffter 1891, Eugen O.E. Netto 1893, Eliakim H. Moore 1893 and Rose P. Peltesohn 1939

Therefore, a systematic classification of these systems became of critical importance

Steiner triple systems

A Steiner triple system $STS(v)$ of order v is a pair (V, \mathcal{T}) with

- $V = [1, v]$ (set of **points**), and
- $\mathcal{T} = \text{set of } \text{triples}$ of V

such that **any two points lie in exactly one triple**

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

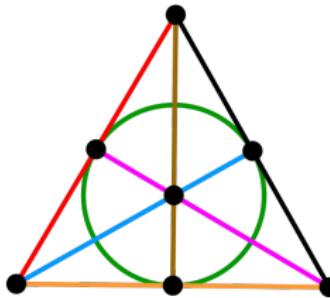
Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

Up to isomorphism, there is exactly one $STS(7)$, which coincides with the point-line incidence structure of the projective plane $PG(2, 2)$ over $GF(2)$



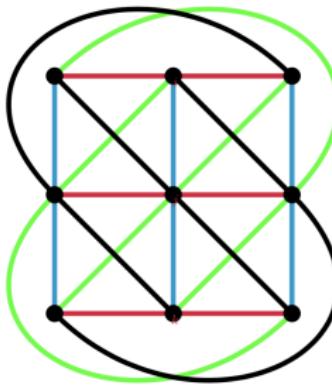
Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

Up to isomorphism, there is exactly one $STS(9)$, which coincides with the point-line incidence structure of the affine plane $AG(2, 3)$ over $GF(3)$



Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

Up to isomorphism

- ▶ there is one $STS(7)$ and one $STS(9)$
- ▶ there are two $STS(13)$ [De Pasquale 1899, Brunel 1902]
- ▶ there are 80 $STS(15)$ [Cole, Cummings, White 1917-19]
- ▶ there are 11,084,874,829 $STS(19)$ [Kaski, Östergård 2004]
- ▶ there are 14,796,207,517,873,771 $STS(21)$
[Heinlein, Östergård 2024]

Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

Up to isomorphism

- ▶ there is one $STS(7)$ and one $STS(9)$
- ▶ there are two $STS(13)$ [De Pasquale 1899, Brunel 1902]
- ▶ there are 80 $STS(15)$ [Cole, Cummings, White 1917-19]
- ▶ there are 11,084,874,829 $STS(19)$ [Kaski, Östergård 2004]
- ▶ there are 14,796,207,517,873,771 $STS(21)$
[Heinlein, Östergård 2024]

Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

Up to isomorphism

- ▶ there is one $STS(7)$ and one $STS(9)$
- ▶ there are two $STS(13)$ [De Pasquale 1899, Brunel 1902]
- ▶ there are 80 $STS(15)$ [Cole, Cummings, White 1917-19]
- ▶ there are 11,084,874,829 $STS(19)$ [Kaski, Östergård 2004]
- ▶ there are 14,796,207,517,873,771 $STS(21)$
[Heinlein, Östergård 2024]

Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

An **automorphism** of \mathbb{S} is an isomorphism from \mathbb{S} to itself

Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

An **automorphism** of \mathbb{S} is an isomorphism from \mathbb{S} to itself

$\text{Aut}(\mathbb{S})$ is the full automorphism group of \mathbb{S} (i.e., the set of all automorphisms of \mathbb{S})

Any subgroup of $\text{Aut}(\mathbb{S})$ is an automorphism group of \mathbb{S}

Steiner triple systems

Consider two $STS(v)$, say $\mathbb{S} = (V, \mathcal{T})$ and $\mathbb{S}' = (V, \mathcal{T}')$

An **isomorphism** from \mathbb{S} to \mathbb{S}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{T}) = \mathcal{T}'$$

An **automorphism** of \mathbb{S} is an isomorphism from \mathbb{S} to itself

$\text{Aut}(\mathbb{S})$ is the full automorphism group of \mathbb{S} (i.e., the set of all automorphisms of \mathbb{S})

Any subgroup of $\text{Aut}(\mathbb{S})$ is an automorphism group of \mathbb{S}

- ▶ $\text{Aut}(STS(7)) = PGL(2, 2) = GL(3, 2)$
- ▶ $\text{Aut}(STS(9)) = AGL(2, 3) = (3^2) \times GL(2, 3)$

Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

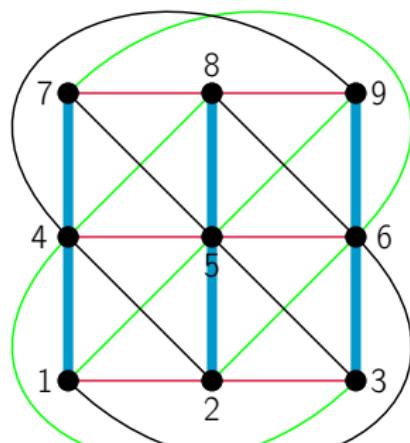
A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$

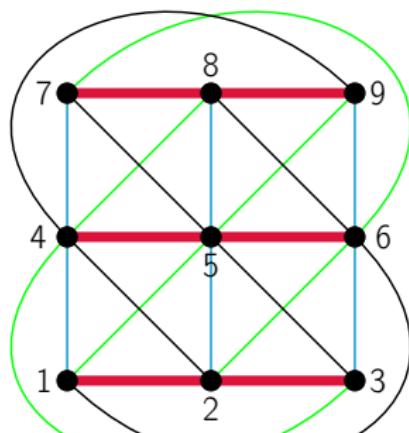


Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$

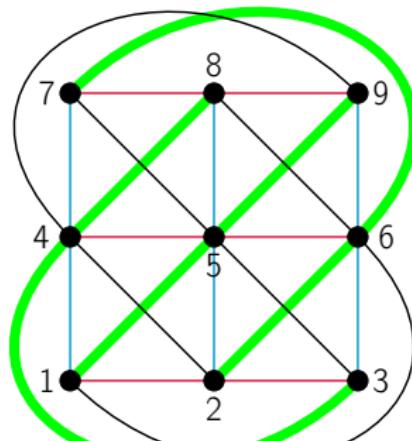


Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$

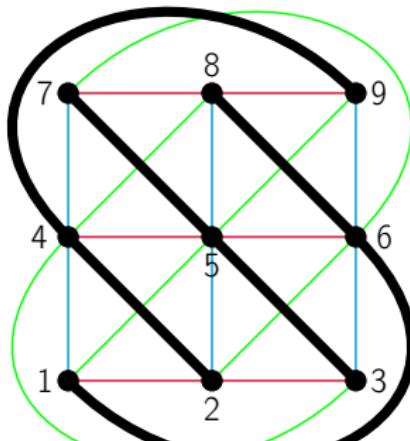


Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$



Kirkman triple systems

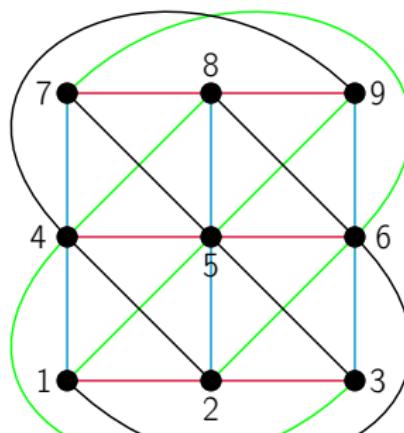
Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$

Given a **partition \mathcal{P}** of \mathcal{T} into parallel classes, we say that

$\mathbb{K} := (V, \mathcal{P})$ is a Kirkman triple system KTS(v) of order v



Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 1, 3 \pmod{6}$

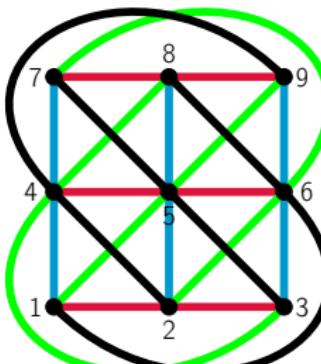
A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

► Hence, $v \equiv 3 \pmod{6}$

Given a **partition \mathcal{P}** of \mathcal{T} into parallel classes, we say that

$\mathbb{K} := (V, \mathcal{P})$ is a Kirkman triple system KTS(v) of order v

► $|\mathcal{P}| = \frac{|\mathcal{T}|}{v/3} = \frac{v(v-1)/6}{v/3} = \frac{v-1}{2}$



Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

Given a **partition \mathcal{P}** of \mathcal{T} into parallel classes, we say that

$\mathbb{K} := (V, \mathcal{P})$ is a Kirkman triple system **KTS(v)** of order v

The existence problem was posed by T.P. Kirkman in 1850

Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 3 \pmod{6}$

A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

Given a **partition \mathcal{P}** of \mathcal{T} into parallel classes, we say that

$\mathbb{K} := (V, \mathcal{P})$ is a Kirkman triple system **KTS(v)** of order v

The existence problem was posed by T.P. Kirkman in 1850

The case $v = 15$, known as the “Kirkman schoolgirl problem”, was first solved by Cayley in 1850

A different solution was given by Kirkman in 1851

	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>	<i>e</i>	<i>f</i>	<i>g</i>
<i>abc</i>				35	17	82	64
<i>ade</i>		62	84			15	37
<i>afg</i>	13	57	86	42			
<i>bdf</i>	47		16		38		25
<i>bge</i>	58		23	14		67	
<i>cdg</i>	12	78			56	34	
<i>cef</i>	36	45		27			18

Kirkman triple systems

Let $\mathbb{S} = (V, \mathcal{T})$ be an STS(v), with $v \equiv 3 \pmod{6}$

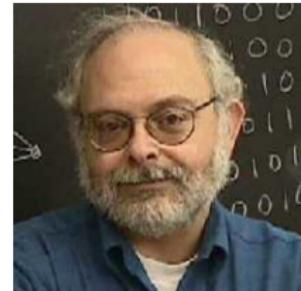
A **parallel class** of \mathbb{S} is a set of $\frac{v}{3}$ pairwise disjoint triples in \mathcal{T}

Given a **partition \mathcal{P}** of \mathcal{T} into parallel classes, we say that
 $\mathbb{K} := (V, \mathcal{P})$ is a Kirkman triple system **KTS(v)** of order v

The existence problem was posed by T.P. Kirkman in 1850

Theorem (Lu Jiaxi 1960s, Ray-Chaudhuri, Wilson 1971)

There exists a KTS(v) IFF $v \equiv 3 \pmod{6}$



Kirkman triple systems

Consider two $KTS(v)$, say $\mathbb{K} = (V, \mathcal{P})$ and $\mathbb{K}' = (V, \mathcal{P}')$

An **isomorphism** from \mathbb{K} to \mathbb{K}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{P}) = \mathcal{P}'$$

Kirkman triple systems

Consider two $KTS(v)$, say $\mathbb{K} = (V, \mathcal{P})$ and $\mathbb{K}' = (V, \mathcal{P}')$

An **isomorphism** from \mathbb{K} to \mathbb{K}' is a **permutation** α of V s.t.

$$\alpha(\mathcal{P}) = \mathcal{P}'$$

An **automorphism** of \mathbb{K} is an isomorphism from \mathbb{K} to itself

$\text{Aut}(\mathbb{K})$ is the full automorphism group of \mathbb{K} (i.e., the set of all automorphisms of \mathbb{K})

Any subgroup of $\text{Aut}(\mathbb{K})$ is an **automorphism group** of \mathbb{K}

Kirkman triple systems

Consider two $KTS(v)$, say $\mathbb{K} = (V, \mathcal{P})$ and $\mathbb{K}' = (V, \mathcal{P}')$

An **isomorphism** from \mathbb{K} to \mathbb{K}' is a **permutation α** of V s.t.

$$\alpha(\mathcal{P}) = \mathcal{P}'$$

An **automorphism** of \mathbb{K} is an isomorphism from \mathbb{K} to itself

$\text{Aut}(\mathbb{K})$ is the full automorphism group of \mathbb{K} (i.e., the set of all automorphisms of \mathbb{K})

Any subgroup of $\text{Aut}(\mathbb{K})$ is an **automorphism group** of \mathbb{K}

Up to isomorphism

- ▶ there is exactly one $KTS(9)$ and $\text{Aut}(KTS(9)) = AGL(2, 3)$
- ▶ there are 7 $KTS(15)$; but together they yield
4 nonisomorphic $STS(15)$ s

Steiner and Kirkman triple systems

- Triple systems (Oxford Math Monographs) [Colbourn, Rosa 1999]

Steiner and Kirkman triple systems

- Triple systems (Oxford Math Monographs) [Colbourn, Rosa 1999]
- ▶ 3-pyramidal Steiner triple systems [Buratti, Rinaldi, Traetta 2017]
- ▶ Direct constructions of large sets of Kirkman triple systems [Zheng, Chang, Zhou 2017]
- ▶ KTS(n) with Minimum Block Sum Equal to n , for Access Balancing in Distributed Storage [Brummond 2019]
- ▶ Access balancing in storage systems by labeling partial Steiner systems [Meng Chee, Colbourn, Dau, Gabrys, Ling, Lusi, Milenkovic 2020]
- ▶ The first families of highly symmetric KTSs whose orders fill a congruence class [Bonvicini, Buratti, Garonzi, Rinaldi, Traetta 2021]
- ▶ Novák's conjecture on cyclic STSs and its generalization [Feng, Horsley, Wang 2021]
- ▶ Automorphism groups of Steiner triple systems [Doyen, Kantor 2022]
- ▶ The spectrum of resolvable Bose triple systems [Lusi, Colbourn 2023]
- ▶ Weak colourings of Kirkman triple systems [Burgess, Cavenagh, Danziger, Pike 2025]

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

Assume that $V = \{\infty_1, \dots, \infty_f\} \cup [1, v-f]$

Let $G \leq \text{Aut}(\mathbb{B})$ be an automorphism group of \mathbb{B}

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

Assume that $V = \{\infty_1, \dots, \infty_f\} \cup [1, v - f]$

Let $G \leq \text{Aut}(\mathbb{B})$ be an automorphism group of \mathbb{B}

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v - f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$
(that is, G acts sharply transitively on $[1, v - f]$)

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

$V = \{\infty_1, \dots, \infty_f\} \cup [1, v - f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v - f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$
- ▶ Necessarily, $|G| = v - f$

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

$V = \{\infty_1, \dots, \infty_f\} \cup [1, v - f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v - f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$

- ▶ Necessarily, $|G| = v - f$
- ▶ Kotzig first introduced the terminology 'pyramidal' or 'bypiramidal' for 1-factorizations

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

$V = \{\infty_1, \dots, \infty_f\} \cup [1, v - f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v - f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$

- ▶ Necessarily, $|G| = v - f$
- ▶ Kotzig first introduced the terminology 'pyramidal' or 'bypiramidal' for 1-factorizations
- ▶ Mazzuoccolo and Rinaldi (2007) considered f -pyramidal 1-factorizations

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

$V = \{\infty_1, \dots, \infty_f\} \cup [1, v-f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v-f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$

0-pyramidal = sharply transitive

f -pyramidal STSs and KTSs

Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

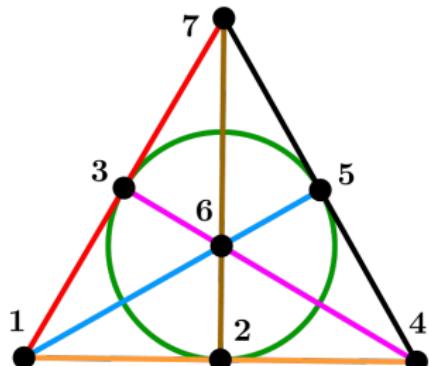
$V = \{\infty_1, \dots, \infty_f\} \cup [1, v-f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v-f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$

0-pyramidal = sharply transitive

The unique STS(7) is sharply transitive over $G \simeq \mathbb{Z}_7$



$$V = \mathbb{Z}_7$$

$$G = \{\tau_g \mid g \in \mathbb{Z}_7\} \simeq \mathbb{Z}_7$$

where $\tau_g(x) = x + g$, for every $x \in G$

G is an automorphism group of STS(7) acting sharply transitively on the point-set V

f -pyramidal STSs and KTSs

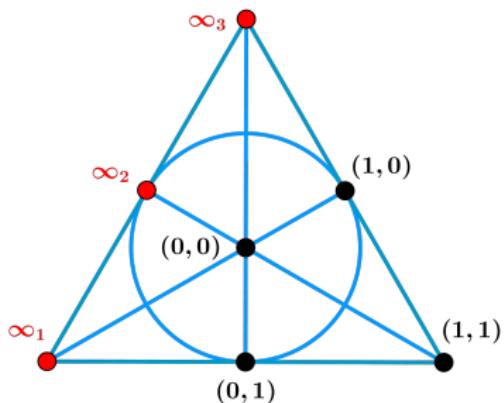
Let $\mathbb{B} = (V, \mathcal{B})$ be an STS(v) or a KTS(v)

$V = \{\infty_1, \dots, \infty_f\} \cup [1, v-f]$ and $G \leq \text{Aut}(\mathbb{B})$

\mathbb{B} is called f -pyramidal under G if

- ▶ $\gamma(\infty_i) = \infty_i$, $\forall i \in [1, f]$ and $\gamma \in G$
- ▶ $\forall j, k \in [1, v-f]$ there is exactly one $\gamma \in G$ s.t. $\gamma(j) = k$

The unique STS(7) is 3-pyramidal over $\overline{G} \simeq G$

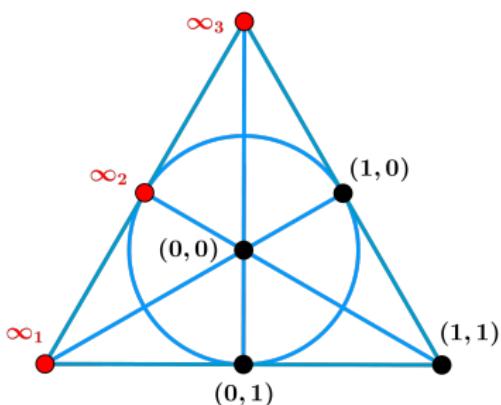


$$V = \{\infty_1, \infty_2, \infty_3\} \cup \overbrace{\mathbb{Z}_2 \times \mathbb{Z}_2}^G$$
$$\overline{G} = \{\tau_g \mid g \in G\} \simeq G \text{ where}$$
$$\tau_g(x) = \begin{cases} x + g & \text{if } x \in G, \\ x & \text{if } x \in \{\infty_1, \infty_2, \infty_3\} \end{cases}$$

\overline{G} is an automorphism group of STS(7) having a 3-pyramidal action on V

f -pyramidal STSs and KTSs

The unique STS(7) is 3-pyramidal over $\overline{G} \simeq G = \mathbb{Z}_2 \times \mathbb{Z}_2$



$$V = \{\infty_1, \infty_2, \infty_3\} \cup G$$

$$\overline{G} = \{\tau_g \mid g \in G\} \simeq G \text{ where}$$

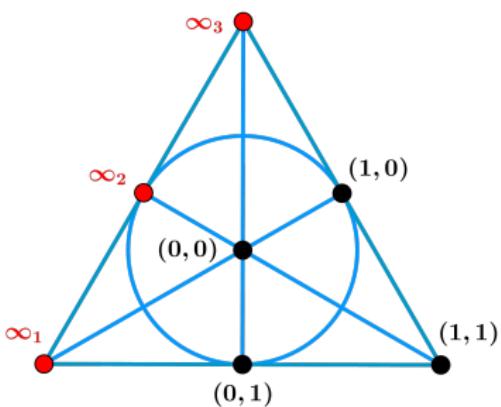
$$\tau_g(x) = \begin{cases} x + g & \text{if } x \in G, \\ x & \text{if } x \in \{\infty_1, \infty_2, \infty_3\} \end{cases}$$

\overline{G} is an automorphism group of STS(7)
having a 3-pyramidal action on V

Given an f -pyramidal STS(v), the set of f fixed points forms an STS(f) $\implies f = 0$, or $f \equiv 1, 3 \pmod{6}$ and $f < \frac{v}{2}$

f -pyramidal STSs and KTSs

The unique STS(7) is 3-pyramidal over $\overline{G} \simeq G = \mathbb{Z}_2 \times \mathbb{Z}_2$



$$V = \{\infty_1, \infty_2, \infty_3\} \cup G$$

$$\overline{G} = \{\tau_g \mid g \in G\} \simeq G \text{ where}$$

$$\tau_g(x) = \begin{cases} x + g & \text{if } x \in G, \\ x & \text{if } x \in \{\infty_1, \infty_2, \infty_3\} \end{cases}$$

\overline{G} is an automorphism group of STS(7) having a 3-pyramidal action on V

Given an f -pyramidal STS(v), the set of f fixed points forms an STS(f) $\implies f = 0$, or $f \equiv 1, 3 \pmod{6}$ and $f < \frac{v}{2}$

The most studied cases: $f = 0, 1, 3$

- ▶ 0-pyramidal = sharply transitive
- ▶ 1-pyramidal = 1-rotational

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

$G := \mathbb{Z}_{15}$ and $F_1 = \{0, 1, 4\}, F_2 = \{0, 2, 7\} \subset G$

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

$$G := \mathbb{Z}_{15}, F_1 = \{0 \pm 1, 1 \pm 3, 4 \pm 4\}, F_2 = \{0 \pm 2, 2 \pm 5, 7 \pm 7\} \subset G$$

$$\Delta F_1 = \pm\{1, 3, 4\} \quad \text{and} \quad \Delta F_2 = \pm\{2, 5, 7\}$$

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

$$G := \mathbb{Z}_{15}, F_1 = \{0 \pm 1, 1 \pm 3, 4 \pm 4\}, F_2 = \{0 \pm 2, 2 \pm 5, 7 \pm 7\} \subset G$$

$$\Delta F_1 = \pm\{1, 3, 4\} \quad \text{and} \quad \Delta F_2 = \pm\{2, 5, 7\}$$

- The list of differences of a family \mathcal{F} of subsets of G is the multiset $\Delta \mathcal{F} = \bigcup_{F \in \mathcal{F}} \Delta F$

Let $\mathcal{F} = \{F_1, F_2\}$. Then

$$\Delta \mathcal{F} = \Delta F_1 \cup \Delta F_2 = \mathbb{Z}_{15} \setminus \{0, \pm 6\}$$

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

- The list of differences of a family \mathcal{F} of subsets of G is the multiset $\Delta \mathcal{F} = \bigcup_{F \in \mathcal{F}} \Delta F$
- A **partial spread (PS)** Σ of G of type $(f, 2e)$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G , f elements of order 2, and $2e$ elements of order 3.

A characterization of f -pyramidal STSs

Let $(G, +)$ be an additive group

- The **list of differences** of $F \subseteq G$ is the multiset

$$\Delta F = \pm\{a - b \mid a, b \in F, a \neq b\}$$

- The list of differences of a family \mathcal{F} of subsets of G is the multiset $\Delta \mathcal{F} = \bigcup_{F \in \mathcal{F}} \Delta F$
- A **partial spread (PS)** Σ of G of type $(f, 2e)$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G , f elements of order 2, and $2e$ elements of order 3.

$\Sigma = \{0\}$ is a partial spread of $(G, +)$ of type $(0, 0)$

$\Sigma = \{0, 6, \pm 4\}$ is a partial spread of \mathbb{Z}_{12} of type $(1, 2)$

A characterization of f -pyramidal STSs

A set \mathcal{F} of triples of G s.t. $\Delta\mathcal{F} = G \setminus S$ is a $(G, S, 3)$ -DF
(Difference Family)

A characterization of f -pyramidal STSs

A set \mathcal{F} of triples of G s.t. $\Delta\mathcal{F} = G \setminus S$ is a $(G, S, 3)$ -DF
(Difference Family)

Let $\mathcal{F} = \{F_1, F_2\}$ where $F_1 = \{0, 1, 4\}$, $F_2 = \{0, 2, 7\} \subset \mathbb{Z}_{15}$

Since

$$\Delta\mathcal{F} = \Delta F_1 \cup \Delta F_2 = \mathbb{Z}_{15} \setminus \{0, \pm 6\},$$

then \mathcal{F} is a $(\mathbb{Z}_{15}, S = \{0, \pm 6\}, 3)$ -DF

A characterization of f -pyramidal STSs

A set \mathcal{F} of triples of G s.t. $\Delta\mathcal{F} = G \setminus S$ is a $(G, S, 3)$ -DF
(Difference Family)

Let $\mathcal{F} = \{F_1, F_2\}$ where $F_1 = \{0, 1, 4\}, F_2 = \{0, 2, 7\} \subset \mathbb{Z}_{15}$

Since $\Delta\mathcal{F} = \Delta F_1 \cup \Delta F_2 = \mathbb{Z}_{15} \setminus \{0, \pm 6\}$, then

\mathcal{F} is a $(\mathbb{Z}_{15}, S = \{0, \pm 6\}, 3)$ -DF

Theorem¹. There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, if and only if

- 1 $|G| = v - f$
- 2 G has exactly f involutions, and
- 3 there exists a $(G, \Sigma, 3)$ -DF, where Σ is a partial spread of G of type $(f, 2e)$

¹M. Buratti, G. Rinaldi, TT, *Ars Math. Contemp.* 13 (2017)

A characterization of f -pyramidal STSs

Theorem. (Buratti, Rinaldi, TT 2017) There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, IFF $|G| = v - f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a partial spread of G of type $(f, 2e)$

Example. Constructing a 3-pyramidal STS from a DF

A characterization of f -pyramidal STSs

Theorem. (Buratti, Rinaldi, TT 2017) There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, IFF $|G| = v - f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a partial spread of G of type $(f, 2e)$

Example. Constructing a 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

A characterization of f -pyramidal STSs

Theorem. (Buratti, Rinaldi, TT 2017) There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, IFF $|G| = v - f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a partial spread of G of type $(f, 2e)$

Example. Constructing a 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

$$\Sigma := \{(0, 0, 0), s_1 = (1, 0, 0), s_2 = (0, 1, 0), s_3 = (1, 1, 0), s_4 = (0, 0, 1), -s_4\}$$
 is a PS of G of type $(3, 2)$

A characterization of f -pyramidal STSs

Theorem. (Buratti, Rinaldi, TT 2017) There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, IFF $|G| = v - f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a partial spread of G of type $(f, 2e)$

Example. Constructing a 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

$\Sigma := \{(0, 0, 0), s_1 = (1, 0, 0), s_2 = (0, 1, 0), s_3 = (1, 1, 0), s_4 = (0, 0, 1), -s_4\}$ is a PS of G of type $(3, 2)$

$$\mathcal{F} := \left\{ \{(0, 0, 0), (1, 0, 1), (1, 1, 2)\} \right\}$$

$$\blacktriangleright \Delta\mathcal{F} = \pm\{(1, 0, 1), (0, 1, 1), (1, 1, 2)\} = G \setminus \Sigma$$

A characterization of f -pyramidal STSs

Theorem. (Buratti, Rinaldi, TT 2017) There exists an f -pyramidal STS(v) under G , with $f < \frac{v}{2}$, IFF $|G| = v - f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a partial spread of G of type $(f, 2e)$

Example. Constructing a 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

$$\Sigma := \{(0, 0, 0), s_1 = (1, 0, 0), s_2 = (0, 1, 0), s_3 = (1, 1, 0), s_4 = (0, 0, 1), -s_4\}$$
 is a PS of G of type $(3, 2)$

$$\mathcal{F} := \left\{ \{(0, 0, 0), (1, 0, 1), (1, 1, 2)\} \right\}$$

$$\blacktriangleright \Delta\mathcal{F} = \pm\{(1, 0, 1), (0, 1, 1), (1, 1, 2)\} = G \setminus \Sigma$$

$$\Rightarrow \mathcal{F} \text{ is a } (G, \Sigma, 3)\text{-DF} \Rightarrow \exists \text{ a 3-pyramidal STS}(15)$$

A characterization of f -pyramidal STSs

Example. Constructing an 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

$\Sigma := \{(0, 0, 0), s_1 = (1, 0, 0), s_2 = (0, 1, 0), s_3 = (1, 1, 0), s_4 = (0, 0, 1), -s_4\}$ is a PS of G of type $(3, 2)$

$\mathcal{F} := \left\{ \{(0, 0, 0), (1, 0, 1), (1, 1, 2)\} \right\}$ is a $(G, \Sigma, 3)$ -DF

Letting $\Sigma^+ := \{\{\infty_1, (0, 0, 0), s_1\}, \{\infty_2, (0, 0, 0), s_2\}, \{\infty_3, (0, 0, 0), s_3\}, \{(0, 0, 0), s_4, -s_4\}\}$

A characterization of f -pyramidal STSs

Example. Constructing an 3-pyramidal STS from a DF

$$G := \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$

$\Sigma := \{(0, 0, 0), s_1 = (1, 0, 0), s_2 = (0, 1, 0), s_3 = (1, 1, 0), s_4 = (0, 0, 1), -s_4\}$ is a PS of G of type $(3, 2)$

$\mathcal{F} := \left\{ \{(0, 0, 0), (1, 0, 1), (1, 1, 2)\} \right\}$ is a $(G, \Sigma, 3)$ -DF

Letting $\Sigma^+ := \{\{\infty_1, (0, 0, 0), s_1\}, \{\infty_2, (0, 0, 0), s_2\}, \{\infty_3, (0, 0, 0), s_3\}, \{(0, 0, 0), s_4, -s_4\}\}$

then, the set \mathcal{T} of all the distinct translates of triples in

$$\mathcal{F} \cup \Sigma^+ \cup \left\{ \{\infty_1, \infty_2, \infty_3\} \right\}$$

is a 3-pyramidal STS(15)

The spectrum problem for f -pyramidal TSs

Let $f = 0$ or $f \equiv 1, 3 \pmod{6}$. Determine all v for which there exists an f -pyramidal STS(v) (resp. KTS(v))

The case $f = 0$: sharply transitive STS(v)

- ▶ There is a sharply transitive STS(v) IFF $v \equiv 1, 3 \pmod{6}$
[Peltesohn 1939]

The spectrum problem for f -pyramidal TSs

Let $f = 0$ or $f \equiv 1, 3 \pmod{6}$. Determine all v for which there exists an f -pyramidal STS(v) (resp. KTS(v))

The case $f = 0$: sharply transitive STS(v)

- ▶ There is a sharply transitive STS(v) IFF $v \equiv 1, 3 \pmod{6}$
[Peltesohn 1939]
- ▶ There is a sharply transitive STS over G whenever
 - ▶ $G \neq \mathbb{Z}_9$ is abelian [Tannenbaum 1976, Gallina 1978]
 - ▶ $G \neq \mathbb{Z}_9$ is nilpotent [Gallina 1978, Scapellato 1981]

The spectrum problem for f -pyramidal TSs

Let $f = 0$ or $f \equiv 1, 3 \pmod{6}$. Determine all v for which there exists an f -pyramidal STS(v) (resp. KTS(v))

The case $f = 0$: sharply transitive STS(v)

- ▶ There is a sharply transitive STS(v) IFF $v \equiv 1, 3 \pmod{6}$
[Peltesohn 1939]
- ▶ There is a sharply transitive STS over G whenever
 - ▶ $G \neq \mathbb{Z}_9$ is abelian [Tannenbaum 1976, Gallina 1978]
 - ▶ $G \neq \mathbb{Z}_9$ is nilpotent [Gallina 1978, Scapellato 1981]
- ▶ A **doubly transitive** STS is either $PG(n, 2)$ or $AG(n, 3)$
[Key, Shult, 1984 – Hall, 1985 – Kantor 1985]

The spectrum problem for f -pyramidal STS

Let $f = 0$ or $f \equiv 1, 3 \pmod{6}$. Determine all v for which there exists an f -pyramidal $\text{STS}(v)$ (resp. $\text{KTS}(v)$)

The case $f = 1$: 1-rotational $\text{STS}(v)$

- 1-rotational/pyramidal over $G = G$ is an automorphism group of the system fixing one point and acting sharply transitively on the remaining

The spectrum problem for f -pyramidal STS

Let $f = 0$ or $f \equiv 1, 3 \pmod{6}$. Determine all v for which there exists an f -pyramidal $\text{STS}(v)$ (resp. $\text{KTS}(v)$)

The case $f = 1$: 1-rotational $\text{STS}(v)$

- 1-rotational/pyramidal over $G = G$ is an automorphism group of the system fixing one point and acting sharply transitively on the remaining $v-1$ points
- ▶ There is a 1-rotational $\text{STS}(v)$ over a group G , with G
 - ▶ cyclic IFF $v \equiv 3, 9 \pmod{24}$ [Phelps, Rosa, 1981]
 - ▶ abelian IFF $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$ [Buratti, 2001]
 - ▶ dicyclic IFF $v \equiv 9 \pmod{24}$ [Mishima, 2008]

1-rotational STS(v): open cases

- There is a 1-rotational STS(v) over a group G , with G
 - cyclic IFF $v \equiv 3, 9 \pmod{24}$ [Phelps, Rosa, 1981]
 - abelian IFF $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$ [Buratti, 2001]
 - dicyclic IFF $v \equiv 9 \pmod{24}$ [Mishima, 2008]

Theorem¹. The existence of a 1-rotational STS(v) is undecided if simultaneously

- $v - 1 = (p^3 - p)n \equiv 0 \pmod{96}$, with p prime and $n \not\equiv 0 \pmod{4}$
- the odd part of $v - 1$ is square free and all prime divisors are $\not\equiv 1 \pmod{6}$

¹Bonvicini, Buratti, Rinaldi, TT, Des. Codes Cryptogr. 62 (2012)

1-rotational STS(v): open cases

Theorem¹. The existence of a 1-rotational STS(v) is undecided if simultaneously

- $v - 1 = (p^3 - p)n \equiv 0 \pmod{96}$, with p prime and $n \not\equiv 0 \pmod{4}$
- the odd part of $v - 1$ is square free and all prime divisors are $\not\equiv 1 \pmod{6}$

The first two open cases:

n	p	v	Admissible groups
2	23	24289	“extension of $PGL_2(23)$ by \mathbb{Z}_2 ”
1	47	103777	$SL_2(47)$

¹Bonvicini, Buratti, Rinaldi, TT, Des. Codes Cryptogr. 62 (2012)

1-rotational STS(v): open cases

Theorem¹. The existence of a 1-rotational STS(v) is undecided if simultaneously

- a. $v - 1 = (p^3 - p)n \equiv 0 \pmod{96}$, with p prime and $n \not\equiv 0 \pmod{4}$
- b. the odd part of $v - 1$ is square free and all prime divisors are $\not\equiv 1 \pmod{6}$

Undecided cases with n and p small:

n	$p (< 1000)$	Admissible groups
1	47, 353, 383, 479, 641...	$SL_2(p)$
$\equiv_4 1, 3$		$\dots SL_2(p) \times \mathbb{Z}_n \dots$
2	23, 47, 137, 263, 353, 383, 479, 641, 983...	G
$\equiv_4 2$		$\dots G \times \mathbb{Z}_{\frac{n}{2}} \dots$

G = “extension of $PGL_2(p)$ by \mathbb{Z}_2 ”

The spectrum problem for 3–pyramidal STSs

An $\text{STS}(v)$ is 3-pyramidal over G if G is an automorphism group of the system fixing 3 points and acting sharply transitively on the remaining. Necessarily, $|G| = v - 3$

The spectrum problem for 3-pyramidal STSs

An $\text{STS}(v)$ is 3-pyramidal over G if G is an automorphism group of the system fixing 3 points and acting sharply transitively on the remaining. Necessarily, $|G| = v - 3$

Theorem¹. There is a 3-pyramidal $\text{STS}(v)$ IFF

$v \equiv 7, 9, 15 \pmod{24}$ or $7 \leq v \equiv 3, 19 \pmod{48}$

v	Existence	Group
$24n + 3$	Yes $\iff n$ is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n}$
$24n + 7$	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
$24n + 9$	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
$24n + 15$	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
$24n + 19$	Yes $\iff n$ is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$

¹M. Buratti, G. Rinaldi, TT, *Ars Math. Contemp.* 13 (2017)

The spectrum problem for 3-pyramidal STSs

Theorem¹. There is a 3-pyramidal STS(v) IFF
 $v \equiv 7, 9, 15 \pmod{24}$ or $7 \leq v \equiv 3, 19 \pmod{48}$

v	Existence	Group
$24n + 3$	Yes $\iff n$ is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n}$
$24n + 7$	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
$24n + 9$	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
$24n + 15$	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
$24n + 19$	Yes $\iff n$ is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$

- There is an **abelian** 3-pyramidal STS(v) IFF
 $v \equiv 7, 15 \pmod{24}$ or $7 \leq v \equiv 3, 19 \pmod{48}$

¹M. Buratti, G. Rinaldi, TT, *Ars Math. Contemp.* 13 (2017)

f -pyramidal STSs over abelian groups

There exists an f -pyramidal STS(v), with $0 \leq f \leq 3$, over some **abelian** group IFF

- ▶ $f = 0$ and $v \equiv 1, 3 \pmod{6}$ [Peltesohn 1939]
- ▶ $f = 1$ and $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$
[Phelps, Rosa 1981 - Buratti 2001]
- ▶ $f = 3$, and $v \equiv 7, 15 \pmod{24}$ or $v \equiv 3, 19 \pmod{48}$
[Buratti, Rinaldi, TT 2017]

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

f -pyramidal STSs over abelian groups

There exists an f -pyramidal STS(v), with $0 \leq f \leq 3$, over some **abelian** group IFF

- ▶ $f = 0$ and $v \equiv 1, 3 \pmod{6}$ [Peltesohn 1939]
- ▶ $f = 1$ and $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$
[Phelps, Rosa 1981 - Buratti 2001]
- ▶ $f = 3$, and $v \equiv 7, 15 \pmod{24}$ or $v \equiv 3, 19 \pmod{48}$
[Buratti, Rinaldi, TT 2017]

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some **abelian** group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G .

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G .

Theorem¹. There is an f -pyramidal STS(v) under G IFF
 $v = |G| + f$, G has exactly f involutions, and there exists a
($G, \Sigma, 3$)-DF where Σ is a PS of type $(f, 2e)$

¹Buratti, Rinaldi, TT, *Ars Math. Contemp.* 13 (2017)

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an **abelian group** G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an **abelian group** G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$),

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an **abelian group** G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ▶ m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ▶ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an **abelian group** G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = \underbrace{2^m d}_{|G|} + \underbrace{2^m - 1}_f$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $\Delta\mathcal{F} = G \setminus \Sigma$.

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $\Delta\mathcal{F} = G \setminus \Sigma$. Since $|\Delta\mathcal{F}| = 6|\mathcal{F}| = |G \setminus \Sigma|$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $\Delta\mathcal{F} = G \setminus \Sigma$. Since $|\Delta\mathcal{F}| = 6|\mathcal{F}| = |G \setminus \Sigma|$ and $|\Sigma| = 1 + f + 2e = 2^m + 2e$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $\Delta\mathcal{F} = G \setminus \Sigma$. Since $|\Delta\mathcal{F}| = 6|\mathcal{F}| = |G \setminus \Sigma|$ and $|\Sigma| = 1 + f + 2e = 2^m + 2e$, then

$$|G \setminus \Sigma| = \underbrace{2^m d}_{|G|} - \underbrace{(2^m + 2e)}_{|\Sigma|} = 2^m(d - 1) - 2e \equiv 0 \pmod{6}$$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $\Delta\mathcal{F} = G \setminus \Sigma$. Since $|\Delta\mathcal{F}| = 6|\mathcal{F}| = |G \setminus \Sigma|$ and $|\Sigma| = 1 + f + 2e = 2^m + 2e$, then

$$|G \setminus \Sigma| = \underbrace{2^m d}_{|G|} - \underbrace{(2^m + 2e)}_{|\Sigma|} = 2^m(d - 1) - 2e \equiv 0 \pmod{6}$$

hence $e \equiv 2^{m-1}(d - 1) \pmod{3}$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$
Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

► If $d \not\equiv 0 \pmod{3}$, then $e = 0$ and $2^{m-1}(d - 1) \equiv 0 \pmod{3}$, that is, $d \equiv 1 \pmod{3}$, say $d = 3n + 1$.

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

► If $d \not\equiv 0 \pmod{3}$, then $e = 0$ and $2^{m-1}(d - 1) \equiv 0 \pmod{3}$, that is, $d \equiv 1 \pmod{3}$, say $d = 3n + 1$. Therefore,

$$v = 2^m(3n + 1) + 2^m - 1 = 2^m 3n + 2^{m+1} - 1$$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

► If $d \not\equiv 0 \pmod{3}$, then $e = 0$ and $2^{m-1}(d - 1) \equiv 0 \pmod{3}$, that is, $d \equiv 1 \pmod{3}$, say $d = 3n + 1$. Therefore,

$$v = 2^m(3n + 1) + 2^m - 1 = 2^m 3n + 2^{m+1} - 1$$

► If $d \equiv 0 \pmod{3}$, say $d = 3n$, then $v = 2^m 3n + 2^m - 1$

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

► If $d \not\equiv 0 \pmod{3}$, then $e = 0$ and $2^{m-1}(d - 1) \equiv 0 \pmod{3}$, that is, $d \equiv 1 \pmod{3}$, say $d = 3n + 1$. Therefore,

$$v = 2^m(3n + 1) + 2^m - 1 = 2^m 3n + 2^{m+1} - 1$$

► If $d \equiv 0 \pmod{3}$, say $d = 3n$, then $v = 2^m 3n + 2^m - 1$

► If $d \equiv 0 \pmod{3}$ and m is odd, then $e \equiv 2^m \equiv 2 \pmod{3}$, hence $e \geq 2$ and G has at least 4 elements of order 3.

f -pyramidal STSs over abelian groups

Proof. (\Rightarrow) Assume there is an f -pyramidal STS(v) ($f > 3$) over an abelian group G . Necessarily,

$v = |G| + f$, G has exactly f involutions, and there exists a $(G, \Sigma, 3)$ -DF where Σ is a PS of type $(f, 2e)$

Then, $f + 1 = 2^m$ ($m \geq 3$), $|G| = 2^m d$ and $v = 2^m d + 2^m - 1$

Furthermore, $e \equiv 2^{m-1}(d - 1) \pmod{3}$.

► If $d \not\equiv 0 \pmod{3}$, then $e = 0$ and $2^{m-1}(d - 1) \equiv 0 \pmod{3}$, that is, $d \equiv 1 \pmod{3}$, say $d = 3n + 1$. Therefore,

$$v = 2^m(3n + 1) + 2^m - 1 = 2^m 3n + 2^{m+1} - 1$$

► If $d \equiv 0 \pmod{3}$, say $d = 3n$, then $v = 2^m 3n + 2^m - 1$

► If $d \equiv 0 \pmod{3}$ and m is odd, then $e \equiv 2^m \equiv 2 \pmod{3}$, hence $e \geq 2$ and G has at least 4 elements of order 3. Hence $d \equiv 0 \pmod{9}$, say $d = 9n$, and $v = 2^m 9n + 2^m - 1$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ① $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or
- ② m is even and $v \equiv 2^m - 1 \pmod{2^m 3}$, or
- ③ m is odd and $v \equiv 2^m - 1 \pmod{2^m 9}$

Proof. (\Rightarrow) ... $f = 2^m - 1$ ($m \geq 3$) and $v = 2^m d + 2^m - 1$...

- If $d \not\equiv 0 \pmod{3}$, then $d \equiv 1 \pmod{3}$, say $d = 3n + 1$, hence $v = 2^m 3n + 2^{m+1} - 1 \Rightarrow$ ①
- If $d \equiv 0 \pmod{3}$, say $d = 3n$, then $v = 2^m 3n + 2^m - 1 \Rightarrow$ ②
- If $d \equiv 0 \pmod{3}$ and m is odd, then $d \equiv 0 \pmod{9}$, say $d = 9n$, and $v = 2^m 9n + 2^m - 1 \Rightarrow$ ③

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or ...

Proof. (\Leftarrow) Let $v = 2^m 3n + 2^{m+1} - 1$.

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or ...

Proof. (\Leftarrow) Let $v = 2^m 3n + 2^{m+1} - 1$. Taking $m = 4$ and $n = 3$, we build an f -pyramidal STS(175), with $f = 2^m - 1 = 15$, under the abelian group

$$G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$$

of order $|G| = v - f = 160$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or ...

Proof. (\Leftarrow) Let $v = 2^m 3n + 2^{m+1} - 1$. Taking $m = 4$ and $n = 3$, we build an f -pyramidal STS(175), with $f = 2^m - 1 = 15$, under the abelian group

$$G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$$

of order $|G| = v - f = 160$

- ▶ We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(15, 0)$.

In other words, $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

f -pyramidal STSs over abelian groups

Theorem. (Chang, TT, Zhou, 2025+)

There exists an f -pyramidal STS(v), with $3 < f < \frac{v}{2}$, over some abelian group IFF $f = 2^m - 1$, for some $m \geq 3$, and

- ▶ $v \equiv 2^{m+1} - 1 \pmod{2^m 3}$, or ...

Proof. (\Leftarrow) Let $v = 2^m 3n + 2^{m+1} - 1$. Taking $m = 4$ and $n = 3$, we build an f -pyramidal STS(175), with $f = 2^m - 1 = 15$, under the abelian group

$$G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$$

of order $|G| = v - f = 160$

- ▶ We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , where Σ is a PS of type $(15, 0)$.

In other words, $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

- ▶ For every $S \subseteq G$, set $S^* = S \setminus \Sigma$. Hence, $\Delta\mathcal{F} = G^*$

Since $G^* = |G \setminus \Sigma| = 160 - 16 = 144$, then $|\mathcal{F}| = \frac{144}{6} = 24$.

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of triples such that $\Delta\mathcal{T} \supset \{\alpha, \beta, \gamma\} \times H^*$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of triples such that $\Delta\mathcal{T} \supset \{\alpha, \beta, \gamma\} \times H^*$

Let $\mathcal{T} = \mathcal{T}' \cup \mathcal{T}''$, with $|\mathcal{T}'| = 16$ and $|\mathcal{T}''| = 3$, where

$$\mathcal{T}' = \{\dots T' = \{(0, *, *), (\alpha, *, *), (\gamma, *, *)\} \dots\}$$

$$\mathcal{T}'' = \{T'' = \{(0, *, *), (0, *, *), (x, *, *)\} \mid x = \alpha, \beta, \gamma\}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of triples such that $\Delta\mathcal{T} \supset \{\alpha, \beta, \gamma\} \times H^*$

Let $\mathcal{T} = \mathcal{T}' \cup \mathcal{T}''$, with $|\mathcal{T}'| = 16$ and $|\mathcal{T}''| = 3$, where

$$\mathcal{T}' = \{\dots T' = \{(0, *, *), (\alpha, *, *), (\gamma, *, *)\} \dots\}$$

$$\Delta T' = \pm\{(\alpha, *, *), (\beta, *, *), (\gamma, *, *)\}$$

$$\mathcal{T}'' = \{T'' = \{(0, *, *), (0, *, *), (x, *, *)\} \mid x = \alpha, \beta, \gamma\}$$

$$\Delta T'' = \pm\{(0, *, *), (x, *, *), (x, *, *)\}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► Set $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of triples such that $\Delta\mathcal{T} \supset \{\alpha, \beta, \gamma\} \times H^*$

Let $\mathcal{T} = \mathcal{T}' \cup \mathcal{T}''$, with $|\mathcal{T}'| = 16$ and $|\mathcal{T}''| = 3$, where

$$\mathcal{T}' = \{\dots T' = \{(0, *, *), (\alpha, *, *), (\gamma, *, *)\} \dots\}$$

$$\Delta T' = \pm\{(\alpha, *, *), (\beta, *, *), (\gamma, *, *)\}$$

$$\mathcal{T}'' = \{T'' = \{(0, *, *), (0, *, *), (x, *, *)\} \mid x = \alpha, \beta, \gamma\}$$

$$\Delta T'' = \pm\{(0, *, *), (x, *, *), (x, *, *)\}$$

Then, $\Delta\mathcal{T} = (\{\alpha, \beta, \gamma\} \times H^*) \cup \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\}$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► cSet $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of 19 triples such that

$$\Delta\mathcal{T} = (\{\alpha, \beta, \gamma\} \times H^*) \cup \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► cSet $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of 19 triples such that

$$\Delta\mathcal{T} = (\{\alpha, \beta, \gamma\} \times H^*) \cup \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\}$$

► It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that

$$\Delta\mathcal{W} = (\{0\} \times H^*) \setminus \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

► cSet $\mathbb{Z}_2^2 = \{0, \alpha, \beta, \gamma\}$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_{20}$. Hence, $G = \mathbb{Z}_2^2 \times H$

Note that $G^* = \bigcup_{x \in \mathbb{Z}_2^2} \{x\} \times H^*$, where $|H^*| = 36$

► First, we build a set \mathcal{T} of 19 triples such that

$$\Delta\mathcal{T} = (\{\alpha, \beta, \gamma\} \times H^*) \cup \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\}$$

► It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that

$$\Delta\mathcal{W} = (\{0\} \times H^*) \setminus \pm\{(0, 1, 2), (0, 1, 4), (0, 1, 6)\} = \Delta_1 \cup \Delta_2$$

where $\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^*$ and $\Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \pm\{2, 4, 6\})$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

Note that $|\Delta_1| = 18$ and $|\Delta_2| = 12$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

Note that $|\Delta_1| = 18$ and $|\Delta_2| = 12$

$$\blacktriangleright W_i = \begin{cases} \{(0, 0, *), (0, 0, *), (0, 0, *)\} & i = 1, 2 \\ \{(0, 0, *), (0, 0, *), (0, 1, *)\} & i = 3, 4, 5. \end{cases}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

Note that $|\Delta_1| = 18$ and $|\Delta_2| = 12$

$$\blacktriangleright W_i = \begin{cases} \{(0, 0, *), (0, 0, *), (0, 0, *)\} & i = 1, 2 \\ \{(0, 0, *), (0, 0, *), (0, 1, *)\} & i = 3, 4, 5. \end{cases}$$

$$\Delta W_i = \begin{cases} \{(0, 0, *)^6\} & \text{if } i = 1, 2, \\ \{(0, 0, *)^2, (0, 1, *)^4\} & \text{if } i = 3, 4, 5. \end{cases}$$

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

$$\blacktriangleright W_i = \begin{cases} \{(0, 0, *), (0, 0, *), (0, 0, *)\} & i = 1, 2 \\ \{(0, 0, *), (0, 0, *), (0, 1, *)\} & i = 3, 4, 5. \end{cases}$$

- ▶ $\mathcal{F} = \mathcal{T} \cup \mathcal{W}$ is the desired $(G, \Sigma, 3)$ -DF

A 15-pyramidal STS(175) over G

Proof. (\Leftarrow) $G = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times \mathbb{Z}_{20}$ and $\Sigma = \mathbb{Z}_2^2 \times \mathbb{Z}_2 \times 10\mathbb{Z}_{20}$

We need a $(G, \Sigma, 3)$ -DF, say \mathcal{F} , to build a 15-pyramidal STS(175) over G . Hence, $|\mathcal{F}| = 24$ and $\Delta\mathcal{F} = G^* = G \setminus \Sigma$

- ▶ First, we build a set \mathcal{T} of 19 triples such that $\Delta\mathcal{T} = \dots$
- ▶ It is left to build a set $\mathcal{W} = \{W_1, \dots, W_5\}$ of 5 triples such that $\Delta\mathcal{W} = \Delta_1 \cup \Delta_2$ where

$$\Delta_1 = \{(0, 0)\} \times \mathbb{Z}_{20}^* \quad \text{and} \quad \Delta_2 = \{(0, 1)\} \times (\mathbb{Z}_{20}^* \setminus \{\pm 2, 4, 6\})$$

$$\blacktriangleright W_i = \begin{cases} \{(0, 0, *), (0, 0, *), (0, 0, *)\} & i = 1, 2 \\ \{(0, 0, *), (0, 0, *), (0, 1, *)\} & i = 3, 4, 5. \end{cases}$$

- ▶ $\mathcal{F} = \mathcal{T} \cup \mathcal{W}$ is the desired $(G, \Sigma, 3)$ -DF
- ▶ To fill the $*$ we might need Langford sequences

The spectrum problem for f -pyramidal KTSs

The case $f = 0$: sharply transitive KTS(v)

- ▶ A necessary condition for a cyclic KTS($6n + 3$) to exist:

$$2n + 1 \text{ is not a prime power } \equiv 5 \pmod{6}$$

- ▶ There is a cyclic KTS($6n + 3$) whenever:

- ▶ each prime factor of $2n + 1$ is $\equiv 1 \pmod{6}$

[Genma, Mishima, Jimbo 1997]

- ▶ $6n + 3 < 200$

[Meszka, Rosa 2007]

STS

The spectrum problem for f -pyramidal KTSs

The case $f = 1$: 1-rotational KTS(v)

- ▶ $AG(n, 3)$ is a 1-rotational KTS(3^n)
- ▶ There is a 1-rotational KTS($2n + 1$) whenever each prime factor of n is $\equiv 1 \pmod{12}$ [Buratti 1998]
- ▶ Up to isomorphisms, there are exactly 500 1-rotational KTS(33) [Buratti, Zuanni 2000]
- ▶ There is a 1-rotational KTS($8n + 1$) whenever each prime factor of n is $\equiv 1 \pmod{6}$ [Buratti, Zuanni 2001]

The spectrum problem for 3–pyramidal KTSs

Admissible orders: $v \equiv_{24} 9, 15$ or $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

The spectrum problem for 3–pyramidal KTSs

Admissible orders: $v \equiv_{24} 9, 15$ or $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

Theorem¹. There is a 3-pyramidal KTS(v) over G whenever

- ▶ $v = 24n + 9 = 6(4n + 1) + 3$
 $4n + 1 = q_1 q_2 \cdots q_t$ and each q_i is a prime power $\equiv 1 \pmod{4}$
- ▶ $v = 24n + 15 = 12(2n + 1) + 3$, $2n + 1 = q_1 q_2 \cdots q_t$, and
 $3 \mid 2n + 1$, or the square free part of $2n + 1$ has no prime $\equiv_{12} 11$
- ▶ $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

¹Bonvicini, Buratti, Garonzi, Rinaldi, TT, *Des. Codes Cryptogr.* 89 (2021)

The spectrum problem for 3–pyramidal KTSs

Admissible orders: $v \equiv_{24} 9, 15$ or $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

Theorem¹. There is a 3–pyramidal KTS(v) over G whenever

► $v = 24n + 9 = 6(4n + 1) + 3$

$4n + 1 = q_1 q_2 \cdots q_t$ and each q_i is a prime power $\equiv 1 \pmod{4}$

$G = \text{Sym}(3) \times \mathbb{F}_{q_1} \times \cdots \times \mathbb{F}_{q_t}$ First open case: KTS($129 = 6 \cdot 21 + 3$)

► $v = 24n + 15 = 12(2n + 1) + 3, \quad 2n + 1 = q_1 q_2 \cdots q_t, \quad \text{and}$

$3 \mid 2n + 1$, or the square free part of $2n + 1$ has no prime $\equiv_{12} 11$

$G = \text{Alt}(4) \times \mathbb{F}_{q_1} \times \cdots \times \mathbb{F}_{q_t}$ First open case: KTS($135 = 12 \cdot 11 + 3$)

► $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

$G = (\mathbb{Z}_4^{m+2} \times \mathbb{Z}_3) \times \mathbb{F}_{q_1} \times \cdots \times \mathbb{F}_{q_t}$ where $q_1 \cdots q_t = \frac{v-3}{4^m \cdot 48}$

¹Bonvicini, Buratti, Garonzi, Rinaldi, TT, *Des. Codes Cryptogr.* 89 (2021)

The spectrum problem for 3–pyramidal KTSs

Admissible orders: $v \equiv_{24} 9, 15$ or $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

Theorem¹. There is a 3–pyramidal KTS(v) over G whenever

- ▶ $v = 24n + 9 = 6(4n + 1) + 3$
- ▶ $4n + 1 = q_1 q_2 \cdots q_t$ and each q_i is a prime power $\equiv 1 \pmod{4}$
- ▶ $v = 24n + 15 = 12(2n + 1) + 3$, $2n + 1 = q_1 q_2 \cdots q_t$, and
 $3 \mid 2n + 1$, or the square free part of $2n + 1$ has no prime $\equiv_{12} 11$
- ▶ $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

Corollary¹.

There exists a KTS(v) with at least $v - 3$ automorphisms whenever

$v \equiv 39 \pmod{72}$ or $v \equiv 4^m \cdot 48 + 3 \pmod{4^m \cdot 96}$

¹Bonvicini, Buratti, Garonzi, Rinaldi, TT, *Des. Codes Cryptogr.* 89 (2021)

Highly symmetric Steiner and Kirkman triple systems

Tommaso Traetta
University of Brescia, Italy

5th Pythagorean conference
June 4, 2025

