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Spectral graph theory
Definitions

G := (V (G ),E (G ))

V = V (G ) is a non-empty set, of element called vertices
E = E (G ) is the set of edges, together with an incidence function
φ : E → V × V . If φ(e) = {u, v} we say that e joins u and v , and
those are called adjacent vertices or neighbours.

Definition

The adjacency matrix A of a graph G of v vertices is a symmetric
v × v matrix in which the coordinate A(i , j) is the number of edges
between vi and vj .

Remark : if we do not allow loops and multiedges, the adjacency
matrix is a (0, 1)-matrix, and A(i , i) = 0, i = {1, . . . , v}.
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Spectral graph theory
Eigenvalues

Definition

The spectrum (θm1
1 , θm2

2 , . . . , θmn
n ) of a matrix is the set of all its

eigenvalues θi , counted with their respective multiplicities mi .

Spectral graph theory studies a graph, taking as point of view the
spectrum of its adjacency matrix.

Proposition

The spectrum of the adjacency matrix is a graph invariant.
Two graphs are called cospectral if the adjacency matrices have
equal multisets of eigenvalues.
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Spectral graph theory
Cospectral graphs

Proposition

Cospectral graphs need not to be isomorphic, but isomorphic graphs are
always cospectral.

Both C4 ∪ K1 and S4 have spectrum (−2, 03, 2).
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Spectral graph theory
Strongly regular graphs

Definition

A strongly regular graph with parameters (v , k, λ, µ) is a graph with v vertices,
each vertex lies on k edges, any two adjacent vertices have λ common
neighbours and any two non-adjacent vertices have µ common neighbours.

Theorem

A strongly regular has exactly three eigenvalues: k, θ1 and θ2 of multiplicity,
respectively, 1, m1 and m2, where k is the regularity and:

θ1,2 =
1

2

[
(λ− µ)±

√
(λ− µ)2 + 4(k − µ)

]
,

m1,2 =
1

2

[
(v − 1)∓ 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

]
.
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Graph NO+(2n + 2, 2)

Consider the vector space V (2n + 2, 2), together with a
non-degenerate hyperbolic quadratic form.

Definition

NO+(2n + 2, 2) is the graph whose vertex set is the set of
non-singular points, and two vertices are adjacent if they are
orthogonal, i.e. their connecting line is tangent to the hyperbolic
quadric Q+(2n + 1, 2), defined by the quadratic form.
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Graph NO+(2n + 2, 2)
Spectrum of NO+(2n + 2, 2)

Proposition

NO+(2n + 2, 2) is a strongly regular graph with parameters:
v = 22n+1 − 2n,
k = 22n − 1,
λ = 22n−1 − 2,
µ = 22n−1 + 2n−1.
The spectrum is

(22n − 1,−(2n + 1)
1
3
(2n−1)(2n+1−1), (2n−1 − 1)

4
3
(22n−1)).

Example

NO+(8, 2) is an srg(120, 63, 30, 36) with spectrum (63,−935, 384).
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Graph NO+(2n + 2, 2)
A quadric with a hole

A.E. Brouwer, A.V. Ivanov, M.H. Klin, Some new strongly regular
graphs, Combinatorica, 1989, 9(4), 339-344.
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Graph Gn

Consider the quadric Q+(2n + 1, q) with ⊥ its induced polarity of
PG (2n + 1, q). Fix a generator Π of Q+(2n + 1, q).

V (Gn) := points of Q+(2n + 1, q) \ Π.

We define two relations on V . Let P,Q ∈ V , then P ∼1 Q if and
only if the line 〈P,Q〉 is secant to Q+(2n + 1, q), and P ∼2 Q if
and only if 〈P,Q〉 is totally isotropic and meets the Π in a point.

Theorem

The graph Gn is a

srg(q
n(qn+1−1)

q−1 , q2n − 1, q2n−1(q − 1)− 2, (q2n−1 + qn−1)(q − 1)).
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Graph Gn
Graph G3

Proposition

When q = 2, the graph Gn is a
srg(22n+1 − 2n, 22n − 1, 22n−1 − 2, 22n−1 + 2n−1).
Hence, it is cospectral to NO+(2n + 2, 2).

Theorem

The graphs G3 and NO+(8, 2) are not isomorphic.
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The isomorphism issue
Classification of cliques

Definition

A clique of the graph Γ is a set of pairwise adjacent vertices. A
clique is said to be maximal if it is maximal with respect to set
theoretical inclusion.

Result (Delsarte clique bound)

Let Γ be a strongly regular graph with regularity k and smallest
eigenvalue θ. Then the size of a clique in Γ is at most 1− k

θ .

Corollary

The size of a clique in NO+(8, 2) and G3 is at most 8.
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The isomorphism issue
Classification of cliques

Proposition

The maximal cliques of NO+(8, 2) consist of the 2025
3-spaces cutting the quadric Q+(7, 2) in a plane.

PGO+(8, 2) has the following orbits on maximal cliques of G3:

# cliques Size Adj. Geometric description
10752 5 ∼1 Q−(3, 2) ⊆ Q+(7, 2) not meeting Π

960 8 ∼1 Cameron-Praeger ovoid

15 8 ∼2 Generators of Q+(7, 2) meeting Π in a plane

840 8 mixed Cones PQ−(3, 2), P ∈ Π, meeting Π in a line

210 8 mixed Cones `Q+(1, 2), ` ∈ Π, meeting Π in `

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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Fun facts
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Fun facts
Pythagoras of Samos 570-495 B.C.
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Fun facts
Triangular numbers
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Fun facts
Squared triangular numbers
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Fun facts
Squared triangular numbers

Theorem (Nicomachus’s Theorem)(
n∑

i=1

i

)2

=

(
n∑

i=1

i3

)

(1+2+3+4+5+6+7+8+9)2 = 13+23+33+43+53+63+73+83+93

452 = 2025
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The isomorphism issue
Classification of cliques

Proposition

The maximal cliques of NO+(8, 2) consist of the 2025
3-spaces cutting the quadric Q+(7, 2) in a plane.

PGO+(8, 2) has the following orbits on maximal cliques of G3:

# cliques Size Adj. Geometric description
10752 5 ∼1 Q−(3, 2) ⊆ Q+(7, 2) not meeting Π

960 8 ∼1 Cameron-Praeger ovoid

15 8 ∼2 Generators of Q+(7, 2) meeting Π in a plane

840 8 mixed Cones PQ−(3, 2), P ∈ Π, meeting Π in a line

210 8 mixed Cones `Q+(1, 2), ` ∈ Π, meeting Π in `

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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The isomorphism issue
Cliques of Type 1

Definition

An ovoid O of Q+(7, 2) is a set of isotropic points such that
every generator contains exactly one point of O.

A partial ovoid O of Q+(7, 2) is a set of isotropic points such
that every generator contains at most one point of O. A
partial ovoid is said to be maximal if it is maximal with
respect to set-theoretic inclusion.

Lemma

An ovoid of Q+(7, 2) gives rise to a maximal clique of size 8 of G3.
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The isomorphism issue
Cliques of Type 1

Lemma

A partial ovoid of Q+(7, 2) gives rise to a clique of Type 1.

Lemma

An elliptic quadric Q−(3, 2) contained in Q+(7, 2) is a maximal
partial ovoid.

Lemma

An elliptic quadric Q−(3, 2) not touching Π gives rise to a maximal
clique of size 5 of G3.



Table of contents Spectral graph theory Graph NO+(2n + 2, 2) Graph Gn The isomorphism issue

The isomorphism issue
Classification of cliques

Proposition

The maximal cliques of NO+(8, 2) consist of the 2025
3-spaces cutting the quadric Q+(7, 2) in a plane.

PGO+(8, 2) has the following orbits on maximal cliques of G3:

# cliques Size Adj. Geometric description
10752 5 ∼1 Q−(3, 2) ⊆ Q+(7, 2) not meeting Π

960 8 ∼1 Cameron-Praeger ovoid

15 8 ∼2 Generators of Q+(7, 2) meeting Π in a plane

840 8 mixed Cones PQ−(3, 2), P ∈ Π, meeting Π in a line

210 8 mixed Cones `Q+(1, 2), ` ∈ Π, meeting Π in `

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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The isomorphism issue
Mixed type cliques
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The isomorphism issue

Lemma

A partial ovoid O of Q+(7, q) of size 4 can be extended in a
unique way to an ovoid.

Lemma

If {P,Q,R} is a 3-clique of mixed type in, then there are exactly
two ∼1-adjacencies and one ∼2-adjacency, and 〈P,Q,R〉 is a plane
meeting Π in a point S.
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The isomorphism issue

Theorem

The graphs Gn and NO+(2n + 2, 2) are not isomorphic when n ≥ 3.

Remark

NO+(2n + 2, 2) contains the following number of G3 subgraphs:

(1 + o(1))
(

22n−1
22n+1−2n−1

)3780 (
1− 22n−1

22n+1−2n−1

)3360 (22n+1−2n)120

1290240 .

Gn contains the following number of NO+(8, 2) subgraphs:

(1 + o(1))
(

22n−1
22n+1−2n−1

)3780 (
1− 22n−1

22n+1−2n−1

)3360 (22n+1−2n)120

348364800 .
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