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Spectral graph theory

Definitions

G = (V(6), E(G))

V = V(G) is a non-empty set, of element called vertices

E = E(G) is the set of edges, together with an incidence function
¢ E—VxV.If ¢(e) ={u,v} we say that e joins u and v, and
those are called adjacent vertices or neighbours.

Definition

The adjacency matrix A of a graph G of v vertices is a symmetric
v X v matrix in which the coordinate A(i, ) is the number of edges
between v; and v;.

Remark: if we do not allow loops and multiedges, the adjacency
matrix is a (0, 1)-matrix, and A(i,i) =0, i = {1,...,v}.
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Eigenvalues

Definition

The spectrum (67™,60572,...,0M) of a matrix is the set of all its
eigenvalues 0;, counted with their respective multiplicities m;.

Spectral graph theory studies a graph, taking as point of view the
spectrum of its adjacency matrix.

Proposition

The spectrum of the adjacency matrix is a graph invariant.
Two graphs are called cospectral if the adjacency matrices have
equal multisets of eigenvalues.
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Cospectral graphs

Proposition

Cospectral graphs need not to be isomorphic, but isomorphic graphs are
always cospectral.

Both C, U K; and S4 have spectrum (—2,03,2).
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Strongly regular graphs

Definition

A strongly regular graph with parameters (v, k, \, u) is a graph with v vertices,
each vertex lies on k edges, any two adjacent vertices have A\ common
neighbours and any two non-adjacent vertices have . common neighbours.

Theorem

A strongly regular has exactly three eigenvalues: k, 61 and 0> of multiplicity,
respectively, 1, m1 and my, where k is the regularity and:

O12 = %[(A—u)i¢(k—u)2+4(k—u)],

2k 4+ (v = 1)(A — p) ]
V= )2+ 4(k — p)

1
my2 = §|:(V—1)$
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Graph NO*(2n +2,2)

Consider the vector space V/(2n+ 2,2), together with a
non-degenerate hyperbolic quadratic form.

Definition

NO™(2n + 2,2) is the graph whose vertex set is the set of
non-singular points, and two vertices are adjacent if they are
orthogonal, i.e. their connecting line is tangent to the hyperbolic
quadric @1 (2n + 1,2), defined by the quadratic form.
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Spectrum of NO™(2n + 2,2)

Proposition

NO™(2n+ 2,2) is a strongly regular graph with parameters:
vV = 22n+1 _ 2n,

k=22"—1,

A=22"1_2

w= 22n71 4 2n71_

The spectrum is

(22n —1, _(2n + 1)%(2"*1)(2"*171)7 (2n—1 _ 1)%(22”71)).

NO*(8,2) is an srg(120, 63,30, 36) with spectrum (63, —93°, 384).
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Graph NO*(2n + 2,2)

A quadric with a hole

A.E. Brouwer, A.V. lvanov, M.H. Klin, Some new strongly regular

graphs, Combinatorica, 1989, 9(4), 339-344.
Consider the graph'A' with point set . X=0\M, where two points x, y are
adjacent when the projective line xy is contained in X. (Thus, 4 is a partial subgraph,

not an induced subgraph, of I'.)
Define

g'-1
g-1"

9_,=

Theorem 1. A is strongly regutar with paramelers f—q’""‘ﬂ,,,, k=g™18,_,,
A=qm 10, _o+q"Hg—1), p=g""10,, 5, r=g"", s==—g" % It has automorphism
group q"“"“l’f’L (9, actmg (tmprxmmvely) rank 4 (for m=3, g2 or m=4,
q=2 )." The fol[owmg three conditions are equivalent: (i) 4 is pmrwzse 4-regular, (ii)
A is a graph in the switching class of a regular two-graph, and (iii) q=2.



Consider the quadric @*(2n+ 1, g) with L its induced polarity of
PG(2n+1,q). Fix a generator 1 of QT (2n+1,q).
V(Gn) := points of QT (2n+1,q) \ IN.

We define two relations on V. Let P, Q € V, then P ~1 Q if and
only if the line (P, Q) is secant to QT(2n+1,q), and P ~, Q if
and only if (P, Q) is totally isotropic and meets the I1 in a point.

The graph G, is a

n(n+1__
(P g - 1)~ 2.6 + g - )
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Proposition

When q = 2, the graph G, is a
srg(22n+1 _ 2n’ 22n _ 1’ 22n—1 _ 2, 22n—1 4 2n—1)_
Hence, it is cospectral to NOT(2n + 2,2).

The graphs G3 and NO*(8,2) are not isomorphic.
D




The isomorphism issue

The isomorphism issue

Classification of cliques

Definition
A clique of the graph I is a set of pairwise adjacent vertices. A

clique is said to be maximal if it is maximal with respect to set
theoretical inclusion.

A

Result (Delsarte clique bound)

Let [ be a strongly regular graph with regularity k and smallest

eigenvalue 0. Then the size of a clique in I is at most 1 — g.

A

The size of a clique in NO™(8,2) and G3 is at most 8.
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Classification of cliques

e The maximal cliques of NO™(8,2) consist of the 2025
3-spaces cutting the quadric Q*(7,2) in a plane.
e PGO™(8,2) has the following orbits on maximal cliques of G3:

# cliques | Size | Adj. Geometric description
10752 5 ~1 Q (3,2) C @"(7,2) not meeting N
960 8 ~1 Cameron-Praeger ovoid
15 8 ~ Generators of Q*(7,2) meeting N in a plane
840 8 | mixed | Cones PQ™(3,2), P € I, meeting I in a line
210 8 mixed Cones (Q*(1,2), £ € M, meeting N in £

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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Fun facts
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Fun facts
Pythagoras of Samos 570-495 B.C.
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Fun facts

Triangular numbers
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Fun facts

Squared triangular numbers
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Fun facts

Squared triangular numbers

Theorem (Nicomachus’s Theorem)

(14+243+4+5+6+7+8+9)? = 13+23433+43453 163473 +8%+93

452 = 2025



The isomorphism issue

The isomorphism issue

Classification of cliques

e The maximal cliques of NO™(8,2) consist of the 2025
3-spaces cutting the quadric Q*(7,2) in a plane.
e PGO™(8,2) has the following orbits on maximal cliques of G3:

# cliques | Size | Adj. Geometric description
10752 5 ~1 Q (3,2) C @"(7,2) not meeting N
960 8 ~1 Cameron-Praeger ovoid
15 8 ~ Generators of Q*(7,2) meeting N in a plane
840 8 | mixed | Cones PQ™(3,2), P € I, meeting I in a line
210 8 mixed Cones (Q*(1,2), £ € M, meeting N in £

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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The isomorphism issue
Cliques of Type 1

e An ovoid O of Q" (7,2) is a set of isotropic points such that
every generator contains exactly one point of O.

e A partial ovoid O of QT (7,2) is a set of isotropic points such
that every generator contains at most one point of 0. A
partial ovoid is said to be maximal if it is maximal with
respect to set-theoretic inclusion.

An ovoid of QT (7,2) gives rise to a maximal clique of size 8 of G3.




The isomorphism issue

The isomorphism issue
Cliques of Type 1

A partial ovoid of QT (7,2) gives rise to a clique of Type 1.

Lemma

An elliptic quadric Q~(3,2) contained in Q*(7,2) is a maximal
partial ovoid.

Lemma

| \

An elliptic quadric Q~(3,2) not touching I gives rise to a maximal
clique of size 5 of G3.

‘ \
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Classification of cliques

e The maximal cliques of NO™(8,2) consist of the 2025
3-spaces cutting the quadric Q*(7,2) in a plane.
e PGO™(8,2) has the following orbits on maximal cliques of G3:

# cliques | Size | Adj. Geometric description
10752 5 ~1 Q (3,2) C @"(7,2) not meeting N
960 8 ~1 Cameron-Praeger ovoid
15 8 ~ Generators of Q*(7,2) meeting N in a plane
840 8 | mixed | Cones PQ™(3,2), P € I, meeting I in a line
210 8 mixed Cones (Q*(1,2), £ € M, meeting N in £

Hence, G3 have 10752 cliques of size 5 and 2025 cliques of size 8.
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Mixed type cliques

PQ(3.2)

QG.2)
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Lemma

A partial ovoid O of QT (7, q) of size 4 can be extended in a
unique way to an ovoid.

Lemma

| \

If {P,Q,R} is a 3-clique of mixed type in, then there are exactly
two ~1-adjacencies and one ~»-adjacency, and (P, Q, R) is a plane
meeting I in a point S.

V.
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The graphs G, and NO™(2n+2,2) are not isomorphic when n > 3.

RENEILS

NO™(2n + 2,2) contains the following number of G3 subgraphs:
o 3780 on 3360 (52n+1_5ny120

(1 + 0(1)) (ﬁ) (1 o 22n31—2}1_1> ( 1290248 :

Gn contains the following number of NO™(8,2) subgraphs:

(1 + (1)) 22n71 3780 1 _ 22n71 3360 (22n+1_2n)120
o 221 _pn_71 22n+1_pn_q 348364800 °
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