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Basic Graph Theory Notions1

Definition.
A finite simple graph Γ = Γ(V , E ) is a pair, where V is a finite
set of vertices, and E ⊂

(V
2
)

is the set of edges.

Definition.
A coloring of the vertices of a graph is valid if there are no
edges between any two vertices in the same color class.

Definition.
The chromatic number of a graph G , denoted χ(G), is the
smallest positive integer k for which there exists a valid coloring
of G using k colors.
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Example: The Petersen Graph1
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Chromatic Number Bounds1

The following facts are known about the chromatic number of
an arbitrary graph G of order n.

▶ Let ∆ be the maximum degree of G , then χ(G) ≤ ∆ + 1.
▶ Let ω(G) be the clique number of G . Then ω(G) ≤ χ(G).
▶ Let α(G) be the independence number of G . Then

χ(G)α(G) ≥ n.
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Johnson Graphs1

Definition.
The Johnson graph J(n, m) is the graph whose vertex set is
the set of all m-subsets of {1, 2, . . . , n} and two vertices are
adjacent if the corresponding subsets have exactly m − 1
elements in common.

{1, 2}

{1, 3}{1, 4}

{2, 3}

{2, 4} {3, 4}

J(4, 2)
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Chromatic number of Johnson graphs1

The first results on the chromatic number of Johnson graphs
were implied by the work of Graham and Sloane in 1980 when on
constant weight codes.

One result implied in their paper is that

n − m + 1 ≤ χ(J(n, m)) ≤ n.

Lower Bound: Any (m − 1)-subset is contained in n − m + 1
subsets of size m, each of which would need a distinct color.

Upper Bound: Color classes are elements of Zn. Assign the
color a1 + a2 + · · · + am (mod n) to the subset {a1, a2, . . . , am}.
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Chromatic number of Johnson graphs1

The following general results have been established on
χ(J(n, m)):

1. For all even n, χ(J(n, 2)) = n − 1 (Graham and Sloane
1980).

2. For all odd n, χ(J(n, 2)) = n (Graham and Sloane 1980).

3. For n > 7, and n ≡ 1 (mod 6) or n ≡ 3 (mod 6),
χ(J(n, 3)) = n − 2 (Lu 1983-84, Tierlinck 1991).

4. For n > 7, and n ≡ 0 (mod 6) or n ≡ 2 (mod 6),
χ(J(n, 3)) = n − 1 (Lu 1983-84, Tierlinck 1991).

A few more results are known depending on the relationship
between n and m, see Etzion 1992, Etzion and Bitan 1996.
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The Grassmann Graph2

Definition.
Let q be a prime power and n a positive integer. The
Grassmann graph Jq(n, m) has as vertices the collection of all
m-dimensional subspaces of Fn

q and an edge is placed between
two vertices when the corresponding subspaces intersect in an
(m − 1)-dimensional subspace. Denote this graph by Jq(n, m)

▶ This graph can equivalently be defined as the graph whose
vertices are (m − 1)-spaces of the projective space
PG(n − 1, q) and two vertices are adjacent if they intersect
in an (m − 2)-space.

▶ When m = 2, Jq(n, 2) is the line incidence graph of the
projective space PG(n − 1, q).
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Properties of the Grassmann Graph2

The Gaussian binomial coefficient is defined as(
n
m

)
q

:= (qn − 1)(qn−1 − 1) · · · (qn−m+1 − 1)
(q − 1)(q2 − 1) · · · (qm − 1)

▶ Jq(n, m) contains
(n

m
)

q vertices.
▶ Jq(n, m) is regular with valency q

(m
1
)

q
(n−m

1
)

q.
▶ The clique number of Jq(n, m) is at least

(n−m+1
1

)
q.
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A General Bound2

Theorem (D’haeseleer and T. (2025+)).
Let q be a prime power and m < n be positive integers, then(

n − m + 1
1

)
q

≤ χ(Jq(n, m)) ≤
(

n
1

)
q
.

Proof Idea: The colors are the cosets of F∗
qn/F∗

q. Identify Fn
q

with Fqn and let S be subspace of dimension m with basis
{x1, x2, . . . , xm}. Assign the color (coset) C to S if∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xm
xq

1 xq
2 . . . xq

m
...

... . . . ...
xqm−1

1 xqm−1

2 · · · xqm−1
m

∣∣∣∣∣∣∣∣∣∣
∈ C .
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Notions in Finite Geometry3

Definition.
A (line) spread in Fn

q is a collection of distinct 2-dimensional
subspaces of Fn

q which intersect trivially and which cover each
element of Fn

q.

▶ This is can equivalently be thought of as a partition of the
points of PG(n − 1, q) into skew parallel lines.

▶ A simple counting argument implies spreads can only exist
in Fn

q if n is even.
▶ On the other hand, when n is even, identifying Fn

q with Fqn

and adding the element 0 to each of the cosets F∗
qn/F∗

q2

yields a spread, implying spreads exist when n is even.
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Parallelisms3

Definition.
A (line) parallelism of Fn

q is a partition of the set of all
2-dimensional subspaces of Fn

q into spreads.

▶ Equivalently, a line parallelism of PG(n − 1, q) is a
partition of the lines of PG(n − 1, q) into spreads.

▶ Note that a spread of PG(n − 1, q) is a maximal
independent set in Jq(n, 2).

▶ Consequently, there exists parallelism in PG(n − 1, q) if and
only if χ(Jq(n, 2)) =

(n−1
1
)

q.
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Results on Line Parallelisms3

Line parallelisms of Fn
q are known to exist for the following pairs

(n, q):

1. When q is any prime power and n = 2k is any power of two
(Beutelspacher 1974).

2. When q = 2 and n is any positive even integer (Baker
1976).

3. When q = 3, 4, 8, 16 and n is any positive integer. (Feng,
Xu 2023)

Furthermore, when q = 2 and n is odd, no parallelisms exist but
it has been determined that χ(J2(n, 2)) =

(n−1
1
)

2 + 3 (Meszka
2013).
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New Results3

Theorem (D’haeseleer and T. (2025+)).
Let e be any positive integer, n be an even integer and q = 2e .
Then

χ(Jq(n, 2)) < 2
(

n − 1
1

)
q

Proof Idea: Demonstrate a homomorphism from Jq(n, 2) into
the 2-Kneser graph K2((n − 1)e, e). Therefore we have

χ(Jq(n, m)) ≤ χ(K2((n−1)e, e)) =
(

(n − 2)e + 1
1

)
< 2

(
n − 1

1

)
q
.
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Conclusion and Further Research

▶ Small computations suggest that chromatic number of the
subgraph of the Kneser graph induced by this
homomorphism is strictly greater than

(n−1
1
)

q, so a different
function (or entirely different method) needs to be used if
one wishes to prove that the lower bound is the true answer.

▶ Baker’s construction of parallelisms in Fn
2 is described

succinctly with a bivariate function. Can the same be done
for other constructions such as Beutelspacher?

▶ Can we give new constructions of parallelisms in Fn
2?
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Questions?

Thank you!

•• •••••••• ••• •••• ••
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