

On the Existence of Lattice Tiling of Lee Spheres

Yue Zhou, yue.zhou.ovgu@gmail.com

2 June 2025, Kalamata

Outline

- Introduction
- From Lattice Tiling to Polynomials
- Necessary Conditions
- Computational Results

1. Introduction

Introduction

- For any $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{Z}^n$, the **Lee distance** (ℓ_1 -norm, Manhattan distance...) between them is $d_L(x, y) = \sum_{i=1}^n |x_i - y_i|$.
- Lee sphere of radius r centered at 0 is:

$$\mathcal{B}(\mathbf{n}, \mathbf{r}) := \{(x_1, \dots, x_n) \in \mathbb{Z}^n : \sum_{i=1}^n |x_i| \leq r\}$$

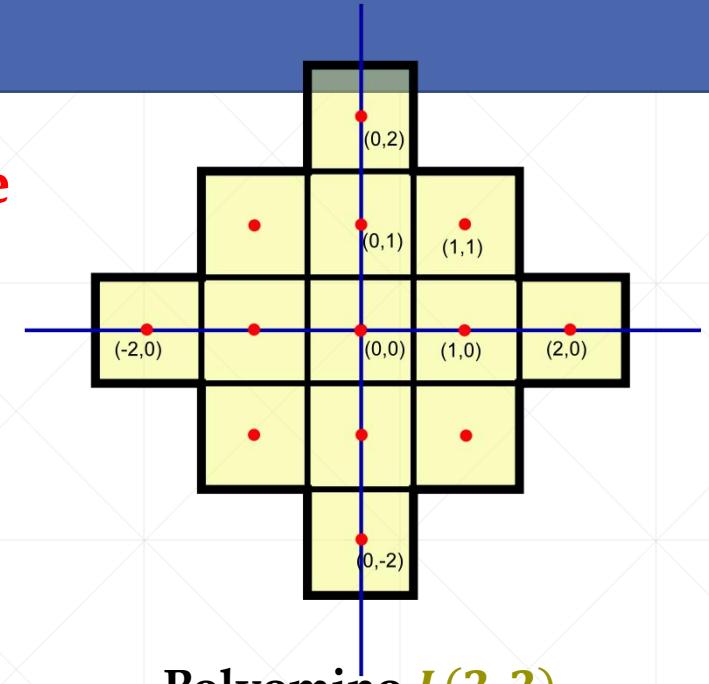
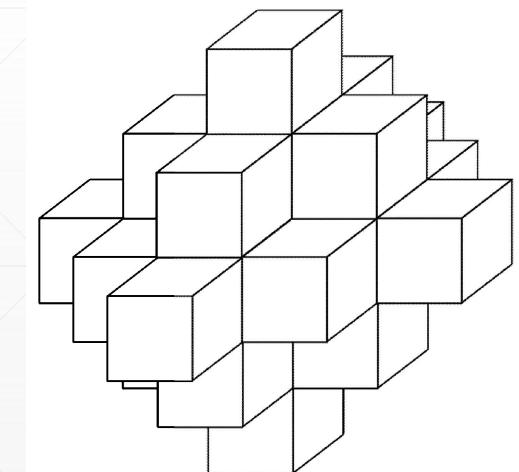
$$|\mathcal{B}(n, r)| = \sum_{i=0}^{\min\{n, r\}} 2^i \binom{n}{i} \binom{r}{i}.$$

- A **perfect Lee code** $\mathcal{C} \Leftrightarrow$ A **tiling** of \mathbb{Z}^n by translates of $\mathcal{B}(n, r)$

$$\mathbb{Z}^n = \dot{\bigcup}_{c \in \mathcal{C}} (\mathcal{B}(n, r) + c) = \mathcal{B}(n, r) \oplus \mathcal{C}$$

- It is equivalent to ``tile'' \mathbb{R}^n by $\mathcal{L}(\mathbf{n}, \mathbf{r}) = \mathcal{B}(\mathbf{n}, \mathbf{r}) + \left[-\frac{1}{2}, \frac{1}{2}\right]^n$

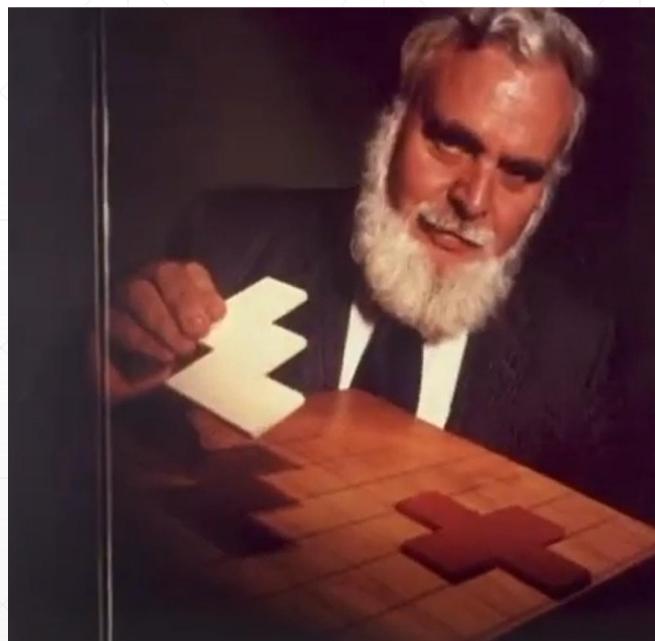
$$\mathbb{R}^n =_{a.e.} \mathbb{Z}^n + \left[-\frac{1}{2}, \frac{1}{2}\right]^n =_{a.e.} \mathcal{L}(\mathbf{n}, \mathbf{r}) \oplus \mathcal{C}$$



Polyomino $L(3, 2)$

Introduction

- **Theorem (Golomb, Welch 1968/1970)** Perfect Lee codes exist for $n = 1, 2$ and any r ; and for $r = 1$ and any n .
- **Golomb-Welch conjecture:** there are no more perfect Lee codes for other choices of n and r .



5	6	7	8	9	10	11	12	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	10	11	12	0	1	2	3	4
8	9	10	11	12	0	1	2	3	4	5	6	7	8	9	10	11	12
3	4	5	6	7	8	9	10	11	12	0	1	2	3	4	5	6	7
11	12	0	1	2	3	4	5	6	7	8	9	10	11	12	0	1	2
6	7	8	9	10	11	12	0	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11	12	0	1	2	3	4	5
9	10	11	12	0	1	2	3	4	5	6	7	8	9	10	11	12	0
4	5	6	7	8	9	10	11	12	0	1	2	3	4	5	6	7	8
12	0	1	2	3	4	5	6	7	8	9	10	11	12	0	1	2	3
7	8	9	10	11	12	0	1	2	3	4	5	6	7	8	9	10	11
2	3	4	5	6	7	8	9	10	11	12	0	1	2	3	4	5	6
10	11	12	0	1	2	3	4	5	6	7	8	9	10	11	12	0	1

Solomon Golomb (1932-2016)

$n = 2, r = 2$, the green points form a perfect code (lattice)

Introduction

- **GW conjecture:** \nexists Perfect Lee codes for $n \geq 3$ and $r \geq 2$.
- partially proved for **given n** and $r > N(n)$.

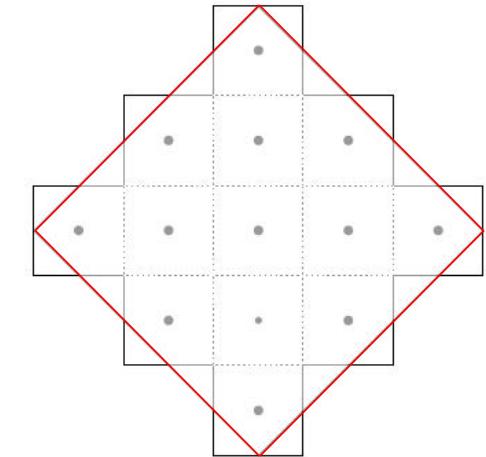
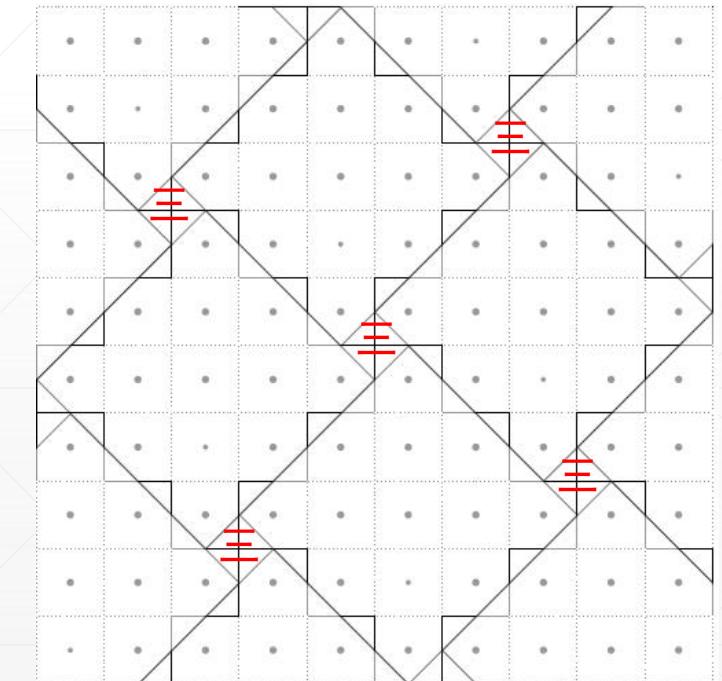
Basic Idea by GW

- Cross-polytope: convex hull of $\{\pm(0, \dots, 1, \dots, 0): i = 1, \dots, n\}$.
- **Conscribed cross-polytope** $X(n, r)$ of $L(n, r)$,

$$\text{vol}(X(n, r)) = \frac{(2r + 1)^n}{n!}$$

$$\text{vol}(L(n, r)) = \sum_{i=0}^{\min\{n, r\}} 2^i \binom{r}{i} \binom{n}{i} \approx 2^n \binom{r}{n}, r \rightarrow \infty.$$

- The packing density of $X(n, r)$ must be smaller than $(0.87)^n$, n large enough. (Tóth, Fodor, Vigh, 2015)



Introduction

- **GW conjecture:** \nexists Perfect Lee codes for $n \geq 3$ and $r \geq 2$.
- partially proved for **given n** and $r > N(n)$.

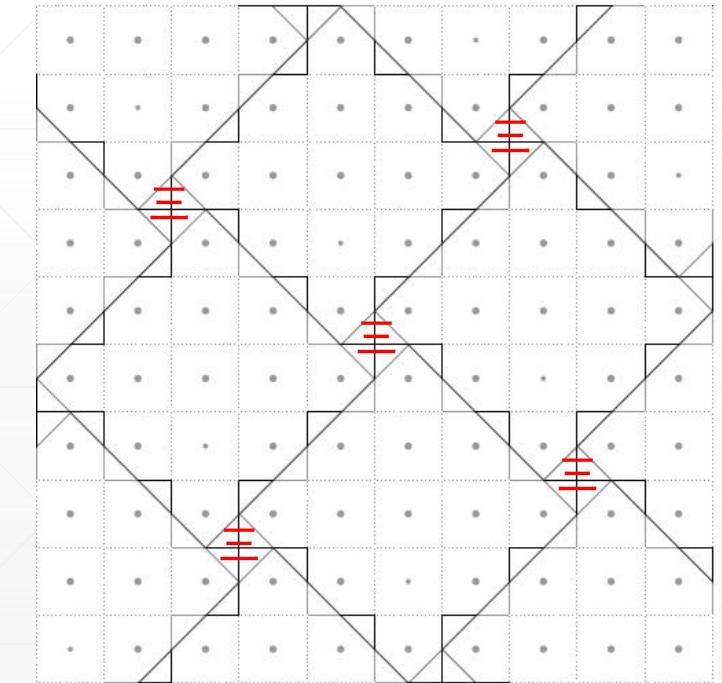
Basic Idea by GW

- Conscribed **cross-polytope** $X(n, r)$ of $L(n, r)$,

$$\text{vol}(X(n, r)) = \frac{(2r+1)^n}{n!}$$

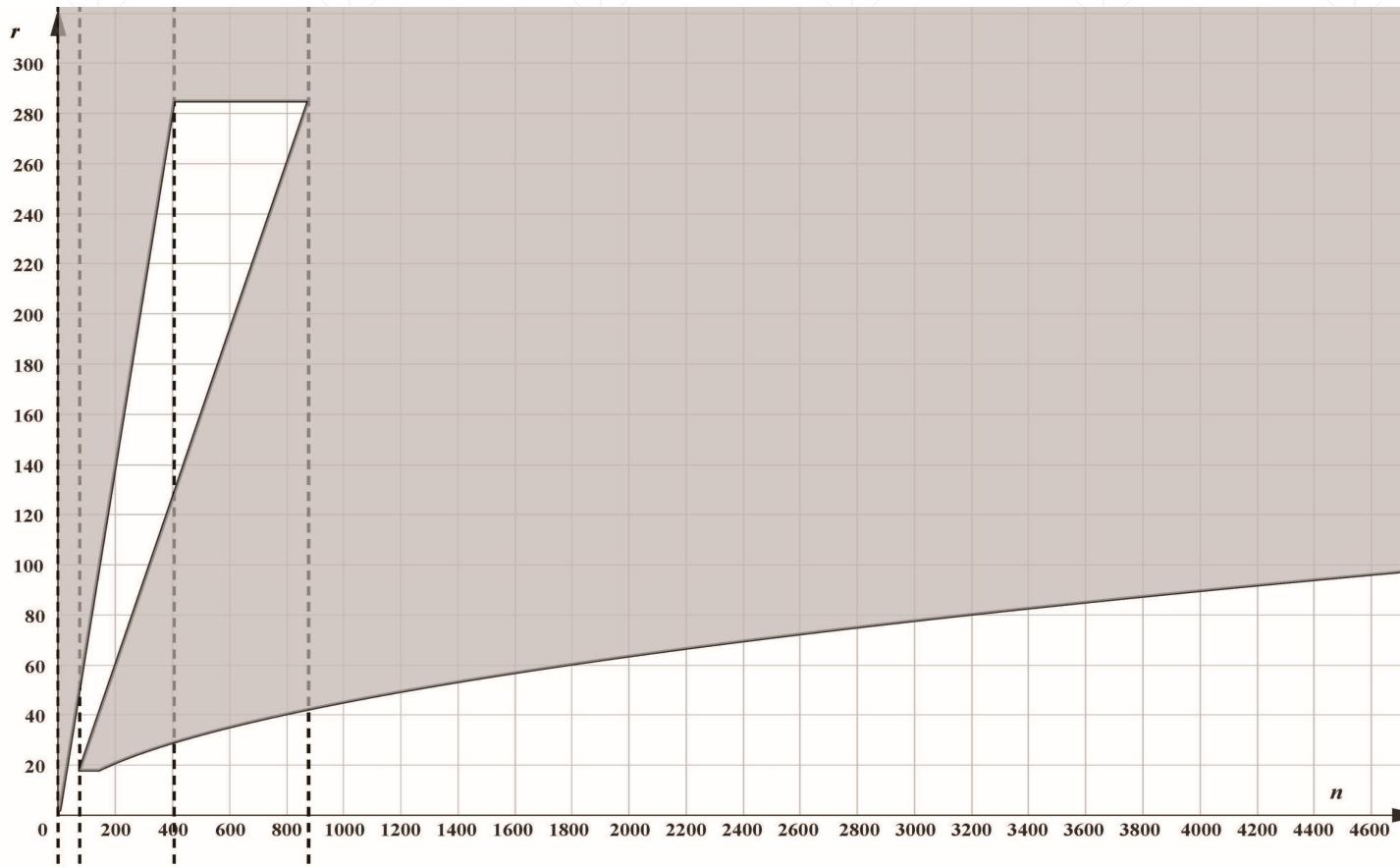
$$\text{vol}(L(n, r)) = \sum_{i=0}^{\min\{n, r\}} 2^i \binom{r}{i} \binom{n}{i} \approx 2^n \binom{r}{n}, r \rightarrow \infty.$$

- The packing density of $X(n, r)$ must be smaller than $(0.87)^n$, n large enough. (Tóth, Fodor, Vigh, 2015)



Introduction

GW conjecture was partially proved for **given n** and $r > N(n)$:



- $3 \leq n \leq 74, \max \left\{ \frac{\sqrt{2}}{2}n - \frac{3}{4}\sqrt{2} - \frac{1}{2}, 2 \right\} \leq r.$
- $75 \leq n \leq 405, \max \{18, \sqrt{2n + 40}\} \leq r \leq \frac{n-21}{3}$
or $\frac{\sqrt{2}}{2}n - \frac{3}{4}\sqrt{2} - \frac{1}{2} \leq r.$
- $406 \leq n \leq 876, \sqrt{2n + 40} \leq r \leq \frac{n-21}{3}$
or $285 \leq r.$
- $n \geq 876, \sqrt{2n + 40} \leq r.$

Reference: Horak, Kim. 50 years of the Golomb-Welch conjecture. IEEE TIT 64(2), 2018 and references therein

2. From Lattice Tiling to Polynomials

Introduction

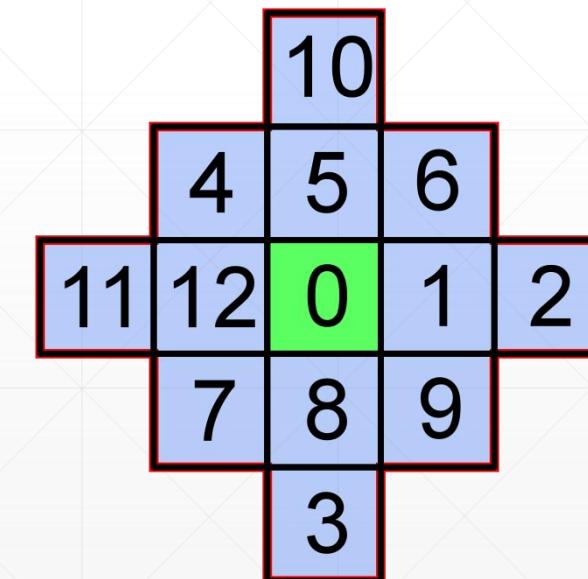
- A **lattice tiling** of \mathbb{Z}^n by translates of $B(n, r)$

$$\mathbb{Z}^n = \dot{\cup}_{c \in C} (B(n, r) + c) = B(n, r) \oplus C, \text{ and } C \subseteq \mathbb{Z}^n \text{ is a lattice.}$$

Theorem 1 (Horak, AlBdaiwi 2012) \exists a **lattice tiling** of \mathbb{Z}^n by Lee spheres of radius $r \Leftrightarrow$ there are an abelian group G of order $|B(n, r)|$ and a homomorphism $\varphi: \mathbb{Z}^n \mapsto G$ such that $\varphi|_{B(n, r)}$ is a bijection.

10	11	12	0	1	2	3	4	5	6	7
5	6	7	8	9	10	11	12	0	1	2
0	1	2	3	4	5	6	7	8	9	10
8	9	10	11	12	0	1	2	3	4	5
3	4	5	6	7	8	9	10	11	12	0
11	12	0	1	2	3	4	5	6	7	8
6	7	8	9	10	11	12	0	1	2	3
1	2	3	4	5	6	7	8	9	10	11
9	10	11	12	0	1	2	3	4	5	6

$$n = 2, r = 2$$



$$G = (\mathbb{Z}_{13}, +), \varphi(e_1) = 1, \varphi(e_2) = 5$$

A related problem in Graph Theory

Degree/diameter problems

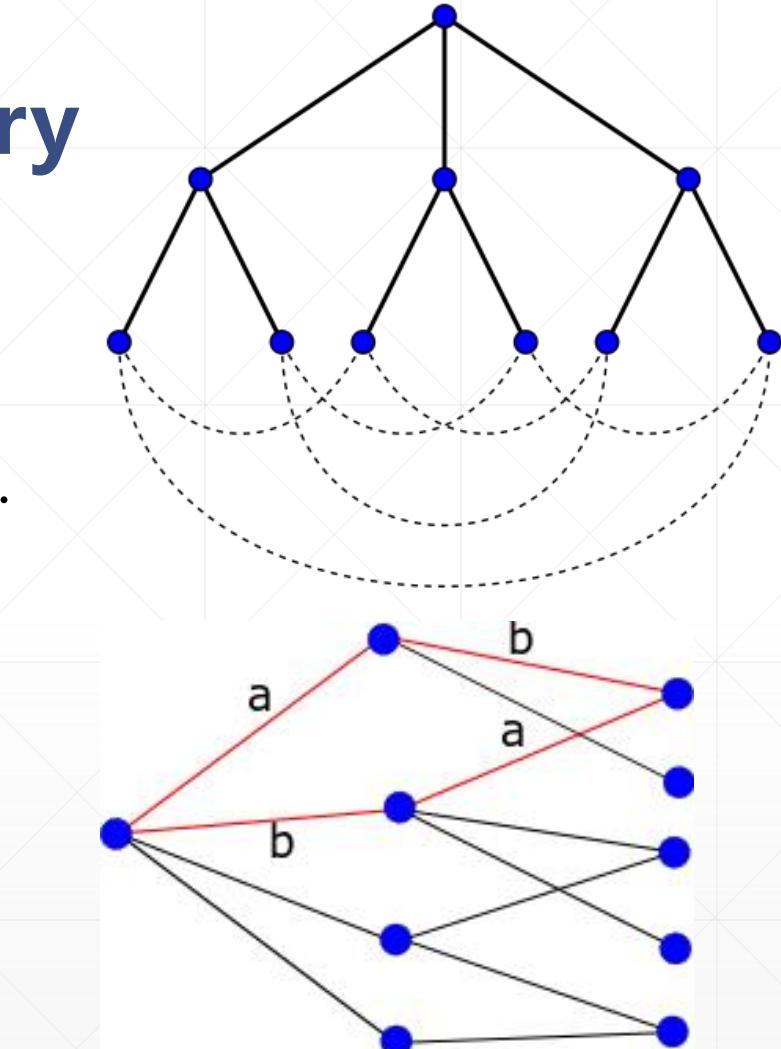
- **Moore bound** for general graphs: $\#V \leq 1 + d \sum_{i=0}^{k-1} (d-1)^i$.

- **Moore-like bound** for abelian Cayley graphs:

$$|G| \leq \sum_{i=0}^{\min\{k,d\}} 2^i \binom{k}{i} \binom{d}{i}.$$

- Moore-like bound = $|B(n, r)|$ with $n = d, r = k$.

- Abelian Cayley graph meeting the Moore-like bound \Leftrightarrow Lattice tiling of $B(n, r)$



Lattice Tiling to Polynomials

Recall: **geometric method** can only handle GW-conjecture for **fixed n** and $r > N(n)$.

For lattice GW-conjecture with **fixed r** , **Algebraic and Combinatorics Methods**:

- Symmetric polynomials over finite fields ([Kim 2017, Zhang, Ge 2017, Qureshi 2020](#))
 - Fast algorithm for small n ;
 - Works for infinitely many n ? Some times.
 - Usually, $|B(n, r)|$ needs to be [prime](#) or to have [large prime divisors](#).
- Convert the original problem into a group ring equation
 - Group characters (=eigenvalue of the associated graph), algebraic number theory, finite fields...([Zhang, Z. 2019](#))
 - Usually need [small prime divisors](#) of $|B(n, r)|$.
 - Handle the group ring equations directly mod 3, mod 5... ([Leung, Z. 2020](#))
 - Currently only works for $r = 2$ and [all \$n \geq 3\$](#) .

Group Ring Equations Approach

A lattice tiling of Lee spheres of **radius 2** in $\mathbb{Z}^n \Leftrightarrow$ The existence of $T \subseteq G$, where G is an abelian (**multiplicative**) group of order $2n^2 + 2n + 1$, such that $T = T^{(-1)}$, the identity $e \in T$ and

$$T^2 = 2G - T^{(2)} + 2ne \in \mathbb{Z}[G],$$

[Zhang & Z. 2019] Apply $\chi \in \widehat{G}$, obtain equations in algebraic integer rings.

where $T^{(s)} := \sum_{t \in T} t^s$.

[Leung & Z. 2020] Analyze $T^3 \equiv T^{(3)} \pmod{3}$, $T^5 \equiv T^{(5)} \pmod{5}$

- $r = 3$: $T^3 = 6G - 3T^{(2)}T - 2T^{(3)} + 6nT$;
- $r = 4$:
$$T^4 = 24G - 12n(T^2 + T^{(2)}) - 6T^{(2)}T^2 - 3T^{(2)}T^{(2)} - 8T^{(3)}T - 6T^{(4)} + 12n(n-1);$$
- $r = 5$:

Symmetric polynomial approach

Theorem 1 The following three conditions are equivalent:

- a) \exists a lattice tiling of \mathbb{Z}^n by Lee spheres of radius r
- b) there are an abelian group G of order $|B(n, r)|$ and a homomorphism $\varphi: \mathbb{Z}^n \mapsto G$ such that $\varphi|_{B(n, r)}$ is a bijection
- c) \exists abelian (**additive**) group G of order $|B(n, r)|$ and $\exists R = \{x_1, \dots, x_n\} \subseteq G$, such that $\left\{ \sum_{x_i \in R} u_i x_i : u \in \mathbb{Z}^n, \|u\|_1 \leq r \right\} = G$.

Example: $R = \{1, 5\} \subseteq G = \mathcal{C}_{13}$.

$$\left\{ \sum_{x_i \in R} u_i x_i : u \in \mathbb{Z}^2, \|u\|_1 \leq 2 \right\} = \{0, \pm 1, \pm 5, \pm 2, \pm 10, \pm 1 \pm 5\} = \mathcal{C}_{13}$$

10	11	12	0	1	2	3	4	5	6	7
5	6	7	8	9	10	11	12	0	1	2
2	0	1	2	3	4	5	6	7	8	9
8	9	10	11	12	0	1	2	3	4	5
3	4	5	6	7	8	9	10	11	12	0
0	11	12	0	1	2	3	4	5	6	7
6	7	8	9	10	11	12	0	1	2	3
1	2	3	4	5	6	7	8	9	10	11
9	10	11	12	0	1	2	3	4	5	6

Lattice Tiling to Polynomials

$$R = \{x_1, \dots, x_n\} \subseteq G, \left\{ \sum_{x_i \in R} u_i x_i : u \in \mathbb{Z}^n, \|u\|_1 \leq r \right\} = G \text{ with } |G| = |B(n, r)| = \sum_{i=0}^{\min(n, r)} 2^i \binom{n}{i} \binom{r}{i}.$$

The idea by Kim ($r = 2$), generalized by Zhang & Ge, and Qureshi ($r \geq 2$):

- Suppose that $|G| = pm$, define projection $\varphi: G \rightarrow (\mathbb{F}_p, +)$, $\bar{x} := \varphi(x)$. Consider

$$\begin{aligned}
 Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) &= \sum_{u \in \mathbb{Z}^n: \|u\|_1 \leq r} \left(\varphi \left(\sum_{x_i \in R} u_i x_i \right) \right)^{2k} = \boxed{\sum_{u \in \mathbb{Z}^n: \|u\|_1 \leq r} \left(\sum_{x_i \in R} u_i \bar{x}_i \right)^{2k}} \\
 &= \sum_{g \in G} \varphi(g)^{2k} = \boxed{\sum_{g \in G} \varphi(g)^{2k}} = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}
 \end{aligned}$$

- By expanding,

$$Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) = \sum_{\lambda} c_{\lambda} S_{\lambda}(\bar{x}_1, \dots, \bar{x}_n) = \color{red}c_{(2k)} S_{2k}(\bar{x}_1, \dots, \bar{x}_n) + \sum_{\lambda \neq (2k)} c_{\lambda} S_{\lambda}(\bar{x}_1, \dots, \bar{x}_n),$$

where $S_{\lambda} = S_{\lambda_1} \cdots S_{\lambda_{\ell}}$ and $(\lambda_1, \dots, \lambda_{\ell})$ is a partition of $2k$ with $\ell \leq r$ and $S_m(\bar{x}_1, \dots, \bar{x}_n) = \sum_{i=1}^n \bar{x}_i^m$.

Lattice Tiling to Polynomials

Examples

For $r = 2$,

$$Q_{(n,2)}^k(X) = (4^k + 4n + 2)S_{2k} + 2 \sum_{t=1}^{k-1} \binom{2k}{2t} S_{2t} S_{2(k-t)} = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$$

For $r = 3$,

$$\begin{aligned} Q_{(n,3)}^k(X) &= \left(\frac{2 \times 9^k}{3} + (2n+1)4^k + 4n^2 + 4n + 2 \right) S_{2k} \\ &+ \sum_{t=1}^{k-1} (4^t + 4^{k-t} + 4n+2) \frac{(2k)!}{(2t)!(2k-2t)!} S_{2t} S_{2k-2t} \\ &+ \frac{4}{3} \sum_{i=1}^{k-1} \sum_{j=1}^{i-1} \frac{(2k)!}{(2j)!(2i-2j)!(2k-2i)!} S_{2j} S_{2i-2j} S_{2k-2i} = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases} \end{aligned}$$

Lattice Tiling to Polynomials

A **necessary condition** for the existence of lattice tiling of $B(n, r)$:

$|G| = |B(n, r)| = pm$, projection $\varphi: G \rightarrow (\mathbb{F}_p, +)$, $\bar{x} := \varphi(x)$. Consider $Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n)$.

For $r = 2$, $Q_{(n,2)}^k(\bar{x}_1, \dots, \bar{x}_n) = (4^k + 4n + 2)S_{2k} + 2 \sum_{t=1}^{k-1} \binom{2k}{2t} S_{2t} S_{2(k-t)} = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$

Key idea: if $4^k + 4n + 2 \not\equiv 0 \pmod{p}$ for $k = 1, 2, \dots$, then recursively we get

$$k = 1: \quad (4^1 + 4n + 2)S_{2 \cdot 1} = 0 \Rightarrow S_2 = 0$$

$$k = 2: \quad (4^2 + 4n + 2)S_{2 \cdot 2} + 2 \binom{4}{2} S_2 S_2 = 0 \Rightarrow S_{2 \cdot 2} = 0$$

⋮

- [Kim 2017] For $m = 1$, i.e., $|G| = p$ and the **assumption** holds for $k = 1, 2, \dots, n-1$, we obtain

$$S_2, S_4, \dots, S_{2n} = 0.$$

Then $e_n = x_1^2 \cdots x_n^2 = 0$ (by Newton's identity), where e_i is the elementary symmetric polynomial of x_1^2, \dots, x_n^2 , then a contradiction!

Lattice Tiling to Polynomials

A **necessary condition** for the existence of lattice tiling of $B(n, r)$:

$|G| = |B(n, r)| = pm$, projection $\varphi: G \rightarrow (\mathbb{F}_p, +)$, $\bar{x} := \varphi(x)$.

$$Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) = \sum_{\lambda} c_{\lambda} S_{\lambda}(\bar{x}_1, \dots, \bar{x}_n)$$

$$= c_{(2k)} S_{2k}(\bar{x}_1, \dots, \bar{x}_n) + \sum_{\lambda \neq (2k)} c_{\lambda} S_{\lambda}(\bar{x}_1, \dots, \bar{x}_n) = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$$

where $S_{\lambda} = S_{\lambda_1} \cdots S_{\lambda_{\ell}}$ and $(\lambda_1, \dots, \lambda_{\ell})$ is a partition of $2k$ with $\ell \leq r$ and $S_m(\bar{x}_1, \dots, \bar{x}_n) = \sum_{i=1}^n \bar{x}_i^m$.

[Qureshi 2020]:

- Determines the exact value of $c_{(2k)}$.
- If $p \nmid m$ and the leading coefficients $c_{(2k)} \neq 0$ in \mathbb{F}_p for $k = 1, \dots, \frac{p-1}{2}$ and $c_{(p-1)} = 0$, then $S_2 = S_4 = \cdots = S_{p-3} = 0$ which implies $c_{(p-1)} S_{p-1} = -m \neq 0$, a contradiction!

Lattice Tiling to Polynomials

$$Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) = c_{(2k)} S_{2k} + \sum_{\lambda \neq (2k)} c_\lambda S_\lambda = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1|2k. \end{cases}$$

- [Kim 2017] $r = 2, c_{(2k)} \not\equiv 0 \pmod{p}$ for $k = 1, 2, \dots, n-1$.
- [Qureshi 2020] $\forall r, c_{(2k)} \not\equiv 0 \pmod{p}$ for $k = 1, \dots, \frac{p-1}{2} - 1$ and $c_{(p-1)} \equiv 0 \not\equiv -m$.

Main problems: In the general case with $c_\lambda \equiv 0 \pmod{p}$ for some λ , can we still derive contradictions?

Two main tasks:

- Determine the recursive formula for S_λ , i.e., the exact value of every c_λ ;
- Use $[S_2, S_4, S_6, \dots]$ to derive contradictions about $\bar{x}_1, \dots, \bar{x}_n$

3. Necessary Conditions

Discrete Fourier Analysis

From $S_{2k} = \sum \bar{x}_i^{2k}$, what we can get?

- [Kim 2017]. Using Newton's identity, we can get the value of elementary symmetric polynomials on \bar{x}_i 's partially ($k \neq 0 \bmod p$).

$$ke_k(\bar{x}_1^2, \bar{x}_2^2, \dots, \bar{x}_n^2) = \sum_{i=1}^k (-1)^{i-1} e_{k-i}(\bar{x}_1^2, \bar{x}_2^2, \dots, \bar{x}_n^2) S_i(\bar{x}_1^2, \bar{x}_2^2, \dots, \bar{x}_n^2)$$

In fact, we can determine \bar{x}_i^2 **completely**! Set $\boxtimes_p = \{z^2 : z \in \mathbb{F}_p^*\}$, and

$$\begin{aligned}\chi_k : \boxtimes_p &\rightarrow \mathbb{F}_p \\ z &\mapsto z^k\end{aligned}$$

- It is a **character** from group \boxtimes_p (under multiplication) of order $\frac{p-1}{2}$ to \mathbb{F}_p .
- Character Group: $\widehat{\boxtimes}_p = \{\chi_k : k = 0, \dots, \frac{p-1}{2} - 1\}$.

Discrete Fourier Analysis

$|G| = |B(n, r)| = pm$, projection $\varphi: G \rightarrow (\mathbb{F}_p, +)$, $\bar{x} := \varphi(x)$, $R = \{x_1, \dots, x_n\} \subseteq G$.

- $\{\bar{x}_i^2 : i = 1, \dots, n\} \subseteq \boxtimes_p \cup \{0\}$.
- Define $f: \boxtimes_p \rightarrow \mathbb{Z}$ via $f(a) = \#\{i : \bar{x}_i^2 = a\}$.
- **Fourier transform** of f : $\hat{f}(k) = \sum_{z \in \boxtimes_p} f(z) z^{-k} = \sum_{z \in \bar{R}} z^{-k} = S_{\frac{p-1}{2}-k}$
- **Inversion formula**: $f(z) \equiv \frac{2}{p-1} \sum_{k=0}^{(p-1)/2} \hat{f}(k) z^k \pmod{p}$, for $z \in \boxtimes_p$
- **Uncertainty Principle** (Feng, Hollmann & Xiang, 2019):

$$|\text{supp}(f)| \cdot |\text{supp}(\hat{f})| \geq |G|.$$

where $\text{supp}(f) = \{x \in \boxtimes_p : f(x) \not\equiv 0 \pmod{p}\}$, $\text{supp}(\hat{f}) = \{k : \hat{f}(k) \neq 0\}$. Hence,

$$|\{k : S_{2k} \neq 0\}| \geq \frac{p-1}{2n}.$$

Discrete Fourier Analysis

Example. $r = 3, n = 192$. $|G| = |B(192,3)| = 61 \cdot 155925 = 61 \cdot 3^2 \cdot 5^2 \cdot 13 \cdot 53$.

$$Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) = c_{(2k)} S_{2k}(\bar{x}_1, \dots, \bar{x}_n) + \sum_{\lambda \neq (2k)} c_\lambda S_\lambda(\bar{x}_1, \dots, \bar{x}_n) = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$$

Obtain: $S_2 = S_4 = \dots = S_{2 \cdot 29} = 0, S_{2 \cdot 30} = 15$.

By **inversion formula**: $\#\{i: \bar{x}_i^2 = a\} = f(z) \equiv 31 \pmod{61}$

However, $31 \cdot \frac{p-1}{2} = 31 \cdot 30 > 192$. A contradiction!

Coefficients c_λ

Theorem (Xiao & Z. 2025+) For $k \geq 1$,

$$Q_{(n,r)}^k(X) = \sum_{\lambda \in \mathcal{P}(k)} \frac{(2k)!}{\prod_{i=1}^{\ell} (2\lambda_i)!} \cdot \frac{2^\ell}{\prod_{i=1}^k m_\lambda(i)!} \sum_{r_1 + \dots + r_{\ell+1} = r} \left(|B(n, r_{\ell+1})| \prod_{i=1}^{\ell} r_i^{2\lambda_i-1} \right) S_{2\lambda}$$

where $\mathcal{P}(k)$ stands for the set of all partitions of k , $\lambda = (\lambda_1, \dots, \lambda_\ell)$, $m_\lambda(i) = \#\{i : \lambda_j = i, j = 1, \dots, \ell\}$, $S_{2\lambda} = S_{2\lambda_1} \cdots S_{2\lambda_\ell}$ and $r_1, \dots, r_{\ell+1} \in \mathbb{Z}_{\geq 0}$.

Proof (Sketch). Do NOT fix r . Try to prove

$$\sum_{r=0}^{\infty} Q_{(n,r)}^k(X) q^r = \frac{(1+q)^n}{(1-q)^{n+1}} \sum_{\lambda \in \mathcal{P}(k)} \frac{(2k)!}{\prod_{i=1}^{\ell} (2\lambda_i)!} \cdot \frac{2^\ell}{\prod_{i=1}^k m_\lambda(i)!} \prod_{i=1}^{\ell} \left(\sum_{s=1}^{\infty} s^{2\lambda_i-1} q^s \right) S_{2\lambda}$$

Set $S^n(r)$ to be the shell of $B(n, r)$. Then $Q_{S^n(r)}^k(X) = Q_{(n,r)}^k(X) - Q_{(n,r-1)}^k(X)$. Hence

$$\sum_{r=0}^{\infty} Q_{S^n(r)}^k(X) q^r = (1-q) \sum_{r=0}^{\infty} Q_{(n,r)}^k(X) q^r$$

Coefficients c_λ

Proof (continued). We only have to show

$$\sum_{r=0}^{\infty} Q_{S^n(r)}^k(X) q^r = \frac{(1+q)^n}{(1-q)^n} \sum_{\lambda \in \mathcal{P}(k)} \frac{(2k)!}{\prod_{i=1}^{\ell} (2\lambda_i)!} \cdot \frac{2^\ell}{\prod_{i=1}^k m_\lambda(i)!} \prod_{i=1}^{\ell} \left(\sum_{s=1}^{\infty} s^{2\lambda_i-1} q^s \right) S_{2\lambda}$$

Prove it [by induction](#). Set

$$T(n+1, r) = \{\langle X, b \rangle : b \in S^{n+1}(r)\} = \{\pm b_1 X_1 \pm \cdots \pm b_{n+1} X_{n+1} : b_1 + b_2 + \cdots + b_{n+1} = r\}$$

$$\begin{aligned} \sum_{r=0}^{\infty} Q_{S^{n+1}(r)}^k(X) q^r &= \sum_{r=0}^{\infty} \sum_{\alpha \in T(n+1, r)} \alpha^{2k} q^r \\ &= \sum_{r=0}^{\infty} \sum_{\alpha \in T(n, r)} \alpha^{2k} q^r + \sum_{r=0}^{\infty} \sum_{\alpha \in T(n, r-1)} (\pm X_{n+1} + \alpha)^{2k} q^r + \cdots + \sum_{r=0}^{\infty} \sum_{\alpha \in T(n, 0)} (\pm r X_{n+1} + \alpha)^{2k} q^r \end{aligned}$$

To finish the proof: some tedious computation and properties of the [Eulerian polynomial](#) $A_n(q) = \sum_{w \in S_n} q^{\text{des}(w)}$:

$$A_{2k}(q) = (1+q) \sum_{\lambda \in \mathcal{P}(k)} \frac{(2k)!}{\prod_{i=1}^{\ell} (2\lambda_i)!} \cdot \frac{(2q)^{\ell-1}}{\prod_{i=1}^k m_\lambda(i)!} \prod_{i=1}^{\ell} A_{2\lambda_i-1}(q)$$

Coefficients c_λ

A **necessary condition** for the existence of lattice tiling of $B(n, r)$:

$$|G| = |B(n, r)| = pm, \text{ projection } \varphi: G \rightarrow (\mathbb{F}_p, +), \bar{x} := \varphi(x).$$

$$Q_{(n,r)}^k(\bar{x}_1, \dots, \bar{x}_n) = \textcolor{red}{c_{(2k)}} S_{2k}(\bar{x}_1, \dots, \bar{x}_n) + \sum_{\lambda \neq (2k)} \textcolor{red}{c_\lambda} S_\lambda(\bar{x}_1, \dots, \bar{x}_n) = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$$

First Task: Determine the value of c_λ , and use them to get $\mathcal{S} := [S_2, S_4, S_6, \dots]$ partially;

Example. For $n = 38, r = 3, |B(n, 3)| = 43 \cdot 1771$.

$$\mathcal{S} = [0, 0, 0, 0, 0, X_1, 0, 0, \dots, 0, 39, \dots],$$

6

$$21 = \frac{p-1}{2}$$

where X_1 is unknown.

Necessary Conditions

$$(\#)--- \quad c_{(2k)} S_{2k}(\bar{x}_1, \dots, \bar{x}_n) + \sum_{\lambda \neq (2k)} c_\lambda S_\lambda(\bar{x}_1, \dots, \bar{x}_n) = \begin{cases} 0, & p-1 \nmid 2k; \\ -m, & p-1 \mid 2k. \end{cases}$$

$$\mathcal{S} = [S_2, S_4, \dots, S_{p-1}, \dots], \quad S_{2k} = \sum_{i=1}^n \bar{x}_i^{2k},$$

$$\mathcal{E} = [e_1, e_2, \dots, e_n, \dots], \quad e_k = \sum \bar{x}_{i_1}^2 \bar{x}_{i_2}^2 \dots \bar{x}_{i_k}^2.$$

List of Necessary Conditions:

1. $\exists \mathcal{S}$ fits $(\#)$, for instance Qureshi's criterion: $c_{(p-1)} \equiv 0 \neq -m$, $c_{(2j)} \not\equiv 0$ for $2j < p-1$.
2. \mathcal{S} must be of period $\frac{p-1}{2}$, and $S_{p-1} \leq n$
3. $e_{n+1} = e_{n+2} = \dots = 0$.
4. $|\{i: \bar{x}_i = 0\}| < N_r \Rightarrow \max \{1 \leq k \leq n: e_k \neq 0\}$ should be large. $\left. \begin{matrix} \text{Only need to generate } S_2, \dots, S_{2n+\epsilon} \\ \text{Easy for } p \gg n. \end{matrix} \right\}$
5. Uncertainty Principle (need large p): $|\{k: S_{2k} \neq 0\}| \geq \frac{p-1}{2n}$
6. Inversion Formula $f(z) \equiv \frac{2}{p-1} \sum_{k=0}^{(p-1)/2} S_{(p-1)/2-k} z^k$, check whether it determines a set of $\leq n$ nonzero squares in \mathbb{F}_p and check $\{\sum \pm a_i \bar{x}_i : \sum a_i \leq r\} = m\mathbb{F}_p$

Necessary Conditions

Example 1. For $r = 3$, $3 \leq n \leq 100$, Qureshi's criterion excludes

$$n = 6, 12, 21, 39, 48, 64, 66, 75, 93.$$

Example 2. For $r = 3$, $n = 26$, $|G| = 24857 = 7 \times 53 \times 67$, $p = 67$, $m = 371$.

$$S = [0, \dots, 0, S_{2 \times 15} = X, 0, \dots, 0, S_{2 \times 26} = 0, \dots, S_{2 \times 33} = 33, \dots]$$

$$S_{66} = \sum_{i=1}^n \bar{x}_i^{67-1} = 33 > 26$$

Example 3. For $n = 38$, $r = 3$, $|B(n, 3)| = 43 \cdot 1771$, $p = 43$

$$S = [0, 0, 0, 0, 0, X_1, 0, 0, \dots, 0, 39, \dots],$$

where X_1 is unknown.

$$e_{39} = 37X_1^3, e_{40} = e_{41} = 0, e_{42} = 39X_1^7 + 28.$$

$$e_{39} = 0 \Rightarrow X_1^3 = 0, \text{ but } e_{42} = 28 \neq 0.$$

Necessary Conditions

Example 4. For $n = 11, r = 3, |B(n, 3)| = 89 \cdot 23, p = 89$

$$S_2 = S_4 = \dots = S_{2 \cdot n} = 0 = S_{2 \cdot (n+1)} = \dots = S_{\frac{p-1}{2}-1}, S_{\frac{p-1}{2}-1} = 29$$

Hence $e_1 = e_2 = \dots = e_n = 0$. A contradiction.

Example 5. For $n = 483, r = 3, |B(n, 3)| = 155849 \cdot 967, p = 155849$.

The number of $S_{2i} = 0$ is more than $\frac{(n-1) \cdot (p-1)}{2n}$. A contradiction.

Necessary Conditions

Example 6.1. For $n = 107, r = 3, |B(n, 3)| = 67 \cdot 43 \cdot 23 \cdot 5^2, p = 67$

$$S_{2 \cdot 14} = X_0, S_{2 \cdot 18} = X_1, S_{2 \cdot 33} = 4, \text{ other } S_{2i} = 0 \text{ in one period}$$

where X_0, X_1 are unknown.

Compute $f(z) \equiv \frac{2}{p-1} \sum_{k=0}^{(p-1)/2} S_{(p-1)/2-k} z^k$. It NEVER defines a set of nonzero squares in \mathbb{F}_p of size $\leq n$.

Example 6.2 (A nasty case). For $n = 84, r = 3, |B(n, 3)| = 23^2 \cdot 13^2 \cdot 3^2, p = 23$

$$\mathcal{S} = [0, 0, 0, 0, 0, 0, X_0, 0, 0, 0, \dots]$$

By Inversion Formula, the coefficients of elements in \mathbb{F}_{23} are

$$[21X_0, 7X_0, 15X_0, 10X_0, 0, 5X_0, 0, 11X_0, 14X_0, 0, 0, 17X_0, 22X_0, 0, 0, 19X_0, 0, 20X_0, 0, 0, 0, 0]$$

The ``Sum'' of them is ≤ 23 if and only if $X_0 = 0$. Hence

$$\{ * \bar{x}_i^2 : i = 1, \dots, n * \} = \{ * 23a^2, 23b^2, 23c^2, 15 \cdot 0 * \}$$

A complete search for a, b, c shows no solution for $\{ \sum \pm a_i \bar{x}_i : \sum a_i \leq 3 \} = m\mathbb{F}_p$.

4. Computational Results

Computational Results for $r = 3$ and $n \leq 1000$

- **Extra Criterion [Zhang & Z. 2019]** Assume that $n \equiv 1, 5 \pmod{7}$. If $24n + 1$ is not a square or $84 \nmid (24n + 1)^2 \pm 6\sqrt{24n + 1} + 29$, then no lattice tiling of $B(n, 3)$.
- We can exclude all $3 \leq n \leq 1000$ except for 35, 437, 590, 597, 805.

n	Factorization of $ B(n, 3) $	Extra property
35	$29^2 \cdot 71$	$\exists p = 2n + 1$
437	$3 \cdot 5^4 \cdot 7 \cdot 47 \cdot 181$	
590	$3^2 \cdot 23 \cdot 1123 \cdot 1181$	$\exists p = 2n + 1$
597	$3^3 \cdot 5^2 \cdot 41 \cdot 43 \cdot 239$	
805	$3 \cdot 29^2 \cdot 179 \cdot 1543$	

Unsolved cases

- G , $|G| = |B(n, r)| = pm$, $\varphi: G \rightarrow (\mathbb{F}_p, +)$, $R = \{x_1, \dots, x_n\}$
- $\varphi(R) = a\{0\} \cup b\mathbb{F}_p^*$, $a + (p - 1)b = n$ and there is no contradiction.
- If it happens for every prime $p \mid |G|$, then it is impossible to prove the nonexistence of lattice tiling of $B(n, r)$ using this approach.
- We need to consider projection from G to $\mathbb{Z}_{p_1^{i_1}} \times \dots \times \mathbb{Z}_{p_s^{i_s}}$ (instead of \mathbb{F}_p). (No Fourier Transforms) How to do it?

Concluding Remarks

- This approach also works for
 - other r ,
 - lattice packings with density ≈ 1 (for instance, the almost perfect case).

- One main difficulty for large r and n :

$$\text{factorize } |B(n, r)| = \sum_{i=0}^{\min\{n, r\}} 2^i \binom{n}{i} \binom{r}{i}$$

- We can also prove the nonexistence of lattice tiling of $B(n, r)$ with fixed r for infinitely many n , for instance:

- $r = 6$, $n \equiv 10, 22, 35, 47, 60, 72, 97, 110, 122 \pmod{5^3}$, red ones are new compared with using Qureshi's criterion, because we can completely determine the coefficients of $Q_{(n, r)}^k(X)$.

Concluding Remarks

Some connections not mentioned:

- (Degree-Diameter Problem in **graph theory**) Abelian Cayley graph meeting the **Moore-like bound** \Leftrightarrow Lattice tiling of $B(n, r)$
- (Lattice) Tiling of \mathbb{Z}_q^n by Lee spheres (Weak GW Conjecture)
- Association Schemes for Lee metric in \mathbb{Z}_q^n : multivariate Lloyd polynomials

“For $r = 2$, $T^2 = 2G - T^{(2)} + 2ne \in \mathbb{Z}[G]$, project T to a subset in $(\mathbb{F}_p, +)$ and use the multiplicative character $z \mapsto z^k$.”

- **One more question:** Can we use the same trick for (generalized) difference sets, (near) factorization of groups, etc?

Thanks for your attention!
