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Introduction

* GW conjecture: Perfect Lee codesfor =3 and = 2. AN
* partially proved for given and > (). </ \\

Basic Idea by GW | T
] O
* Cross-polytope: convex hull of *(0, ,1, ,0): =1, : N

» Conscribed cross-polytope ( , )of (, ), e R
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* The packing density of ( , ) mustbe smaller than oA \/j_<

(0.87) , large enough. (T6th, Fodor, Vigh, 2015) - R o
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GW conjecture was partially proved for given and > ( ):
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Reference: Horak, Kim. 50 years of the Golomb-Welch conjecture. IEEE TIT 64(2), 2018 and references therein




2. From Lattice Tiling to Polynomials




Introduction

» Alattice tiling of by translatesof ( , )
=  ((,)+)= (,) , and is a lattice .

Theorem 1 (Horak, AlBdaiwi 2012) a lattice tiling of by Lee spheres of
radius < there are an abelian group oforder| ( , )|and a

homomorphism such that | () is a bijection.
10(11|12({ 0| 1({2]|3[4|5|6|7
5(61718|9|10111|12| 0 1|2
00({1|12(3|14(5|6|7|8|9|10
819(10[11{12/0|1(2]|3|4]|5
314(5[|6|7(8]|9(10111(12| 0
)11{12/0(1]12|3]4|5(6|7|8
6(7|8[9|10[11|12{0(1]2|3
1121314(5(6]|7|8|9|10]11
9110111121 01112314516
=2, =2 =(3t) (D=1, (2)=5



Lattice Tiling to Polynomials

Degree/diameter problems

A related problem in Graph Theory

Moore bound for general graphs: # <1+ :_01 ( —1).

Moore-like bound for abelian Cayley graphs:

Moore-like bound =| ( , )| with ,

Abelian Cayley graph meeting the Moore-like bound < Lattice tiling of ( , )



Lattice Tiling to Polynomials

Recall: geometric method can only handle GW-conjecture for fixed and > ().
For lattice GW-conjecture with fixed , Algebraic and Combinatorics Methods:

= Symmetric polynomials over finite fields (Kim 2017, Zhang, Ge 2017, Qureshi 2020)

= Fast algorithm for small ;
= Works for infinitely many ? Some times.

= Usually, | ( , )| needs to be prime or to have large prime divisors.

= Convert the original problem into a group ring equation

= Group characters (=eigenvalue of the associated graph), algebraic number theory, finite
fields...(Zhang, Z. 2019)

» Usually need small prime divisorsof | ( , )I.

= Handle the group ring equations directly mod 3, mod 5... (Leung, Z. 2020)

= Currently only works for =2andall =3.



Lattice Tiling to Polynomials

Group Ring Equations Approach

= The existence of , where is
= (_1), the

A lattice tiling of Lee spheres of radius 2 in

an abelian (multiplicative) group of order 2 2 +2 + 1, such that
[Zhang & Z.2019] Apply ~ , obtain

identity and
2_9 _ @49 [ ] equations in algebraic integer rings.
where () [Leung & Z. 2020] Analyze 3= @ mod3, °= ®Gmod5
» =3 3:6 —3 (2) — 2 (3)+6 ’
= =4
4=24 —-12 2+ @ - @230 @-8 G -6 WB+12 ( -1

= =5 ...



Lattice Tiling to Polynomials

Symmetric polynomial approach

Theorem 1 The following three conditions are equivalent:

a) a lattice tiling of by Lee spheres of radius

b) there are an abelian group oforder| (, )|and a

homomorphism such that | ( )isa bijection

C) abelian (additive) group oforder| ( , )land =
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Lattice Tiling to Polynomials

= L ’ . as = with] [=] ()= TH02

The idea by Kim ( = 2), generalized by Zhang & Ge, and Qureshi ( = 2):

= Suppose that| | = , define projection : -  ,+ , ~ ( ). Consider
2 é 2 )
()T T)= = y
— L s N
0 -1 2;
— 2 -~ ! ]
B ( ) = ) - 1 2 .
= By expanding,
v
()G )= Co )= @)y20C0n 7 )+ 22 ) Co 7)),

where = and( 3, , g)isapartitionof2 with€< and (73, ,7 )=



Lattice Tiling to Polynomials

Examples
For =2,
(’2)():(4 + 4 +2)2+2 :_:ﬂ'g 2 2(_)2_0" ::!"-|§’
For =3,
(,32)()
= 29 +(2 +1)4 +4 °+4 +2 ,
< 2 )
@ AT A DTSy 2 2 2
=1 1
4 (2 )! 0 -1 2:
3 NE@2 -2)N@ —-2)n 2 272227 —  —1|2.

=1 =1



Lattice Tiling to Polynomials

A necessary condition for the existence of lattice tiling of ( , ):

| I=1 (, )= ,projection : -  +, ( ). Consider

1 2 0, -1 2,

(1

—1]2 .

Keyidea:if4 +4 +2% O0(mod )for =12,.., thenrecursively we get

= 1: (41+4 +2) 21:O 2:()

= 2. (42+4 +2) 22+2£2]- 22:() 22:O
= [Kim 2017] For =1,i.e,| | = and the assumption holds for =12,.. —1, we obtain
2y 4y 2 <~ O .
Then = % 2 =0 (by Newton’sidentity), where is the elementary symmetric polynomial of

%, : 2, then a contradiction!

)



Lattice Tiling to Polynomials

A necessary condition for the existence of lattice tiling of ( , ):

| I=1 (., )= , projection : - ,+ , 6~ ().
( YT T )= . 7))
_ _ _ _ 0, -1 2;
:(2)2(11 ! )+ ¢(2) (11 ! ):_ _12
where = | cand (1, , p)isapartitionof2 with€< and (73, ,7 )= 1
[Qureshi 2020]:

a) Determines the exact value of (; .

b) If and the leading coefficients (, y #0in for =1, ,%1 and ( 1y =0, then ;=

4= = _3=0whichimplies ( -1y -3 =— # 0, a contradiction!



Lattice Tiling to Polynomials

(,)(_1, )= 2) 2 T NP —12
#(2 )

- [Kim2017] =2, 2y% O(mod )for =12,., —1.

* [Qureshi 2020]  , ¢ y# O0(mod )for =1, ,%1—1and (-1)=0%—

Main problems: In the general case with =0 (mod ) for some , can we still
derive contradictions?

Two main tasks:

a) Determine the recursive formula for , i.e., the exact value of every ;

b) Use[ 2, 4, 6 ]toderive contradictions about 7;,



3. Necessary Conditions




Discrete Fourier Analysis

-2

From , = , what we can get?

= [Kim 2017]. Using Newton’s identity, we can get the value of elementary
symmetric polynomials on ~ ’s partially ( # 0mod ).

(_%1_%"“1_2) - (_1) —1 — (_%1_%1“'1_2) (_%1_%"“1_2)
=1
In fact, we can determine 2 completely! Set =| % , and
« It is a character from group (under multiplication) of order %1 to
- Character Group: = : =0,..,——1.

2



Discrete Fourier Analysis

where supp( ) = - ()#2 0mod ,supp = : ()#0.Hence,

|=| (, )= , projection : - S+ (), Do
%=1, 0.

Define L o via ()=# %=

Il
I
(I

Fourier transform of : () = () = -~

2

Inversion formula: () = — (:_01)/ () (mod ), for

Uncertainty Principle (Feng, Hollmann & Xiang, 2019):
supp( )l supp ~ =] |.

-1
| : > ¢O|22—.



Discrete Fourier Analysis

Example. =3, =192.| | =] (192,3)] =61 155925 =61 3% 5% 13 53.
_ _ _ _ / _ 0, -1 2 ;
(,)(11 ’ ): (2)2(11 1 )+ (11 ’ ):_ _12
#(2 ) |
Obtain: 22— 4= . = 22920, 230:15.
By inversion formula: # : 2= = () =31 (mod61)

However, 31 %1 =31 30 > 192. A contradiction!



Coefficients c,

Theorem (Xiao & Z. 2025+) For =1,

e
(2 ) 2t _
(H()= e , | Coedl 270
() :1(2 )! =1 )! 1+ + 1= =1
where () stands for the set of all partitionsof , =( 1,.., ¢), ()=#: =, =1..¢,
2 — 2, zeand 1r 1 £+1 >0-
Proof (Sketch). Do NOT fix . Try to prove
P 00

~ 1+ ) (2 )! 2t AN

() = 7
=0 ! (=) X O) @) o O o o

Set ()tobetheshellof (, ).Then (y( )= ( y( )- ( —p( ). Hence

(0]

()() =(1-) ¢ ()

=0 =0



Coefficients c,

Proof (continued). We only have to show

00 e Y 00
() = @) @) 2 K —
=0 (1_ ) ( ) :1(2 )' 1 ()I =1 =1
Prove it by induction. Set
(+1)= ., : ) =% 1 1F & 4 ol gF o+ o=
1) = ’
=0 =0 (+1)
= 2 + (£ 4+ )? + + (x 1+ )°
=0 () =0 (,-1) =0 (0
To finish the proof: some tedious computation and properties of the Eulerian polynomial () = €
e
(2)! @)
2 ()=(@0+ ) 2 -1()

G o=a@r O



Coefficients c,

A necessary condition for the existence of lattice tilingof ( , ):

| |=| (, )=, projection : - T ().
_ _ _ _ _ _ 0, -1 2;
(,)(11 1 ): (2)2(11 1 )+ (11 1 ):_ —12
£2 ) | |
First Task: Determine the value of , and usethemtoget :=1[ ,, 4, g ]partially;

Example. For =38, =3,| (,3)|=43 1771
=[0,0,0,0,0, ;00,..039,..],
6 21=—

where 1 is unknown.



Necessary Conditions

_ _ S _ 0, -1 2;
(#)-_- (2) 2 ( 1; ! )+ ¢(2) ( 1: ! ) — L _12 .
— [ 2 4y ey —1: ]/ 2 — =1 =% /
— [ 1y 23 +oey 1"']1 — _21_22 -2 .
List of Necessary Conditions:
1 fits (#), for instance Qureshi’'s criterion: ( _y =0#— , (»y# Ofor2 < —1
2 must be of period %1 and _; <
3. +1= 2= =0 Only need to generate », ... 5 +
4. | 7 =0|< max 1< < : # 0 should belarge.| Easy for
: ./ _ -1
5. Uncertainty Principle (need large ):| : » #0|=——
6. Inversion Formula () = %1 (=_01)/2 ( —1)72— , check whether it determines a

set of = nonzerosquaresin and check * 7 = =



Necessary Conditions

Example 1. For =3, 3= <= 100, Qureshi’s criterion excludes
= 6,12,21,39,48,64,66,75,93.
Example 2. For =3, =26, | =24857=7 X 53 X 67, =67, =371l

— [01 -'-101 2X15 — 101 ---101 2X26 — 01 e 2X 33 — 331 ]

6= °1=33>26
=1
Example 3. For =38, =3,| ( ,3)|=43 1771, =43
=[0,0,0,00, 4,0,0,..,0,39,..],

39:O %:O,bUt 42:28¢O.



Necessary Conditions

Example4.For =11, =3,| (,3)|=89 23, =189

o= 4= = 5 =0= 2( +1) = ... = -1 1 =29

Hence ;= ,= = =0.A contradiction.

Example 5. For =483, =3,| ( ,3)| =155849 967, = 155849.

(-1 (
2

The number of , = 0is more than D A contradiction,



Necessary Conditions

Example 6.1. For =107, =3,| ( ,3)|=67 43 23 5%, =67
214= 0, 218= 1, 233 =4,other , =0in one period

where (, 1 are unknown.
Compute ()= %1 (=_01)/ < ( —1)72— - It NEVER defines a set of nonzero squaresin  of
size <

Example 6.2 (A nasty case). For =84, =3,| (,3)|=23% 132 32, =23
=[0,0,0,0,0,0,0, (,0,00,..]

By Inversion Formula, the coefficients of elements in 53 are
[21 0,7 0,15 4,10 (4,05 (4,011 (4,14 (,,0,017 (,22 (00,19 (0,20 (,0,0,0,0]

The 'Sum” of them is < 23 if and only if ¢ = 0. Hence
=1, , = 232232232150

+

A complete search for , , showsno solution for + 7 : <3 =



4. Computational Results




Computational Results

Computational Results for = and <

= Extra Criterion [Zhang & Z. 2019] Assume that =15(mod 7).1f 24 + 1isnot

asquare or 84 (24 +1)°2+6v24 + 1+ 29, then no lattice tiling of ( ,3).

* We can exclude all 3= = 1000 except for 35, 437, 590, 597, 805.

- Factorizationof | ( , )] Extra property

35 292 71 =2 +1
437 3 5% 7 47 181
590 32 23 1123 1181 =2 +1
597 3% 52 41 43 239

805 3 292 179 1543



Computational Results

Unsolved cases

. 1 | | — | ( ’ )l — / : 7l 1+ / — 1y o+
= ()= 0 ., +( —1) = and there is no contradiction.
= If it happens for every prime | |, then it is impossible to prove the

nonexistence of lattice tiling of ( , ) using this approach.

= We need to consider projection from to ;X X (instead of
1

). (No Fourier Transforms) How to do it?



Concluding Remarks

»This approach also works for
s other |,
* lattice packings with density = 1 (for instance, the almost perfect case).

»One main difficulty for large r and n:

min,2

factorize | (, )| = 2,

»We can also prove the nonexistence of lattice tiling of ( , ) with fixed for
infinitely many , for instance:

- =6, =10,223547,60,72,97,110,122 (mod 5%), red ones are new
compared with using Qureshi’s criterion, because we can completely

determine the coefficients of  y( ).




Concluding Remarks

Some connections not mentioned:

= (Degree-Diameter Problem in graph theory) Abelian Cayley graph meeting the
Moore-like bound < Lattice tiling of ( , )

= (Lattice) Tiling of by Lee spheres (Weak GW Conjecture)

= Association Schemes for Lee metricin  : multivariate Lloyd polynomials

“For =2, 2=2 — @42 [ ], project toasubsetin ,+ and use the

14

multiplicative character

* One more question: Can we use the same trick for (generalized) difference sets, (near)
factorization of groups, etc?




Thanks for your attention!




