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1. Introduction



• For any � = (�1, ⋯,  ��), � = (�1, ⋯, ��) ∈ ℤ�, the Lee distance 
(ℓ1-norm, Manhatten distance...) between them is ��(�, �) =
 �=1
� |�� − ��|.

• Lee sphere of radius � centered at � is: 

                                �(�, �) ≔  (�1, ⋯, ��) ∈ ℤ�:    �=1
� |��|   ≤ � 

 |�(�, �)| =  �=0
min  �,� 2�  ��  

�
�  .

• A perfect Lee code � ⇔ A tiling of ℤ� by translates of �(�, �)

 ℤ�  = ⋃�∈ �(�(�, �) + �) = �(�, �) ⊕ �

• It is equivalent to ``tile“ ℝ� by �(�, �) = �(�, �) +  − 1
2
, 1
2
 
�

ℝ�=�.�.ℤ� +  − 1
2
, 1
2
 
�
=�.�.�(�, �) ⊕�

Polyomino �(�, �) 
associated with �(�, �)

Polyomino �(�, �) 



▪ Theorem (Golomb, Welch 1968/1970) Perfect Lee codes exist for � = 1,2 and 
any �; and for � = 1 and any �. 

▪ Golomb-Welch conjecture: there are no more perfect Lee codes for other 
choices of � and �.

� = �,  � = �, the green points form a perfect code (lattice)Solomon Golomb (1932-2016)



• GW conjecture: ∄ Perfect Lee codes for � ≥ 3 and � ≥ 2.

•  partially proved for given � and � > �(�).

Basic Idea by GW

• Cross-polytope: convex hull of  ±(0,⋯, 1,⋯, 0): � = 1,⋯� .

• Conscribed cross-polytope �(�, �) of �(�, �), 

vol �(�, �) =
(2� + 1)�

�!

vol �(�, �) =  �=0
min  �,� 2�  ��  

�
� ≈ 2�  �� , � → ∞. 

• The packing density of �(�, �) must be smaller than 
(0.87)�, � large enough.  (Tóth, Fodor, Vígh, 2015)

三

三

三

三

三

i



• GW conjecture: ∄ Perfect Lee codes for � ≥ 3 and 
� ≥ 2.

•  partially proved for given � and � > �(�).

Basic Idea by GW

•  Conscribed cross-polytope �(�, �) of �(�, �), 

vol �(�, �) = (2�+1)�

�!

vol �(�, �) =  �=0
min  �,� 2�  ��  

�
� ≈ 2�  �� , � → ∞. 

• The packing density of �(�, �) must be smaller than 
(0.87)�, � large enough.  (Tóth, Fodor, Vígh, 2015)

三

三

三

三

三



 GW conjecture was partially proved for given � and � > �(�):

Reference: Horak, Kim. 50 years of the Golomb-Welch conjecture. IEEE TIT 64(2),  2018 and references therein

• 3 ≤ � ≤ 74, max  2
2
� − 3

4
2 − 1

2
 , 2 ≤ �.

• 75 ≤ � ≤ 405, max  18, 2� + 40 ≤ � ≤ �−21
3

 

or  2
2
� − 3

4
2 − 1

2
≤ �.

• 406 ≤ � ≤ 876, 2� + 40 ≤ � ≤ �−21
3

 

or 285 ≤ �.

• � ≥ 876, 2� + 40 ≤ �.



2. From Lattice Tiling to Polynomials



• A lattice tiling of ℤ� by translates of �(�, �)
 ℤ�  = ⋃�∈ �(�(�, �) + �) = �(�, �) ⊕ �, and � ⊆ ℤ� is a lattice .

Theorem 1 (Horak, AlBdaiwi 2012) ∃ a lattice tiling of ℤ� by Lee spheres of 
radius � ⇔ there are an abelian group � of order |�(�, �)| and a 
homomorphism �: ℤ� ↦ � such that �​|�(�,�) is a bijection.

� = 2,  � = 2 � = (ℤ13,+), �(�1) = 1 , �(�2) = 5



A related problem in Graph Theory

Degree/diameter problems

▪ Moore bound for general graphs: #� ≤ 1 + � �=0
�−1 (� − 1)�.

▪ Moore-like bound for abelian Cayley graphs:

|�| ≤  �=0
min  �,� 2�  ��  

�
� .

▪ Moore-like bound = |�(�, �)| with � = �, � = �.

▪ Abelian Cayley graph meeting the Moore-like bound⇔Lattice tiling of �(�, �)



Recall: geometric method can only handle GW-conjecture for fixed � and � > �(�).

For lattice GW-conjecture with fixed �, Algebraic and Combinatorics Methods:

▪ Symmetric polynomials over finite fields (Kim 2017, Zhang, Ge 2017, Qureshi 2020)
▪ Fast algorithm for small �;

▪ Works for infinitely many �? Some times.

▪ Usually, |�(�, �)| needs to be prime or to have large prime divisors.

▪ Convert the original problem into a group ring equation
▪ Group characters (=eigenvalue of the associated graph), algebraic number theory, finite 

fields...(Zhang, Z. 2019)
▪ Usually need small prime divisors of |�(�, �)|.

▪ Handle the group ring equations directly mod 3, mod 5... (Leung, Z. 2020)
▪ Currently only works for � = 2 and all � ≥ 3.



Group Ring Equations Approach

A lattice tiling of Lee spheres of radius 2 in ℤ� ⇔ The existence of � ⊆ �, where � is 
an abelian (multiplicative) group of order 2�2 + 2� + 1, such that � = �(−1), the 
identity � ∈ � and

                                   �2 = 2� − �(2) + 2�� ∈ ℤ[�],

where �(�) ≔  �∈� �
�.

▪ � = 3: �3 =  6� − 3�(2)� − 2�(3) + 6��;
▪ � = 4: 
�4 =  24�  − 12� �2 + �(2) −  6�(2)�2 −  3�(2)�(2) −  8 �(3)� −  6�(4) +  12�(� − 1);

▪ � = 5: ……

[Zhang & Z. 2019] Apply � ∈ �, obtain 
equations in algebraic integer rings.

[Leung & Z. 2020] Analyze �3 ≡ �(3) mod 3, �5 ≡ �(5)mod 5  



Symmetric polynomial approach

Theorem 1  The following three conditions are equivalent:

a)  ∃ a lattice tiling of ℤ� by Lee spheres of radius � 

b) there are an abelian group � of order |�(�, �)| and a 
homomorphism �: ℤ� ↦ � such that �​|�(�,�) is a bijection

c)  ∃ abelian (additive) group � of order |�(�, �)| and ∃� =

 �1, …, �� ⊆ �, such that   ��∈�
���� : � ∈ ℤ�,  � 1 ≤ � = �.

Example: � =  1,5 ⊆ � = �13. 

  
��∈�

���� : � ∈ ℤ2,  � 1 ≤ 2 =  0, ± 1, ± 5, ± 2, ± 10, ± 1 ± 5 = �13



� =  �1, …, �� ⊆ �,    ��∈�
���� : � ∈ ℤ�,  � 1 ≤ � = � with |�| = |�(�, �)| =  �=0

min (�,�) 2�  ��  
�
� .

The idea by Kim (� = 2), generalized by Zhang & Ge,  and Qureshi (� ≥ 2):

▪  Suppose that |�| = ��, define projection �: � →  ��, + ,  � ≔ �(�). Consider

�(�,�)
� (�1, ⋯, ��) =  

�∈ℤ�: � 1≤�

 �  
��∈�

����  

2�

=  
�∈ℤ�: � 1≤�

  
��∈�

���� 

2�

= 
�∈�

�(�)2� =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

▪ By expanding,  

�(�,�)
� (�1, ⋯, ��) =  � ����(�1, ⋯, ��) = �(2�)�2�(�1, ⋯, ��) +  �≠(2�) ����(�1, ⋯, ��), 

where �� = ��1⋯��ℓ and (�1, ⋯, �ℓ) is a partition of 2� with ℓ ≤ � and ��(�1, ⋯, ��) =  �=1
� ���.

 
�∈��∗

�� =  0, � − 1 ∤ �;
−1, � − 1∣�.



Examples

For � = 2, 

�(�,2)
� (�) = (4� + 4� + 2)�2� + 2 �=1

�−1  2�2� �2��2(�−�) =  0, � − 1 ∤ 2�;
−�, � − 1 | 2�.

For � = 3,
�(�,3)
� (�)

=  
2 × 9�

3 + (2� + 1)4� + 4�2 + 4� + 2 �2�

+ 
�=1

�−1

(4� + 4�−� + 4� + 2)
(2�)!

(2�)! (2� − 2�)! �2��2�−2� 

+
4
3 
�=1

�−1

 
�=1

�−1
(2�)!

(2�)! (2� − 2�)! (2� − 2�)! �2��2�−2��2�−2� =  0, � − 1 ∤ 2�;
−�, � − 1 | 2�.



A necessary condition for the existence of lattice tiling of �(�, �) :

|�| = |�(�, �)| = ��, projection �: � →  ��, + ,  � ≔ �(�). Consider �(�,�)
� (�1, ⋯, ��).

For � = 2,  �(�,2)� (�1, ⋯, ��) = (4� + 4� + 2)�2� + 2 �=1
�−1  2�2� �2��2(�−�) =  0, � − 1 ∤ 2�;

−�, � − 1 | 2�.

Key idea: if 4� + 4� + 2 ≢ 0 (mod �) for � = 1,2, …, then recursively we get 
� = 1:      (41 + 4� + 2)�2⋅1 = 0 ⇒ �2 = 0

� = 2:     (42 + 4� + 2)�2⋅2 + 2 42 �2�2 = 0 ⇒ �2⋅2 = 0

⋮

▪ [Kim 2017] For � = 1, i.e., |�| = � and the assumption holds for � = 1,2, …� − 1, we obtain 

�2, �4, …, �2� = 0 .

Then �� = �12⋯��2 = 0 (by Newton’s identity), where �� is the elementary symmetric polynomial of 

�12, ⋯, ��2 ,  then a contradiction!



A necessary condition for the existence of lattice tiling of �(�, �) :

|�| = |�(�, �)| = ��,  projection �: � →  ��, + ,  � ≔ �(�). 

�(�,�)
� (�1, ⋯, ��) = 

�

����(�1, ⋯, ��)

= �(2�)�2�(�1, ⋯, ��) +  �≠(2�) ����(�1, ⋯, ��) =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

where �� = ��1⋯��ℓ and (�1, ⋯, �ℓ) is a partition of 2� with ℓ ≤ � and ��(�1, ⋯, ��) =  �=1
� ���.

[Qureshi 2020]:
a) Determines the exact value of �(2�) .

b) If � ∤ � and the leading coefficients �(2�) ≠ 0 in �� for � = 1,⋯, �−1
2

 and �(�−1) = 0, then �2 =
�4 = ⋯ = ��−3 = 0 which implies �(�−1)��−1 =−� ≠ 0, a contradiction!



�(�,�)
� (�1, ⋯, ��) = �(2�)�2� +  

�≠(2�)

���� =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

▪ [Kim 2017] � = 2, �(2�) ≢ 0 (mod �) for � = 1,2, …, � − 1.

▪ [Qureshi 2020] ∀ �, �(2�) ≢ 0 (mod �) for � = 1,⋯, �−1
2
− 1 and �(�−1) ≡ 0 ≢−�.

Main problems:  In the general case with �� ≡ 0 (mod �) for some �, can we still 
derive contradictions?

Two main tasks:
a) Determine the recursive formula for ��, i.e., the exact value of every ��;
b) Use [�2, �4, �6, ⋯] to derive contradictions about �1, ⋯, ��



3. Necessary Conditions



From �2� =  ��2�, what we can get?
▪ [Kim 2017]. Using Newton’s identity, we can get the value of elementary 

symmetric polynomials on ��’s partially (� ≠ 0 mod �).

���(�12, �22, …, ��2) = 
�=1

�

(−1)�−1��−� (�12, �22, …, ��2)��(�12, �22, …, ��2)

In fact, we can determine ��2 completely!     Set ⊠� =  �2: � ∈ ��∗  , and
��:⊠� → ��

� ↦ ��

▪ It is a character from group ⊠� (under multiplication) of order �−1
2

 to ��.

▪ Character Group: ⊠� =  ��: � = 0,…, �−1
2
− 1 .



|�| = |�(�, �)| = ��,  projection �: � →  ��, + , � ≔ �(�), � =  �1, …, �� ⊆ �.

▪  ∗ ��2: � = 1, …, � ∗ ⊆ ⊠� ∪  0 . 

▪ Define �:⊠� → ℤ via �(�) = # �:  ��2 = � .

▪ Fourier transform of �: �(�) =  �∈⊠�
�(�) �−� =  �∈� �

−� = ��−1
2 −�

▪ Inversion formula: �(�) ≡ 2
�−1

 �=0
(�−1)/2 �(�) �� (mod �), for � ∈⊠�

▪ Uncertainty Principle (Feng, Hollmann & Xiang, 2019)：

|supp(�)| ⋅  supp �  ≥ |�|.

where supp(�) =  � ∈ ⊠�: �(�) ≢ 0 mod � , supp � =  �: �(�) ≠ 0 . Hence, 

| �: �2� ≠ 0 | ≥ �−1
2�

.



Example. � = 3, � = 192. |�| = |�(192,3)| = 61 ⋅ 155925 = 61 ⋅ 32 ⋅ 52 ⋅ 13 ⋅ 53 .

�(�,�)
� (�1, ⋯, ��) = �(2�)�2�(�1, ⋯, ��) +  

�≠(2�)

����(�1, ⋯, ��)   =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

Obtain: �2 = �4 = … = �2⋅29 = 0,  �2⋅30 = 15.

By inversion formula: # �:  ��2 = � = �(�) ≡ 31 (mod 61)

However, 31 ⋅ �−1
2
= 31 ⋅ 30 > 192. A contradiction!



Theorem (Xiao & Z. 2025+) For � ≥ 1, 

�(�,�)
� (�) =  

�∈�(�)

(2�)!
 �=1
ℓ (2��)!

⋅
2ℓ

 �=1
� ��(�)!  

 
�1+⋯+�ℓ+1=�

 |�(�, �ℓ+1)| 
�=1

ℓ

��
2��−1 �2�

where �(�) stands for the set of all partitions of �, � = (�1, …, �ℓ), ��(�) = # �: �� = �, � = 1, …, ℓ , 
�2� = �2�1⋯�2�ℓ and �1, …, �ℓ+1 ∈ ℤ≥0.

Proof (Sketch). Do NOT fix �. Try to prove

 
�=0

∞

�(�,�)
� (�) �� =

(1 + �)�

(1 − �)�+1
 

�∈�(�)

(2�)!
 �=1
ℓ (2��)!

⋅
2ℓ

 �=1
� ��(�)!  

 
�=1

ℓ

  
�=1

∞

�2��−1�� �2�

Set ��(�) to be the shell of �(�, �). Then ���(�)
� (�)= �(�,�)

� (�)- �(�,�−1)
� (�). Hence

 
�=0

∞

���(�)
� (�) �� = (1 − �) 

�=0

∞

�(�,�)
� (�) ��



Proof (continued). We only have to show

 
�=0

∞

���(�)
� (�) �� =  

(1 + �)�

(1 − �)�  
�∈�(�)

(2�)!
 �=1
ℓ (2��)!

⋅
2ℓ

 �=1
� ��(�)!  

 
�=1

ℓ

  
�=1

∞

�2��−1�� �2�

Prove it by induction. Set 
�(� + 1, �) =   �, � : � ∈ ��+1(�) =  ± �1�1 ±⋯± ��+1��+1: �1 + �2 +⋯+ ��+1 = � 

 
�=0

∞

���+1(�)
� (�) �� = 

�=0

∞

 
�∈�(�+1,�)

�2� ��

= 
�=0

∞

 
�∈�(�,�)

�2� �� + 
�=0

∞

 
�∈�(�,�−1)

(± ��+1 + �)2� �� +⋯+ 
�=0

∞

 
�∈�(�,0)

(±���+1 + �)2� ��

To finish the proof: some tedious computation and properties of the Eulerian polynomial ��(�) =  �∈��
����(�):

�2�(�) = (1 + �)  
�∈�(�)

(2�)!
 �=1
ℓ (2��)!

⋅
(2�)ℓ−1

 �=1
� ��(�)!  

 
�=1

ℓ

�2��−1(�)



A necessary condition for the existence of lattice tiling of �(�, �) :
|�| = |�(�, �)| = ��,  projection �: � →  ��, + ,  � ≔ �(�). 

�(�,�)
� (�1, ⋯, ��) = �(2�)�2�(�1, ⋯, ��) +  

�≠(2�)

����(�1, ⋯, ��)   =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

First Task: Determine the value of ��, and use them to get �: = [�2, �4, �6, ⋯] partially;

Example. For � = 38, � = 3, |�(�, 3)| = 43 ⋅ 1771.

� = [0,0,0,0,0, �1, 0,0, …, 0,39, …],

where �1 is unknown.

21= �−1
26



(#)---          �(2�)�2�(�1, ⋯, ��) +  �≠(2�) ����(�1, ⋯, ��)   =  0, � − 1 ∤ 2�;
−�, � − 1∣2�.

� = [�2, �4, …, ��−1, …],  �2� =  �=1
� ��2�, 

ℰ = [�1, �2, …, ��, …],   �� =  ��1
2 ��2

2⋯���
2 .

List of Necessary Conditions:
1.  ∃� fits (#), for instance Qureshi’s criterion: �(�−1) ≡ 0 ≢−�, �(2�) ≢ 0 for 2� < � − 1.

2.  � must be of period �−1
2
, and ��−1 ≤ �

3.  ��+1 = ��+2 = ⋯ = 0.
4.  | �: �� = 0 | < �� ⇒ max  1 ≤ � ≤ �: �� ≠ 0  should be large.

5.  Uncertainty Principle (need large �): | �: �2� ≠ 0 | ≥ �−1
2�

6.  Inversion Formula �(�) ≡ 2
�−1

 �=0
(�−1)/2 �(�−1)/2−� ��, check whether it determines a 

set of ≤ � nonzero squares in �� and check   ± ���� :  �� ≤ � = ���

Only need to generate �2,  …�2�+�
Easy for � ≫ �.



Example 1. For � = 3,   3 ≤ � ≤ 100, Qureshi’s criterion excludes

� = 6,12,21,39,48,64,66,75,93.

Example 2. For � = 3, � = 26, |�| = 24857 = 7× 53× 67, � = 67,� = 371.
� = [0, …, 0, �2×15 = �, 0, …, 0, �2×26 = 0,…�2×33 = 33,…]

�66 = 
�=1

�

��67−1 = 33 > 26

Example 3. For � = 38, � = 3, |�(�, 3)| = 43 ⋅ 1771, � = 43

� = [0,0,0,0,0, �1, 0,0, …, 0,39, …],

where �1 is unknown.

�39 = 37�13, �40 = �41 = 0, �42 = 39�17 + 28.

�39 = 0 ⇒ �13 = 0, but �42 = 28 ≠ 0.



Example 4. For � = 11, � = 3, |�(�, 3)| = 89 ⋅ 23, � = 89

�2 = �4 = … = �2⋅� = 0 = �2⋅(�+1) = … = ��−1
2 −1, ��−1

2 −1 = 29

Hence �1 = �2 = ⋯ = �� = 0. A contradiction.

Example 5. For � = 483, � = 3, |�(�, 3)| = 155849 ⋅ 967, � = 155849.

The number of �2� = 0 is more than (�−1)⋅(�−1)
2�

. A contradiction.



Example 6.1. For � = 107, � = 3, |�(�, 3)| = 67 ⋅ 43 ⋅ 23 ⋅ 52, � = 67
�2⋅14 = �0, �2⋅18 = �1, �2⋅33 = 4, other �2� = 0 in one period

where �0, �1 are unknown.

Compute �(�) ≡ 2
�−1

 �=0
(�−1)/2 �(�−1)/2−� ��. It NEVER defines a set of nonzero squares in �� of 

size ≤ �.

Example 6.2 (A nasty case). For � = 84, � = 3, |�(�, 3)| = 232 ⋅ 132 ⋅ 32, � = 23
� = [0,0,0,0,0,0,0, �0, 0,0,0, …]

By Inversion Formula, the coefficients of elements in �23 are
[21�0, 7�0, 15�0, 10�0, 0,5�0, 0,11�0, 14�0, 0,0,17�0, 22�0, 0,0,19�0, 0,20�0, 0,0,0,0]

The ``Sum” of them is ≤ 23 if and only if �0 = 0. Hence
 ∗ ��2: � = 1,⋯, � ∗ =  ∗ 23�2,  23�2, 23�2, 15 ⋅ 0 ∗ 

A complete search for �, �, � shows no solution for   ± ���� :  �� ≤ 3 = ���.



4. Computational Results



Computational Results for � = � and � ≤ ����

▪ Extra Criterion [Zhang & Z. 2019] Assume that � ≡ 1,5 (mod 7). If 24� + 1 is not 

a square or 84 ∤ (24� + 1)2 ± 6 24� + 1 + 29, then no lattice tiling of �(�, 3).

▪ We can exclude all 3 ≤ � ≤ 1000 except for 35,  437,  590,  597,  805.

� Factorization of |�(�, �)| Extra property
35 292 ⋅ 71 ∃� = 2� + 1

437 3 ⋅ 54 ⋅ 7 ⋅ 47 ⋅ 181

590 32 ⋅ 23 ⋅ 1123 ⋅ 1181 ∃� = 2� + 1

597 33 ⋅ 52 ⋅ 41 ⋅ 43 ⋅ 239

805 3 ⋅ 292 ⋅ 179 ⋅ 1543



Unsolved cases

▪ �,  |�| = |�(�, �)| = ��, �: � →  ��, + , � =  �1, …, �� 

▪ �(�) = � 0 ∪ ���∗ , � + (� − 1)� = � and there is no contradiction.

▪ If it happens for every prime �∣|�|, then it is impossible to prove the 

nonexistence of lattice tiling of �(�, �) using this approach.

▪ We need to consider projection from � to ℤ�1�1
× ⋯ × ℤ����  (instead of 

��). (No Fourier Transforms) How to do it?



ØThis approach also works for 

• other �, 

• lattice packings with density ≈ 1 (for instance, the almost perfect case).

ØOne main difficulty for large r and n: 

factorize |�(�, �)| =  �=0
min  �,� 2�  ��  

�
�   

ØWe can also prove the nonexistence of lattice tiling of �(�, �) with fixed � for 
infinitely many �, for instance:

• � = 6,  � ≡ 10,22,35,47,60,72,97,110,122 (mod 53), red ones are new 
compared with using Qureshi’s criterion, because we can completely 
determine the coefficients of �(�,�)

� (�).



Some connections not mentioned:

▪ (Degree-Diameter Problem in graph theory) Abelian Cayley graph meeting the 
Moore-like bound⇔Lattice tiling of �(�, �)

▪ (Lattice) Tiling of ℤ�� by Lee spheres (Weak GW Conjecture)

▪ Association Schemes for Lee metric in ℤ��: multivariate Lloyd polynomials

“For � = 2, �2 = 2� − �(2) + 2�� ∈ ℤ[�], project � to a subset in  ��, +  and use the 

multiplicative character � ↦ ��.” 

• One more question: Can we use the same trick for (generalized) difference sets, (near) 
factorization of groups, etc?



Thanks for your attention!


