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m Coding theory = Convolutional Codes

m Convolutional codes are especially useful for sequential encoding and decoding
with low delay and hence very important for streaming applications.
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mD Convolutional Codes

Let F be a finite field and R = F[zy, ..., zZm] the polynomial ring in m variables with
coefficients in F.

Definition ([7
An mD (finite support) convolutional code C of rate k/n s a free R-submodule of R"
of rank k.

A full row rank matrix G(zy,...,2Zm) € Rk*n whose rows constitute a basis for C is
called an encoder of C and therefore

C=ImpG(z1,...,2Zm)

={W(zt,....zm) e R":v(z1,...,Zm) = G(21, ..., Zm)U(21, ..., Zm), U(2Z1, . .., Zm) € R*}.
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Equivalent encoders

Definition ([7

A square matrix U(zy,...,zm) € R is unimodular if and only if there is a matrix
V(zy,...,2m) € R*K such that

U(z1,-. o 2m) - V(21 2m) = V(21 2m) - U2, ., 2Zm) = k.

m A matrix U(z,...,2zm) € R is unimodular if and only if det(U(z,...,zm)) is a
unitin R, i.e. a nonzero element of F.

Two full row rank matrices Gy (21, ..., 2m), Go(21,...,2m) € R*" are said to be
equivalent encoders if

Img G1(21,...,2Zm) = Img G1(Z1,...,2Zm),
which happens if and only if
G1(z1,...72m) = 62(21,...,Zm)U(Zh...,Zm)

for some unimodular matrix U(zy, . .., zm) € R,
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Notation
Leta = (oy,...,am) e N™. By z* we mean z;'' - ... - zz™. A polynomial f € R can be
written as
f(z1,...,Zm) = Y, faz® where f, ¢F.
aeNm
In a similar way a vector w = [wy -+ wp] € R" can be written as

w= Y woz“where w, eF”".
aeNm
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Weight

The weight of a € F” is denoted by wit(a) and is given by the number of nonzero
entries of a. The weight of f € R is denoted by wt(f) and is the number of nonzero
terms of . If w=[wy -+ wp] e R then the weight of w is given by

wt(w) = Zn;wt(m).
=

Equivalently, if w = ¥, cym Wa 2™ where w,, € F” then

wt(w) = > wt(Wa).

aeN™

LetF=F,and R=F[z,2]. fw=[1+2 zizz+2z Z2] then
w=[1 0 0]+[1 1 0]z+[0 0 1]z2+[0 1 0]z z. Thus wi(w) =5.
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Distance

Definition ([7
Given two elements w, W € R", the (Hamming) distance between w and W is given by
dist(w, w) = wt(w — w). The free distance of C is

dist(C) = min{dist(w, W) : w, ¥ € C,w # W}.

For any convolutional code C, since dist(w;, wo) = wt(wy — wo) and C is linear, then

dist(C) = min{wt(w) : weC,w = 0}.
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Degree

The degree of polynomial
f=3> fuz®eR

aeNm

is, as usual, defined by the formula

max{oq +---+am: fo #0}.

Let v; be the column degree of the i-th column of a polynomial matrix G(z1, ..., Zm),
i.e, the maximum degree of the entries of the i-th column of G(z1,...,zm). The
external degree of G(zy,...,zm) is the sum of its column degrees, i.e., ZL Vj.

Definition
The degree of C is defined as the minimum of the external degrees among all the
encoders of C.
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mD Generalized Singleton Bound

m Upper bound on the distance of mD convolutional codes of rate k/n and degree §.

Let #S denote the cardinality of S. Then

v+m!

€ 1 <L + e+ < =
#{aeNy :1<ay am<v} -
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m Upper bound on the distance of mD convolutional codes of rate k/n and degree §.

Let #S denote the cardinality of S. Then

(v+m)!

€ 1 <L + e+ < =
#{aeNy :1<ay am<v} T

Let C be a mD convolutional code of rate k/n and degree 6. Then

dist<c>an-k([iJ+1)+a+1.
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Proof of the Theorem

Let G(z1,...,2m) € R™* be an encoder of C with column degrees v1,vs, . .., v, and
external degree 6. Then vy + vo +--- + v, =, and let us assume that

V42V 2 >Vt = VUtyq = Uty = o+ = Vg,

i.e. vy is the minimum value of the column degrees of G(zy,...,zm) and G(z1,...,Zm)
has at least k — t + 1 columns degrees equal to v, for 1 < t < k.

Let us write
G(z1,....,zm) = [ GD(z1,...,zm) G®(z,....zm) |

where G (zq,...,zm) e R and G (zy,...,zpm) € R K-t

Since the column degrees of G®(z, ..., zm) are all equal to v, we can write

G(Z) (21 Veen ,Zm) = Z Ggi)mamz(oq ,.'.,am)'

0<ovq+-+am<yy
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Proof of the Theorem

)

ol has k -t entries

Letu= g , with &7 e F*=~+1_be a nonzero vector such that G((f

equal to zero.
Then, by the Lemma we have that:

Wi (G(21,...,zm)u) = wt(GP (2, .., 2m) )
=wm(G2)+ Y w(GRanll)

1< ++am<yg

(l/k+m)!
sn-(k-t)+n(W-1)
= n(M) —(k-1)

ve!m!
and therefore
dist(C) < nZE™E g py s,
vi!m!

The maximum value of this upper bound is achieved by maximizing v and then t, i.e.
when vy = {%J andt=6- km +1 and therefore

diSf(C)<”W—k(liJ+1)+6+1‘
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MDS mD convolutional code

m The upper bound given is the extension to mD convolutional codes of the
generalized Singleton bound for 2D convolutional codes [3] and we call it mD
generalized Singleton bound.

= An mD convolutional code of rate k/n and degree § with distance equal to the mD
generalized Singleton bound is called a Maximum Distance Separable (MDS)
mD convolutional code.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
)<2

The next definition defines superregular matrix which will be useful on the construction
of these codes.

Definition
Given a square matrix A = [a;] € Fg*", define

5. - 0 fora;=0
7 fora;#0

where X = {x; : i,je{1,...,r}} is a set of indeterminates over Fq, and let

A= [@j] € Fq[X]. Then A has a non trivially zero determinant if the determinant of Ais
not the zero polynomial. A matrix is superregular if each of its non trivially zero minors
is nonzero.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
0<2

The next theorem gives sufficient conditions in order for a matrix to be superregular.

Let o be a primitive element of a finite field F = ¥ n and B = [vie] be a matrix over F
with the following properties:

ifvi, 0 then vj, = aPit for a positive integer Biy;

ifvip =0 thenvj, =0, forany i’ > i orv;y; =0, forany ¢ < ¢;

ife < ¢, vip # 0 and vjyr + 0 then 28y < Bjyr;

ifi<i', vip +#0 anduvj, 0 then 28j, < Biry.
Suppose N is greater than any exponent of « appearing as a nontrivial term of any
minor of B. Then B is superregular.

The next result is trivial and will be very useful.

Let B be a superregular matrix and B a matrix obtained from B by permutation of
columns. Then B is also a superregular matrix.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
0<2

Let o be a primitive element of a finite field with p" elements F = Fn for some N e N.
Letn, k, 8,7 such thatk + 8, 7 = | 2| and n> k + &. Consider

G(z1,22)= Y.  Gapzfzf eF[zy,25]™*
O<a+b<i+1
with b
oo =[] 7
defined by

2(a(z7+2)+b)n+i+j—2

o if0<a+b<v
g@h _ Q2T o b= +1andj<6—ki
) 0 ifatb=0+1andj>6é-kis
0 ifa+b>v+1.

Then, for N € N sufficiently large, C = Img(z, 2,1 G(21,22) is an MDS 2D convolutional
code of rate k/n and degree §.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
)<2

Theorem ([6
Let n and § be non-negative integers and set ¢ = Wg&_ LetF be large enough

such that there exists a superregular matrix
[ 9 91 - g1 Je F™¢

and define o
G(z1,2) = Y. GjzZeF[z,2)]"

0<i+j<6

where Gjj = g, jy and pu: N2 - N2 js the map defined by

for all (i, ) € N?.

) =+ LHDEH D

Then, if n > ¢, the 2D convolutional code with encoder G(z1, z2) is an MDS 2D
convolutional code of rate 1/n and degree .
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Construction of MDS 3D convolutional codes of rate 1/n and degree
0<2

Let us consider § = 2 and let us construct an MDS 3D convolutional code of rate 1/n
and degree 2. An encoder G(zy, 2o, z3) of C can be written as

_ I : nx1
G(z1,22,23) = . Gz 2zbz3, with Gy e F™".
0<i+j+1<2

We can write

2
G(z1,2,23) = Y, G (21, 25)2}
=0

=GO (z1,2,) + G (21,2)23 + GP (21, 22) 5,
where o
GOz,22)= Y Gjozi2),

0<i+j<2

GV(z,2)= Y Guziz and

0<i+j<i1

G® (21,22) = Gooe.
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Construction of MDS 3D convolutional codes

Theorem
Let o be a primitive element of a finite field F v with N € N sufficiently large. Let n > 6

and G(z1,22) = Yo<arbep GanZ22E € Flz1, 25]™2 with Gp = [gi ?’b)] e F™*? defined by

o(8a+b)n+i+j-2

«a if0<a+b<1
@t a2 it b-2andj<1
& 0 ifa+b=2andj>1
0 ifa+b>2.
and write R
G(21,22) =[G (z1,20) GV (21,2)].
Define

G(21,22,23) = GO(21,22) + G (21, 22) 23+ GP (21, 22) 25,
where G (z1,22) = Gooz € F" is a vector with all the entries different from zero. Then
C= Im]F[z1 ,20,23] G(21,22,23)

is a 3D MDS convolutional code of rate 1/n and degree 2.
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Conclusion

m We considered mD convolutional codes and we established an upper bound on
the distance of these codes.

m We presented concrete constructions of 3D convolutional codes of rate 1/n and
degree § that attain such bound for n> 6 and § < 2.

m As future work it could be interesting to investigate similar constructions for
2<n<b.

m Further research must be done to investigate the existence of mD convolutional
codes of any rate k/n and degree 6.
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