

mD Convolutional codes  
○○○○○○○

mD Generalized Singleton Bound  
○○○

MDS mD convolutional code  
○

Construction of MDS 3D convolutional codes  
○○○○○○○○○○

## 5TH PYTHAGOREAN CONFERENCE

KALAMATA, GREECE, JUNE 1-6, 2025  
AN ADVANCED RESEARCH WORKSHOP IN FINITE GEOMETRY, COMBINATORIAL DESIGNS,  
ALGEBRAIC COMBINATORICS, CODING THEORY, CRYPTOGRAPHY & CRYPTOLOGY



# Optimal Multidimensional Convolutional Codes

Zita Abreu

University of Aveiro  
([zita.abreu@ua.pt](mailto:zita.abreu@ua.pt))

June 5, 2025

# Contents

- 1 mD Convolutional codes
- 2 mD Generalized Singleton Bound
- 3 MDS mD convolutional code
- 4 Construction of MDS 3D convolutional codes

## mD Convolutional codes

- Coding theory  $\Rightarrow$  **Convolutional Codes**
- Convolutional codes are especially useful for **sequential encoding** and **decoding with low delay** and hence very important for streaming applications.

# mD Convolutional codes

- Coding theory  $\Rightarrow$  **Convolutional Codes**
- Convolutional codes are especially useful for **sequential encoding and decoding with low delay** and hence very important for streaming applications.

**Multidimensional (mD) convolutional codes** generalize convolutional codes to polynomial rings in several variables.

Fornasini and Valcher introduced 2D convolutional codes in [1, 2]. In [3], the authors established an upper bound for the free distance of a 2D convolutional code and provided some optimal 2D convolutional code constructions. More 2D convolutional codes constructions are studied in [4, 5, 6].

There are notable differences between 1D and 2D convolutional codes, as well as between 2D and 3D convolutional codes [7].

# mD Convolutional Codes

Let  $\mathbb{F}$  be a finite field and  $R = \mathbb{F}[z_1, \dots, z_m]$  the polynomial ring in  $m$  variables with coefficients in  $\mathbb{F}$ .

## Definition ([7])

An **mD** (finite support) **convolutional code**  $\mathcal{C}$  of rate  $k/n$  is a free  $R$ -submodule of  $R^n$  of rank  $k$ .

A full row rank matrix  $G(z_1, \dots, z_m) \in R^{k \times n}$  whose rows constitute a basis for  $\mathcal{C}$  is called an **encoder** of  $\mathcal{C}$  and therefore

$$\begin{aligned}\mathcal{C} &= \text{Im}_R G(z_1, \dots, z_m) \\ &= \{v(z_1, \dots, z_m) \in R^n : v(z_1, \dots, z_m) = G(z_1, \dots, z_m)u(z_1, \dots, z_m), u(z_1, \dots, z_m) \in R^k\}.\end{aligned}$$

## Equivalent encoders

### Definition ([7])

A square matrix  $U(z_1, \dots, z_m) \in R^{k \times k}$  is **unimodular** if and only if there is a matrix  $V(z_1, \dots, z_m) \in R^{k \times k}$  such that

$$U(z_1, \dots, z_m) \cdot V(z_1, \dots, z_m) = V(z_1, \dots, z_m) \cdot U(z_1, \dots, z_m) = I_k.$$

- A matrix  $U(z_1, \dots, z_m) \in R^{k \times k}$  is unimodular if and only if  $\det(U(z_1, \dots, z_m))$  is a unit in  $R$ , i.e. a nonzero element of  $\mathbb{F}$ .

Two full row rank matrices  $G_1(z_1, \dots, z_m), G_2(z_1, \dots, z_m) \in R^{k \times n}$  are said to be **equivalent encoders** if

$$\text{Im}_R G_1(z_1, \dots, z_m) = \text{Im}_R G_2(z_1, \dots, z_m),$$

which happens if and only if

$$G_1(z_1, \dots, z_m) = G_2(z_1, \dots, z_m)U(z_1, \dots, z_m)$$

for some unimodular matrix  $U(z_1, \dots, z_m) \in R^{k \times k}$ .

## Notation

Let  $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ . By  $z^\alpha$  we mean  $z_1^{\alpha_1} \cdot \dots \cdot z_m^{\alpha_m}$ . A polynomial  $f \in R$  can be written as

$$f(z_1, \dots, z_m) = \sum_{\alpha \in \mathbb{N}^m} f_\alpha z^\alpha \text{ where } f_\alpha \in \mathbb{F}.$$

In a similar way a vector  $w = [w_1 \quad \dots \quad w_n] \in R^n$  can be written as

$$w = \sum_{\alpha \in \mathbb{N}^m} w_\alpha z^\alpha \text{ where } w_\alpha \in \mathbb{F}^n.$$

# Weight

## Definition

The **weight** of  $a \in \mathbb{F}^n$  is denoted by  $wt(a)$  and is given by the number of nonzero entries of  $a$ . The weight of  $f \in R$  is denoted by  $wt(f)$  and is the number of nonzero terms of  $f$ . If  $w = [w_1 \quad \dots \quad w_n] \in R^n$  then the weight of  $w$  is given by

$$wt(w) = \sum_{j=1}^n wt(w_j).$$

Equivalently, if  $w = \sum_{\alpha \in \mathbb{N}^m} w_\alpha z^\alpha$  where  $w_\alpha \in \mathbb{F}^n$  then

$$wt(w) = \sum_{\alpha \in \mathbb{N}^m} wt(w_\alpha).$$

## Example

Let  $\mathbb{F} = \mathbb{F}_2$  and  $R = \mathbb{F}[z_1, z_2]$ . If  $w = [1 + z_2 \quad z_1 z_2 + z_2 \quad z_1^2]$ , then  
 $w = [1 \quad 0 \quad 0] + [1 \quad 1 \quad 0] z_2 + [0 \quad 0 \quad 1] z_1^2 + [0 \quad 1 \quad 0] z_1 z_2$ . Thus  $wt(w) = 5$ .

# Distance

## Definition ([7])

Given two elements  $w, \tilde{w} \in R^n$ , the (Hamming) distance between  $w$  and  $\tilde{w}$  is given by  $dist(w, \tilde{w}) = wt(w - \tilde{w})$ . The **free distance** of  $\mathcal{C}$  is

$$dist(\mathcal{C}) = \min\{dist(w, \tilde{w}) : w, \tilde{w} \in \mathcal{C}, w \neq \tilde{w}\}.$$

For any convolutional code  $\mathcal{C}$ , since  $dist(w_1, w_2) = wt(w_1 - w_2)$  and  $\mathcal{C}$  is linear, then

$$dist(\mathcal{C}) = \min\{wt(w) : w \in \mathcal{C}, w \neq 0\}.$$

# Degree

The degree of polynomial

$$f = \sum_{\alpha \in \mathbb{N}^m} f_\alpha z^\alpha \in R$$

is, as usual, defined by the formula

$$\max\{\alpha_1 + \cdots + \alpha_m : f_\alpha \neq 0\}.$$

Let  $\nu_i$  be the **column degree** of the  $i$ -th column of a polynomial matrix  $G(z_1, \dots, z_m)$ , i.e, the maximum degree of the entries of the  $i$ -th column of  $G(z_1, \dots, z_m)$ . The external degree of  $G(z_1, \dots, z_m)$  is the sum of its column degrees, i.e.,  $\sum_{i=1}^k \nu_i$ .

## Definition

The **degree** of  $\mathcal{C}$  is defined as the minimum of the external degrees among all the encoders of  $\mathcal{C}$ .

## mD Generalized Singleton Bound

- Upper bound on the distance of mD convolutional codes of rate  $k/n$  and degree  $\delta$ .

### Lemma ([8])

Let  $\#S$  denote the cardinality of  $S$ . Then

$$\#\{\alpha \in \mathbb{N}_0^m : 1 \leq \alpha_1 + \cdots + \alpha_m \leq \nu\} = \frac{(\nu + m)!}{\nu!m!} - 1$$

# mD Generalized Singleton Bound

- Upper bound on the distance of mD convolutional codes of rate  $k/n$  and degree  $\delta$ .

## Lemma ([8])

Let  $\#S$  denote the cardinality of  $S$ . Then

$$\#\{\alpha \in \mathbb{N}_0^m : 1 \leq \alpha_1 + \cdots + \alpha_m \leq \nu\} = \frac{(\nu + m)!}{\nu!m!} - 1$$

## Theorem

Let  $\mathcal{C}$  be a mD convolutional code of rate  $k/n$  and degree  $\delta$ . Then

$$dist(\mathcal{C}) \leq n \frac{(\lfloor \frac{\delta}{k} \rfloor + m)!}{\lfloor \frac{\delta}{k} \rfloor!m!} - k \left( \left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) + \delta + 1.$$

## Proof of the Theorem

Let  $G(z_1, \dots, z_m) \in R^{n \times k}$  be an encoder of  $\mathcal{C}$  with column degrees  $\nu_1, \nu_2, \dots, \nu_k$  and external degree  $\delta$ . Then  $\nu_1 + \nu_2 + \dots + \nu_k = \delta$ , and let us assume that

$$\nu_1 \geq \nu_2 \geq \dots > \nu_t = \nu_{t+1} = \nu_{t+2} = \dots = \nu_k,$$

i.e.  $\nu_k$  is the minimum value of the column degrees of  $G(z_1, \dots, z_m)$  and  $G(z_1, \dots, z_m)$  has at least  $k - t + 1$  columns degrees equal to  $\nu_k$ , for  $1 \leq t \leq k$ .

Let us write

$$G(z_1, \dots, z_m) = \begin{bmatrix} G^{(1)}(z_1, \dots, z_m) & G^{(2)}(z_1, \dots, z_m) \end{bmatrix}$$

where  $G^{(1)}(z_1, \dots, z_m) \in R^{n \times (t-1)}$  and  $G^{(2)}(z_1, \dots, z_m) \in R^{n \times (k-t+1)}$ .

Since the column degrees of  $G^{(2)}(z_1, \dots, z_m)$  are all equal to  $\nu_k$  we can write

$$G^{(2)}(z_1, \dots, z_m) = \sum_{0 \leq \alpha_1 + \dots + \alpha_m \leq \nu_k} G_{\alpha_1 \dots \alpha_m}^{(2)} z^{(\alpha_1, \dots, \alpha_m)}.$$

## Proof of the Theorem

Let  $u = \begin{bmatrix} 0 \\ \tilde{u} \end{bmatrix}$ , with  $\tilde{u} \in \mathbb{F}^{k-t+1}$ , be a nonzero vector such that  $G_{0 \dots 0}^{(2)} \tilde{u}$  has  $k-t$  entries equal to zero.

Then, by the Lemma we have that:

$$\begin{aligned}
 \text{wt}(G(z_1, \dots, z_m)u) &= \text{wt}(G^{(2)}(z_1, \dots, z_m)\tilde{u}) \\
 &= \text{wt}(G_{0 \dots 0}^{(2)} \tilde{u}) + \sum_{1 \leq \alpha_1 + \dots + \alpha_m \leq \nu_k} \text{wt}(G_{\alpha_1 \dots \alpha_m}^{(2)} \tilde{u}) \\
 &\leq n - (k-t) + n \left( \frac{(\nu_k + m)!}{\nu_k! m!} - 1 \right) \\
 &= n \left( \frac{(\nu_k + m)!}{\nu_k! m!} \right) - (k-t)
 \end{aligned}$$

and therefore

$$\text{dist}(\mathcal{C}) \leq n \frac{(\nu_k + m)!}{\nu_k! m!} - (k-t) + 1.$$

The maximum value of this upper bound is achieved by maximizing  $\nu_k$  and then  $t$ , i.e. when  $\nu_k = \left\lfloor \frac{\delta}{k} \right\rfloor$  and  $t = \delta - k \left\lfloor \frac{\delta}{k} \right\rfloor + 1$  and therefore

$$\text{dist}(\mathcal{C}) \leq n \frac{(\left\lfloor \frac{\delta}{k} \right\rfloor + m)!}{\left\lfloor \frac{\delta}{k} \right\rfloor! m!} - k \left( \left\lfloor \frac{\delta}{k} \right\rfloor + 1 \right) + \delta + 1.$$

## MDS mD convolutional code

- The upper bound given is the extension to mD convolutional codes of the generalized Singleton bound for 2D convolutional codes [3] and we call it **mD generalized Singleton bound**.
- An mD convolutional code of rate  $k/n$  and degree  $\delta$  with distance equal to the mD generalized Singleton bound is called a **Maximum Distance Separable (MDS) mD convolutional code**.

# Construction of MDS 3D convolutional codes of rate $1/n$ and degree $\delta \leq 2$

The next definition defines superregular matrix which will be useful on the construction of these codes.

## Definition

Given a square matrix  $A = [a_{ij}] \in \mathbb{F}_q^{r \times r}$ , define

$$\bar{a}_{ij} = \begin{cases} 0 & \text{for } a_{ij} = 0 \\ x_{ij} & \text{for } a_{ij} \neq 0 \end{cases}$$

where  $X = \{x_{ij} : i, j \in \{1, \dots, r\}\}$  is a set of indeterminates over  $\mathbb{F}_q$ , and let

$\bar{A} = [\bar{a}_{ij}] \in \mathbb{F}_q[X]$ . Then  $A$  has a non trivially zero determinant if the determinant of  $\bar{A}$  is not the zero polynomial. A matrix is **superregular** if each of its non trivially zero minors is nonzero.

# Construction of MDS 3D convolutional codes of rate $1/n$ and degree $\delta \leq 2$

The next theorem gives sufficient conditions in order for a matrix to be superregular.

## Theorem ([9])

Let  $\alpha$  be a primitive element of a finite field  $\mathbb{F} = \mathbb{F}_{p^N}$  and  $B = [\nu_{i\ell}]$  be a matrix over  $\mathbb{F}$  with the following properties:

- 1 if  $\nu_{i\ell} \neq 0$  then  $\nu_{i\ell} = \alpha^{\beta_{i\ell}}$  for a positive integer  $\beta_{i\ell}$ ;
- 2 if  $\nu_{i\ell} = 0$  then  $\nu_{i'\ell} = 0$ , for any  $i' > i$  or  $\nu_{i\ell'} = 0$ , for any  $\ell' < \ell$ ;
- 3 if  $\ell < \ell'$ ,  $\nu_{i\ell} \neq 0$  and  $\nu_{i\ell'} \neq 0$  then  $2\beta_{i\ell} \leq \beta_{i\ell'}$ ;
- 4 if  $i < i'$ ,  $\nu_{i\ell} \neq 0$  and  $\nu_{i'\ell} \neq 0$  then  $2\beta_{i\ell} \leq \beta_{i'\ell}$ .

Suppose  $N$  is greater than any exponent of  $\alpha$  appearing as a nontrivial term of any minor of  $B$ . Then  $B$  is superregular.

The next result is trivial and will be very useful.

## Lemma

Let  $B$  be a superregular matrix and  $\tilde{B}$  a matrix obtained from  $B$  by permutation of columns. Then  $\tilde{B}$  is also a superregular matrix.

# Construction of MDS 3D convolutional codes of rate $1/n$ and degree $\delta \leq 2$

## Theorem ([4])

Let  $\alpha$  be a primitive element of a finite field with  $p^N$  elements  $\mathbb{F} = \mathbb{F}_{p^N}$  for some  $N \in \mathbb{N}$ .

Let  $n, k, \delta, \tilde{\nu}$  such that  $k \nmid \delta$ ,  $\tilde{\nu} = \left\lfloor \frac{\delta}{k} \right\rfloor$  and  $n > k + \delta$ . Consider

$$G(z_1, z_2) = \sum_{0 \leq a+b \leq \tilde{\nu}+1} G_{ab} z_1^a z_2^b \in \mathbb{F}[z_1, z_2]^{n \times k}$$

with

$$G_{ab} = \left[ g_{i,j}^{(a,b)} \right] \in \mathbb{F}^{n \times k}$$

defined by

$$g_{i,j}^{(a,b)} = \begin{cases} \alpha^{2(a(\tilde{\nu}+2)+b)n+i+j-2} & \text{if } 0 \leq a+b \leq \tilde{\nu} \\ \alpha^{2(a(\tilde{\nu}+2)+b)n+i+j-2} & \text{if } a+b = \tilde{\nu}+1 \text{ and } j \leq \delta - k\tilde{\nu} \\ 0 & \text{if } a+b = \tilde{\nu}+1 \text{ and } j > \delta - k\tilde{\nu} \\ 0 & \text{if } a+b > \tilde{\nu}+1. \end{cases}$$

Then, for  $N \in \mathbb{N}$  sufficiently large,  $\mathcal{C} = \text{Im}_{\mathbb{F}[z_1, z_2]} G(z_1, z_2)$  is an MDS 2D convolutional code of rate  $k/n$  and degree  $\delta$ .

# Construction of MDS 3D convolutional codes of rate $1/n$ and degree $\delta \leq 2$

## Theorem ([6])

Let  $n$  and  $\delta$  be non-negative integers and set  $\ell = \frac{(\delta+1)(\delta+2)}{2}$ . Let  $\mathbb{F}$  be large enough such that there exists a superregular matrix

$$\begin{bmatrix} g_0 & g_1 & \cdots & g_{\ell-1} \end{bmatrix} \in \mathbb{F}^{n \times \ell}$$

and define

$$G(z_1, z_2) = \sum_{0 \leq i+j \leq \delta} G_{ij} z_1^i z_2^j \in \mathbb{F}[z_1, z_2]^n$$

where  $G_{ij} = g_{\mu(i,j)}$  and  $\mu : \mathbb{N}^2 \rightarrow \mathbb{N}^2$  is the map defined by

$$\mu(i, j) = j + \frac{(i+j)(i+j+1)}{2} \text{ for all } (i, j) \in \mathbb{N}^2.$$

Then, if  $n \geq \ell$ , the 2D convolutional code with encoder  $G(z_1, z_2)$  is an MDS 2D convolutional code of rate  $1/n$  and degree  $\delta$ .

# Construction of MDS 3D convolutional codes of rate $1/n$ and degree $\delta \leq 2$

Let us consider  $\delta = 2$  and let us construct an MDS 3D convolutional code of rate  $1/n$  and degree 2. An encoder  $G(z_1, z_2, z_3)$  of  $\mathcal{C}$  can be written as

$$G(z_1, z_2, z_3) = \sum_{0 \leq i+j+l \leq 2} G_{ijl} z_1^i z_2^j z_3^l, \text{ with } G_{ijl} \in \mathbb{F}^{n \times 1}.$$

We can write

$$\begin{aligned} G(z_1, z_2, z_3) &= \sum_{l=0}^2 G^{(l)}(z_1, z_2) z_3^l \\ &= G^{(0)}(z_1, z_2) + G^{(1)}(z_1, z_2) z_3 + G^{(2)}(z_1, z_2) z_3^2, \end{aligned}$$

where

$$G^{(0)}(z_1, z_2) = \sum_{0 \leq i+j \leq 2} G_{ij0} z_1^i z_2^j,$$

$$G^{(1)}(z_1, z_2) = \sum_{0 \leq i+j \leq 1} G_{ij1} z_1^i z_2^j \text{ and}$$

$$G^{(2)}(z_1, z_2) = G_{002}.$$

# Construction of MDS 3D convolutional codes

## Theorem

Let  $\alpha$  be a primitive element of a finite field  $\mathbb{F}_{p^N}$  with  $N \in \mathbb{N}$  sufficiently large. Let  $n \geq 6$  and  $\hat{G}(z_1, z_2) = \sum_{0 \leq a+b \leq 2} G_{ab} z_1^a z_2^b \in \mathbb{F}[z_1, z_2]^{n \times 2}$  with  $G_{ab} = [g_{i,j}^{(a,b)}] \in \mathbb{F}^{n \times 2}$  defined by

$$g_{i,j}^{(a,b)} = \begin{cases} \alpha^{2^{(3a+b)n+i+j-2}} & \text{if } 0 \leq a+b \leq 1 \\ \alpha^{2^{(3a+b)n+i+j-2}} & \text{if } a+b = 2 \text{ and } j \leq 1 \\ 0 & \text{if } a+b = 2 \text{ and } j > 1 \\ 0 & \text{if } a+b > 2. \end{cases}$$

and write

$$\hat{G}(z_1, z_2) = [G^{(0)}(z_1, z_2) \ G^{(1)}(z_1, z_2)].$$

Define

$$G(z_1, z_2, z_3) = G^{(0)}(z_1, z_2) + G^{(1)}(z_1, z_2)z_3 + G^{(2)}(z_1, z_2)z_3^2,$$

where  $G^{(2)}(z_1, z_2) = G_{002} \in \mathbb{F}^n$  is a vector with all the entries different from zero. Then

$$\mathcal{C} = \text{Im}_{\mathbb{F}[z_1, z_2, z_3]} G(z_1, z_2, z_3)$$

is a 3D MDS convolutional code of rate  $1/n$  and degree 2.

## Conclusion

- We considered mD convolutional codes and we established an upper bound on the distance of these codes.
- We presented concrete constructions of 3D convolutional codes of rate  $1/n$  and degree  $\delta$  that attain such bound for  $n \geq 6$  and  $\delta \leq 2$ .
- As future work it could be interesting to investigate similar constructions for  $2 \leq n \leq 5$ .
- Further research must be done to investigate the existence of mD convolutional codes of any rate  $k/n$  and degree  $\delta$ .

## References

- [1] M.E. Valcher and E. Fornasini. On 2D finite support convolutional codes: an algebraic approach. *Multidim. Sys. and Sign. Proc.*, 5:231–243, 1994.
- [2] E. Fornasini and M.E. Valcher. Algebraic aspects of two-dimensional convolutional codes. *IEEE Trans. Inf. Theory*, 40, 1068–1082, 1994.
- [3] J.J. Climent, D. Napp, C. Perea, and R. Pinto. Maximum distance separable 2D convolutional codes. *IEEE Trans. Information Theory*, 62(2):669–680, 2016.
- [4] P. Almeida, D. Napp, and R. Pinto. MDS 2D convolutional codes with optimal 1D horizontal projections. *Des. Codes Cryptogr.* 86, 285–302, 2018.
- [5] P. Almeida, D. Napp, R. Pinto. From 1D Convolutional Codes to 2D Convolutional Codes of Rate  $1/n$ , in: "Coding Theory and Applications", CIM Series in Mathematical Sciences, vol 3, Springer, 2015.
- [6] J.J. Climent, D. Napp, C. Perea, R. Pinto. A construction of MDS 2D convolutional codes of rate  $1/n$  based on superregular matrices. *Linear Algebra and its Applications*, vol. 437(3), 766–780, 2012.
- [7] P. Weiner. Multidimensional Convolutional Codes, PhD dissertation, University of Notre Dame, USA, 1998.
- [8] K. H. Rosen. *Discrete Mathematics and Its Applications*, McGraw-Hill Higher Education, 2006.
- [9] P. Almeida, D. Napp, and R. Pinto. Superregular matrices and applications to convolutional codes. *Linear Algebra and its Applications*, vol. 499, 1–25, 2016.

## Acknowledgments

This work is supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT - Fundação para a Ciência e a Tecnologia), reference UID/04106 and by FCT grant UI/BD/151186/2021 (<https://doi.org/10.54499/UI/BD/151186/2021>).

