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mD Convolutional codes

Coding theory⇒ Convolutional Codes

Convolutional codes are especially useful for sequential encoding and decoding
with low delay and hence very important for streaming applications.

Muiltidimensional (mD) convolutional codes generalize convolutional codes to
polynomial rings in several variables.

Fornasini and Valcher introduced 2D convolutional codes in [1, 2]. In [3], the
authors established an upper bound for the free distance of a 2D convolutional
code and provided some optimal 2D convolutional code constructions. More 2D
convolutional codes constructions are studied in [4, 5, 6].

There are notable differences between 1D and 2D convolutional codes, as well as
between 2D and 3D convolutional codes [7].
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mD Convolutional Codes

Let F be a finite field and R = F[z1, . . . , zm] the polynomial ring in m variables with
coefficients in F.

Definition ([7])
An mD (finite support) convolutional code C of rate k/n is a free R-submodule of Rn

of rank k .

A full row rank matrix G(z1, . . . , zm) ∈ Rk×n whose rows constitute a basis for C is
called an encoder of C and therefore

C = ImR G(z1, . . . , zm)

= {v(z1, . . . , zm) ∈ Rn
∶ v(z1, . . . , zm) = G(z1, . . . , zm)u(z1, . . . , zm),u(z1, . . . , zm) ∈ Rk

}.
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Equivalent encoders

Definition ([7])
A square matrix U(z1, . . . , zm) ∈ Rk×k is unimodular if and only if there is a matrix
V(z1, . . . , zm) ∈ Rk×k such that

U(z1, . . . , zm) ⋅ V(z1, . . . , zm) = V(z1, . . . , zm) ⋅U(z1, . . . , zm) = Ik .

A matrix U(z1, . . . , zm) ∈ Rk×k is unimodular if and only if det(U(z1, . . . , zm)) is a
unit in R, i.e. a nonzero element of F.

Two full row rank matrices G1(z1, . . . , zm), G2(z1, . . . , zm) ∈ Rk×n are said to be
equivalent encoders if

ImR G1(z1, . . . , zm) = ImR G1(z1, . . . , zm),

which happens if and only if

G1(z1, . . . , zm) = G2(z1, . . . , zm)U(z1, . . . , zm)

for some unimodular matrix U(z1, . . . , zm) ∈ Rk×k .
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Notation

Let α = (α1, . . . , αm) ∈ Nm. By zα we mean zα1
1 ⋅ . . . ⋅ zαm

m . A polynomial f ∈ R can be
written as

f(z1, . . . , zm) = ∑
α∈Nm

fαzα where fα ∈ F.

In a similar way a vector w = [w1 ⋯ wn] ∈ Rn can be written as

w = ∑
α∈Nm

wαzα where wα ∈ Fn.
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Weight

Definition
The weight of a ∈ Fn is denoted by wt(a) and is given by the number of nonzero
entries of a. The weight of f ∈ R is denoted by wt(f) and is the number of nonzero
terms of f . If w = [w1 ⋯ wn] ∈ Rn then the weight of w is given by

wt(w) =
n
∑
j=1

wt(wj).

Equivalently, if w = ∑α∈Nm wαzα where wα ∈ Fn then

wt(w) = ∑
α∈Nm

wt(wα).

Example

Let F = F2 and R = F[z1, z2]. If w = [1 + z2 z1z2 + z2 z2
1 ], then

w = [1 0 0] + [1 1 0] z2 + [0 0 1] z2
1 + [0 1 0] z1z2. Thus wt(w) = 5.
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Distance

Definition ([7])
Given two elements w , w̃ ∈ Rn, the (Hamming) distance between w and w̃ is given by
dist(w , w̃) = wt(w − w̃). The free distance of C is

dist(C) = min{dist(w , w̃) ∶ w , w̃ ∈ C,w ≠ w̃}.

For any convolutional code C, since dist(w1,w2) = wt(w1 −w2) and C is linear, then

dist(C) = min{wt(w) ∶ w ∈ C,w ≠ 0}.
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Degree

The degree of polynomial
f = ∑

α∈Nm
fαzα ∈ R

is, as usual, defined by the formula

max{α1 + ⋅ ⋅ ⋅ + αm ∶ fα ≠ 0}.

Let νi be the column degree of the i-th column of a polynomial matrix G(z1, . . . , zm),
i.e, the maximum degree of the entries of the i-th column of G(z1, . . . , zm). The
external degree of G(z1, . . . , zm) is the sum of its column degrees, i.e., ∑k

i=1 νi .

Definition
The degree of C is defined as the minimum of the external degrees among all the
encoders of C.
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mD Generalized Singleton Bound

Upper bound on the distance of mD convolutional codes of rate k/n and degree δ.

Lemma ([8])
Let #S denote the cardinality of S. Then

#{α ∈ Nm
0 ∶ 1 ≤ α1 + ⋅ ⋅ ⋅ + αm ≤ ν} =

(ν +m)!
ν!m!

− 1

Theorem
Let C be a mD convolutional code of rate k/n and degree δ. Then

dist(C) ≤ n
(⌊ δk ⌋ +m)!

⌊ δk ⌋!m!
− k(⌊

δ

k
⌋ + 1) + δ + 1.
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Proof of the Theorem

Let G(z1, . . . , zm) ∈ Rn×k be an encoder of C with column degrees ν1, ν2, . . . , νk and
external degree δ. Then ν1 + ν2 + ⋅ ⋅ ⋅ + νk = δ, and let us assume that

ν1 ≥ ν2 ≥ ⋯ > νt = νt+1 = νt+2 = ⋯ = νk ,

i.e. νk is the minimum value of the column degrees of G(z1, . . . , zm) and G(z1, . . . , zm)
has at least k − t + 1 columns degrees equal to νk , for 1 ≤ t ≤ k .

Let us write

G(z1, . . . , zm) = [ G(1)(z1, . . . , zm) G(2)(z1, . . . , zm) ]

where G(1)(z1, . . . , zm) ∈ Rn×(t−1) and G(2)(z1, . . . , zm) ∈ Rn×(k−t+1).

Since the column degrees of G(2)(z1, . . . , zm) are all equal to νk we can write

G(2)(z1, . . . , zm) = ∑
0≤α1+⋯+αm≤νk

G(2)α1⋯αm z(α1,⋯,αm).

11 / 22



mD Convolutional codes mD Generalized Singleton Bound MDS mD convolutional code Construction of MDS 3D convolutional codes

Proof of the Theorem

Let u = [0ũ], with ũ ∈ Fk−t+1, be a nonzero vector such that G(2)0⋯0ũ has k − t entries

equal to zero.
Then, by the Lemma we have that:

wt(G(z1, . . . , zm)u) = wt(G(2)(z1, . . . , zm)ũ)

= wt(G(2)0⋯0ũ) + ∑
1≤α1+⋅⋅⋅+αm≤νk

wt(G(2)α1⋯αm ũ)

≤ n − (k − t) + n(
(νk +m)!
νk !m!

− 1)

= n(
(νk +m)!
νk !m!

) − (k − t)

and therefore

dist(C) ≤ n
(νk +m)!
νk !m!

− (k − t) + 1.

The maximum value of this upper bound is achieved by maximizing νk and then t , i.e.
when νk = ⌊

δ
k ⌋ and t = δ − k⌊ δk ⌋ + 1 and therefore

dist(C) ≤ n
(⌊ δk ⌋ +m)!

⌊ δk ⌋!m!
− k(⌊

δ

k
⌋ + 1) + δ + 1.
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MDS mD convolutional code

The upper bound given is the extension to mD convolutional codes of the
generalized Singleton bound for 2D convolutional codes [3] and we call it mD
generalized Singleton bound.

An mD convolutional code of rate k/n and degree δ with distance equal to the mD
generalized Singleton bound is called a Maximum Distance Separable (MDS)
mD convolutional code.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
δ ≤ 2

The next definition defines superregular matrix which will be useful on the construction
of these codes.

Definition
Given a square matrix A = [aij ] ∈ Fr×r

q , define

aij =

⎧⎪⎪
⎨
⎪⎪⎩

0 for aij = 0
xij for aij ≠ 0

where X = {xij ∶ i, j ∈ {1, . . . , r}} is a set of indeterminates over Fq , and let
A = [aij ] ∈ Fq[X]. Then A has a non trivially zero determinant if the determinant of A is
not the zero polynomial. A matrix is superregular if each of its non trivially zero minors
is nonzero.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
δ ≤ 2

The next theorem gives sufficient conditions in order for a matrix to be superregular.

Theorem ([9])
Let α be a primitive element of a finite field F = FpN and B = [νiℓ] be a matrix over F
with the following properties:

1 if νiℓ ≠ 0 then νiℓ = α
βiℓ for a positive integer βiℓ;

2 if νiℓ = 0 then νi′ℓ = 0, for any i ′ > i or νiℓ′ = 0, for any ℓ′ < ℓ;
3 if ℓ < ℓ′, νiℓ ≠ 0 and νiℓ′ ≠ 0 then 2βiℓ ≤ βiℓ′ ;

4 if i < i ′, νiℓ ≠ 0 and νi′ℓ ≠ 0 then 2βiℓ ≤ βi′ℓ.

Suppose N is greater than any exponent of α appearing as a nontrivial term of any
minor of B. Then B is superregular.

The next result is trivial and will be very useful.

Lemma
Let B be a superregular matrix and B̃ a matrix obtained from B by permutation of
columns. Then B̃ is also a superregular matrix.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
δ ≤ 2

Theorem ([4])
Let α be a primitive element of a finite field with pN elements F = FpN for some N ∈ N.
Let n, k , δ, ν̃ such that k ∤ δ, ν̃ = ⌊ δk ⌋ and n > k + δ. Consider

G(z1, z2) = ∑
0≤a+b≤ν̃+1

Gabza
1 zb

2 ∈ F[z1, z2]
n×k

with
Gab = [g

(a,b)
i,j ] ∈ Fn×k

defined by

g(a,b)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2(a(ν̃+2)+b)n+i+j−2
if 0 ≤ a + b ≤ ν̃

α2(a(ν̃+2)+b)n+i+j−2
if a + b = ν̃ + 1 and j ≤ δ − k ν̃

0 if a + b = ν̃ + 1 and j > δ − k ν̃
0 if a + b > ν̃ + 1.

Then, for N ∈ N sufficiently large, C = ImF[z1,z2]G(z1, z2) is an MDS 2D convolutional
code of rate k/n and degree δ.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
δ ≤ 2

Theorem ([6])
Let n and δ be non-negative integers and set ℓ = (δ+1)(δ+2)

2 . Let F be large enough
such that there exists a superregular matrix

[ g0 g1 ⋯ gℓ−1 ] ∈ Fn×ℓ

and define
G(z1, z2) = ∑

0≤i+j≤δ
Gij z

i
1z j

2 ∈ F[z1, z2]
n

where Gij = gµ(i,j) and µ ∶ N2 → N2 is the map defined by

µ(i, j) = j +
(i + j)(i + j + 1)

2
for all (i, j) ∈ N2.

Then, if n ≥ ℓ, the 2D convolutional code with encoder G(z1, z2) is an MDS 2D
convolutional code of rate 1/n and degree δ.
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Construction of MDS 3D convolutional codes of rate 1/n and degree
δ ≤ 2

Let us consider δ = 2 and let us construct an MDS 3D convolutional code of rate 1/n
and degree 2. An encoder G(z1, z2, z3) of C can be written as

G(z1, z2, z3) = ∑
0≤i+j+l≤2

Gijl z
i
1z j

2z l
3, with Gijl ∈ Fn×1.

We can write

G(z1, z2, z3) =
2
∑
l=0

G(l)(z1, z2)z
l
3

= G(0)(z1, z2) +G(1)(z1, z2)z3 +G(2)(z1, z2)z
2
3 ,

where
G(0)(z1, z2) = ∑

0≤i+j≤2
Gij0z i

1z j
2,

G(1)(z1, z2) = ∑
0≤i+j≤1

Gij1z i
1z j

2 and

G(2)(z1, z2) = G002.
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Construction of MDS 3D convolutional codes

Theorem
Let α be a primitive element of a finite field FpN with N ∈ N sufficiently large. Let n ≥ 6

and Ĝ(z1, z2) = ∑0≤a+b≤2 Gabza
1 zb

2 ∈ F[z1, z2]
n×2 with Gab = [g

(a,b)
i,j ] ∈ Fn×2 defined by

g(a,b)i,j =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α2(3a+b)n+i+j−2
if 0 ≤ a + b ≤ 1

α2(3a+b)n+i+j−2
if a + b = 2 and j ≤ 1

0 if a + b = 2 and j > 1
0 if a + b > 2.

and write
Ĝ(z1, z2) = [G(0)(z1, z2) G(1)(z1, z2)] .

Define
G(z1, z2, z3) = G(0)(z1, z2) +G(1)(z1, z2)z3 +G(2)(z1, z2)z

2
3 ,

where G(2)(z1, z2) = G002 ∈ Fn is a vector with all the entries different from zero. Then

C = ImF[z1,z2,z3]G(z1, z2, z3)

is a 3D MDS convolutional code of rate 1/n and degree 2.
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Conclusion

We considered mD convolutional codes and we established an upper bound on
the distance of these codes.

We presented concrete constructions of 3D convolutional codes of rate 1/n and
degree δ that attain such bound for n ≥ 6 and δ ≤ 2.

As future work it could be interesting to investigate similar constructions for
2 ≤ n ≤ 5.

Further research must be done to investigate the existence of mD convolutional
codes of any rate k/n and degree δ.
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