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Introduction

Definitions

A 2-(v , k , λ) design D = {X ,B} is a pair of a point set X of size v and a
collection of k-subsets B={Bj}bj=1 called blocks, such that every pair of
points is contained in exactly λ blocks.

The incidence matrix of D is a block by point (0, 1)-matrix whose (i , j)
entry is 1 if block i contains point j , and 0 otherwise.

A parallel class of D is a set of v
k pairwise disjoint blocks,

and a resolution

of D is a partition of the collection of blocks B into r = (v−1)
k−1 λ parallel

classes.

A design is resolvable if it admits a resolution.
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Introduction

Maximal Arcs

Let Π be a finite projective plane of order q = gk .

A {v ; k}-arc is a set A of v points that meets every line of Π in at most k
points.

In a {v ; k}-arc A v ≤ q(k − 1) + k holds.

A {v ; k}-arc is called maximal if v = q(k − 1) + k.

For a maximal {v ; k}-arc A, k is called the degree of A.

If A is a maximal {v ; k}-arc, then every line of Π is either disjoint from A,
or meets A in k points.
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Introduction

Maximal Arcs

The set of lines of Π which have no points in common with A determines
a maximal {(k(g − 1) + 1)g ; g}-arc A⊥ in the dual plane Π⊥.

Maximal arcs with 1 < k < q do not exist in any Desarguesian planes of
odd order [2],

and do exist in any Desarguesian plane of even order with
k = 2i , and in some non-Desarguesian planes of even order [5, 6]

.
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Introduction

Maximal Arcs

Let 1 < k < q.

The non-empty intersections of a maximal {(g(k − 1) + 1)k ; k}-arc A
with the lines of Π form a 2− ((g(k − 1) + 1)k , k, 1) design D.

We say that D is a design embeddable in Π as a maximal arc.

The points of A⊥ determine a set of (k(g − 1) + 1)g resolutions of D.

Every two resolutions of D share one parallel class.
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Introduction

Compatible Resolutions

Let D be a resolvable 2− (mk , k , 1) design.

Two resolutions, R1, R2 of D,

R1 = P
(1)
1 ∪ P

(1)
2 ∪ · · ·P(1)

r , R2 = P
(2)
1 ∪ P

(2)
2 ∪ · · ·P(2)

r ,

are compatible if

they share one parallel class, P
(1)
i = P

(2)
j , and

|P(1)
i ′ ∩ P

(2)
j ′ | ≤ 1 for (i

′
, j

′
) 6= (i , j).

A set of resolutions R = {R1,R2, · · ·Rn} is called compatible if every pair
of resolutions in R is compatible.
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Introduction

An Upper Bound

Theorem 1 (Tonchev 2017)

Let R = {R1,R2, ...,Rn} be a set of n mutually compatible resolutions of
a 2− (v , k , 1) design D, where v = (g(k − 1) + 1)k .

Then

n ≤ (k(g − 1) + 1)g .

Equality holds if and only if there exist a projective plane Π of order
q = gk such that D is embeddable in Π as a maximal {v ; k}-arc.
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New Maximal Arcs of Degree 4 in Planes of Order 16

In [6], Penttila et al did a computer search and classified all degree 2 and 8
maximal arcs in the known planes of order 16.

The degree 4 maximal arcs in the projective planes of order 16 have not
been classified completely.

A complete classification seems
computationally infeasible at present time.

In [1], Ball and Blokhuis proved that up to isomorphism PG(2,16) contains
only two maximal (52,4)-arcs.
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New Maximal Arcs of Degree 4 in Planes of Order 16

Maximal Design’s 2-rank # of # of # of Plane(s)
# (52,4)- Aut Group of parallel resolutions compatible isomorphic

arc Order designs classes resolutions to?

1 desg.1 68 41 2329 409 52 (×1) desg
2 desg.2 408 41 2550 460 52 (×1) desg
3 demp.1 24 49 250 52 52 (×1) demp
4 demp.2 144 47 543 52 52 (×1) demp
5 semi4.1 96 45 2569 52 52 (×1) semi4
6 semi2.1 24 47 327 52 52 (×1) semi2
7 semi2.2 144 45 1279 55 52 (×1) semi2
8 lmrh.1 96 47 2265 104 52 (×2) lmrh and lmrh⊥

9 math.1 24 49 291 52 52 (×1) math
10 hall.1 24 49 274 52 52 (×1) hall
11 bbh1.1 24 47 330 52 52 (×1) bbh1
12 bbh1.2 32 46 2017 136 52 (×2) bbh1 and john
13 jowk.1 16 46 1389 52 52 (×1) jowk
14 jowk.2 32 46 2409 104 52 (×2) jowk and john
15 john.1 32 47 1953 144 52 (×2) john
16 john.2 32 47 1953 144 52 (×2) john
17 dsfp.1 24 47 1045 52 52 (×1) dsfp

Table 1: The maximal (52,4)-arcs and their designs
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16 lmrh.2 32 47 2377 64 52 (×1) lmrh
17 math.1 24 49 291 52 52 (×1) math
18 math.2 32 46 1729 52 52 (×1) math
19 math.3 32 47 2401 64 52 (×1) math
20 math.4 32 46 1665 52 52 (×1) math
21 math.5 16 47 1233 52 52 (×1) math
22 math.6 16 48 1329 52 52 (×1) math
23 math.7 16 48 1125 52 52 (×1) math
24 hall.1 24 49 274 52 52 (×1) hall
25 bbh1.1 24 47 330 52 52 (×1) bbh1
26 bbh1.2 32 46 2017 136 52 (×2) bbh1 and john
27 jowk.1 16 46 1389 52 52 (×1) jowk
28 jowk.2 32 46 2409 104 52 (×2) jowk and john
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32 john.4 32 46 2409 104 52 (×2) john and jowk
33 dsfp.1 24 47 1045 52 52 (×1) dsfp

Table 2: The maximal (52,4)-arcs and their designs
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New Maximal Arcs of Degree 4 in Planes of Order 16

Theorem 2

The number of pairwise non-isomorphic resolvable 2− (52, 4, 1) designs is
greater than or equal to 50, previous to our work this bound was 30.

Theorem 3

The number of maximal arcs of degree 4 in planes of order 16 is greater
than or equal to 63, previous to our work this bound was 32.
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New Connections Between Planes of Order 16

Codes of Maximal Arcs

Let D and C (D) be a design and a linear code (the code spanned by the
block by point incidence matrix of D) associated to a maximal arc,
respectively.

The parameters and the order of the automorphism group of C (D) are
computed for all known maximal arcs in the planes of order 16.

Furthermore, using Magma [3], codes were sorted according to their
weight distributions, and codes having the same weight distributions were
tested for equivalences.
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New Connections Between Planes of Order 16

No. 2-rank (52,4)-Arc (A2,A4) |Aut(C (D))|
1 41 desg.1 (0,221) 22171

2 41 desg.2 (0,221) 2331171

3 43 hall.1⊥ (6,1037) 2632

4 45 demp.1⊥ (24,3989) 23332

5 45 {demp.2⊥, semi2.2} (6,4325) 218345171

6 45 {semi4.1, semi2.7} (0,4469) 21733

7 45 semi2.3 (18,4165) 22631

8 45 semi2.4 (16,4277) 22531

9 46 john.3 (42,8293) 23835

10 46 {john.4, jowk.1, math.2} (26,8613) 23732

11 46 jowk.2⊥ (46,8325) 2383651

12 46 {math.4, math.4⊥} (42,8549) 23835

13 46 math.5⊥ (42,8549) 23634

14 46 semi2.5 (50,8453) 23736

15 47 bbh1.1 (120,16853) 2403135373

16 47 {demp.2, demp.4} (72,17045) 244314

17 47 {dsfp.1, demp.3} (74,16997) 245313

18 47 dsfp.1⊥ (66,17093) 243311

{john.1, lmrh.1, lmrh.2, lmrh.2⊥,
19 47 math.2⊥, math.3, math.3⊥, math.6⊥, (78,16901) 245315

math.7⊥, semi2.1, semi2.6, demp.4⊥}
20 47 jowk.1⊥ (94,16709) 2443145171

21 47 math.5 (106,16869) 2433125272

22 47 demp.3⊥ (98,16965) 2413115272

23 48 {john.1⊥, john.2⊥, john.3⊥, (174,33669) 2483145676

john.4⊥, math.6, math.7}
24 49 {hall.1, math.1, math.1⊥} (366,67205) 2493205976113133

25 49 demp.1 (408,67541) 2463195976113133173

Table 3: 2− (52, 4, 1) designs and their codes
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New Connections Between Planes of Order 16

Theorem 4

1 Codes associated to desg.1 and desg.2 have the same weight
distribution, but they are not equivalent.

2 Codes associated to math.4 and math.5⊥ have the same weight
distribution, but they are not equivalent,

3 Planes LMRH and MATH share a C (D) with their duals.

4 Codes associated with desg.1, desg.2 and semi4.1 have minimum
distance 4, while the minimum distance of all other codes is 2.

5 The code of semi4.1 is optimal: it has the largest possible minimum
distance for the given length 52 and dimension 45.

6 The 50 codes are partioned into 25 equivalence classes.
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New Connections Between Planes of Order 16

DESG DEMP SEMI4 SEMI2 LMRH MATH HALL BBH1 JOWK JOHN DSFP BBH2 BBS4

DESG 1
DEMP 1,5 5 5 5 3 5 2,5
SEMI4 2 3,5 1 1 1 1 1
SEMI2 1,5 3,5 5 5 5
LMRH 5 1 5 4,5 5 2 5 3
MATH 5 5 5 5 5 2,5 5
HALL 1 5 5 1 1 1
BBH1 1 4,5
JOWK 3 1 2 2,5 4,5
JOHN 5 1 5 5 5 1 4,5 4,5
DSFP 2,5 1 3
BBH2 1
BBS4 1

Table 4: Connections between planes of order 16
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Thank you!
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