

Table of Contents

Track 1: Automata Theory and Logic . 1
Invited speaker : Heiko Vogler . 1
Languages and formations generated by D4 and D8: Jean-Éric Pin,

Xaro Soler-Escrivà . 2
Syntactic structures of regular languages: O. Klíma, L. Polák 26
Improving witnesses for state complexity of catenation combined

with boolean operations: P. Caron, J.-G. Luque, B. Patrou 44
Track 2: Cryptography and Coding Theory . 63

Invited speaker : Claude Carlet . 63
A topological approach to network coding : Cristina Martínez and

Alberto Besana . 64
Pairing-friendly elliptic curves resistant to TNFS attacks: G.

Fotiadis, E. Konstantinou . 65
Collaborative multi-authority key-policy attribute-based encryption

for shorter keys and parameters: R. Longo, C. Marcolla, M. Sala 67
Conditional blind signatures: A. Zacharakis, P. Grontas, A.

Pagourtzis . 68
Hash function design for cloud storage data auditing : Nikolaos

Doukas, Oleksandr P. Markovskyi, Nikolaos G. Bardis 69
Method for accelerated zero-knowledge identification of remote users

based on standard block ciphers: Nikolaos G. Bardis, Oleksandr
P. Markovskyi, Nikolaos Doukas . 81

Determining whether a given block cipher is a permutation of
another given block cipher— a problem in intellectual property
(Extended Abstract): G. V. Bard . 91

Track 3: Computer Algebra . 95
Invited speaker : Michael Wibmer . 95
Interpolation of syzygies for implicit matrix representations: Ioannis

Z. Emiris, Konstantinos Gavriil, and Christos Konaxis 97
Reduction in free modules: C. Fürst, G. Landsmann 115
Instructing small cellular free resolutions for monomial ideals: J.

Àlvarez Montaner, O. Fernández-Ramos, P. Gimenez 117
Low autocorrelation binary sequences (LABS): lias S. Kotsireas 123
A signature based border basis algorithm: J. Horáček, M. Kreuzer,

and A.S. Messeng Ekossono . 124
Gröbner reduction in modules over arbitrary rings: G. Landsmann,

C. Fürst . 126
The algebra of Kleene stars of the plane and polylogarithms: G.H.E.

Duchamp, Hoang Ngoc Minh, Q.H. Ngo . 128
Computing the dedekind different of a smooth scheme and

applications: L.N. Long . 134

2

Efficient algorithms for special roots of quaternion polynomials: P.
Dospra, D. Poulakis . 135

Quaternion polynomials: Roots and their Jacobians: Takis Sakkalis . . 136
Kähler differential algebras for 0-dimensional schemes: T. N. K. Linh 137
Specialization of Symbolic Polynomials: Stephen M. Watt 138

Track 4: Design Theory . 143
Invited speaker : Charlie Colburn . 143
New constant weight codes and packing numbers: I. Bluskov 144
Kochen-Specker sets and Hadamard matrices: P. Lisoněk 145
AGC, t−designs and partition sets: Cristina Martínez and Alberto

Besana . 146
The Lovász local lemma and variable strength covering arrays: Lucia

Moura, Sebastian Raaphorst, Brett Stevens 147
Number of t-tuples in arrays from LFSRs: D. Panario, B. Stevens,

G. Tzanakis . 148
Covering arrays as set covers: Ludwig Kampel, Bernhard Garn,

Dimitris E. Simos . 149
Disjoint q-Steiner systems in dimension 13: Michael Braun, Alfred

Wassermann . 150
Track 5: Natural and Quantum Computing . 151

Invited speaker : Lila Kari . 151
Interference as a computational resource: Mika Hirvensalo 153
Resistance analysis of quantum hashing : F. Ablayev, M. Latypov,

A. Vasiliev, A. Vasilov . 154
Branching program complexity of quantum hashing : F. Ablayev, M.

Ablayev . 163

1

Track 1: Automata Theory and Logic
Chair: Manfred Droste (Germany)

Invited Speaker: Heiko Vogler

Parsing of Natural Languages

Technische UniversitÃt Dresden (Faculty of Computer Science)

Abstract

The syntax of natural languages copes with at least three facets: the sequencing
of words (in German: kleines Brot, in French: pain petit), the constituency structure
(like subject - predicate - object), and dependencies (governor: house, dependent:
cosy). In this talk we will focus on the latter two facets.

We define the concept of hybrid tree, which captures both, phrase structure trees
and dependency trees. Formally, a hybrid tree is a tree together with a linear order
on a subset of the set of its positions. For a phrase structure tree the subset is the set
of its leaves, for a dependency tree the subset is the set of all positions of the tree.

We discuss formal grammars which generate hybrid tree languages, indicate al-
gorithms how to induce the grammars automatically from corpora, and motivate a
new grammar model – the hybrid grammars.

2

Languages and formations generated by D4 and Q8
1

Jean-Éric Pin1, Xaro Soler-Escrivà2

1 IRIF, CNRS and Université Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France.
Jean-Eric.Pin@irif.fr
2 Dpt. de Matemàtiques, Universitat d’Alacant, Sant Vicent del Raspeig, Ap. Correus 99, E –
03080 Alacant. xaro.soler@ua.es

Abstract

We describe the two classes of languages recognized by the groups D4 and Q8,
respectively. Then we show that the formations of languages generated by these
two classes are the same. We also prove that these two formations are closed under
inverses of morphisms, which yields a language theoretic proof of the fact that the
group formations generated by D4 and Q8, respectively, are two equal varieties.

Most monoids and groups considered in this paper are finite. In particular, we use
the term variety of groups for variety of finite groups. Similarly, all languages con-
sidered in this paper are regular languages and hence their syntactic monoid is finite.

1 Introduction

A nontrivial question is to describe the regular languages corresponding to well-
studied families of finite groups. Only a few cases have been investigated in the
literature: abelian groups [6], p-groups [6, 16, 17, 18], nilpotent groups [6, 15],
soluble groups [14, 17] and supersoluble groups [4]. More recently [2], the authors
addressed the following question: is it possible to obtain a reasonable description of
the languages corresponding to a given formation of groups? Recall that a formation
of groups is a class of finite groups closed under taking quotients and subdirect
products.

This question was motivated by the importance of formations in finite group
theory, notably in the development of a generalised Sylow theory. The theory of
formations was born with the seminal paper [7] of Gaschütz in 1963, where a broad
extension of Sylow and Hall theory was presented. The new theory was not an arith-
metic one, that is, based on the orders of subgroups. Instead, the important idea was
concerned with group classes having the same properties. In that way, the forma-
tions of groups appeared and since that time they have played a fundamental role in
the study of groups [5, 1].

1 The first author is supported by Proyecto MTM2014-54707-C3-1-P from MINECO (Spain) and
FEDER (European Union) and partially funded from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No
670624) and by the DeLTA project (ANR-16-CE40-0007).

3

In [2], the authors extended Eilenberg’s correspondence theorem between vari-
eties of monoids and varieties of languages [6] to the setting of formations. More
precisely, they spotted a bijective correspondence between formations of finite
monoids and the so-called formations of languages. Using this “formation theo-
rem” the authors not only recovered the previously mentioned results on nilpotent
groups, soluble groups and supersoluble groups, but, relying on the local definition
of a saturated formation [5], they exhibited new examples, like the class of groups
having a Sylow tower [3].

This new paper focuses on the language interpretation of two results dealing with
the dihedral group D4 and the quaternion group Q8. The first result asserts that D4

and Q8 generate the same formation [5, Exercise 9, p. 344]. The second one states
that this formation is a variety of groups, that is, is closed under taking subgroups.
This latter result is actually an instance of a more general result, due to Neumann
[9], which states that any formation generated by a single nilpotent group is a variety
(see [5, IV.1.16, p. 342] for an alternative proof).

The main result of this paper provides a purely language theoretic proof of these
two results on D4 and Q8. To do so, we first translate them in terms of languages:
the formations of languages F1 and F2 associated to D4 and Q8, respectively, are
the same (first result) and they form a variety of languages (second result). The main
difficulty in proving these results by pure language theoretic means is to establish
the inclusion F1 ⊆F2. The lengthy proof of Theorem 2 should convince the reader
that it is a nontrivial property.

Our proofs rely on a systematic use of the binomial coefficients of two words.
This is not really a surprise, since binomial coefficients modulo p are the main tool
for describing languages recognized by p-groups, and D4 and Q8 are 2-groups. In
this paper, we present two explicit formulas with an algorithmic flavour. First, we
discuss the behaviour of binomial coefficients under morphisms (Formula 5). Next,
we show that a language of A∗ is recognized by a p-group if and only if it is a finite
union of languages defined by linear algebraic constraints involving the binomial
coefficients. Finally, we give an algorithm to obtain such a decomposition when the
p-group is a group of unitriangular matrices over Fp.

Our paper is organised as follows. In order to keep the paper self-contained,
prerequisites (Section 2) include formations and varieties, syntactic monoids and
the Formation Theorem. Section 3 is devoted to binomial coefficients on words.
We present in Section 4 various descriptions of the languages recognized by p-
groups and the corresponding algorithms. Section 5 contains the proof of our main
theorem.

4

2 Prerequisites

2.1 Formations and varieties

A formation of groups is a class of groups F satisfying the two conditions:

(1) any quotient of a group of F also belongs to F,

(2) the subdirect product of any finite family of groups of F is also in F.

Formations of finite algebras can be defined in the same way [11, 13, 12]. In particu-
lar, a formation of monoids is a class of finite monoids closed under taking quotients
and subdirect products.

A variety of groups is a class of groups V satisfying the three conditions:

(1) any subgroup of a group of V also belongs to V,

(2) any quotient of a group of V also belongs to V,

(3) the direct product of any finite family of groups of V is also in V.

Varieties of monoids are defined in the same way. It follows from the definition that
a formation of groups [monoids] is a variety if and only if it is closed under taking
subgroups [submonoids]. Therefore a formation is not necessarily a variety. For
instance, the formation of groups generated by the alternating group A5 is known to
be the class of all direct products of copies of A5, which is not a variety [1, Lemma
2.2.3, p. 91], [5, II.2.13].

2.2 Syntactic monoids

Let L be a regular language and let x and y be words. The quotient x−1Ly−1 of L by
x and y is defined by the formula

x−1Ly−1 = {u ∈ A∗ | xuy ∈ L}

The syntactic monoid of a regular language L of A∗ is the finite monoid obtained as
the quotient of A∗ by the syntactic congruence of L, defined on A∗ as follows: u ∼L v
if and only if, for every x,y ∈ A∗,

xvy ∈ L ⇐⇒ xuy ∈ L

The natural morphism η : A∗ → A∗/∼L is the syntactic morphism of L.
A class of regular languages C associates with each finite alphabet A a set C (A∗)

of regular languages of A∗. It is closed under quotients if for each language L ∈
C (A∗) and for each pair of words (x,y) of A∗, the language x−1Ly−1 belongs to C .

5

2.3 The Formation Theorem

Just as formations of finite monoids extend the notion of a variety of finite monoids,
formations of languages are more general than varieties of languages. Like varieties,
formations are classes of regular languages closed under Boolean operations and
quotients. But while varieties are closed under inverse of morphisms, formations of
languages only enjoy a weak version of this property — Property (F2) — and thus
comprise more general classes of languages than varieties.

The following definition was first given in [2]. A formation of languages is a
class of regular languages F satisfying the following conditions:

(F1) for each alphabet A, F (A∗) is closed under Boolean operations and quo-
tients,

(F2) if L is a language of F (B∗) and η : B∗ → M denotes its syntactic morphism,
then for each monoid morphism α : A∗ → B∗ such that η ◦α is surjective,
the language α−1(L) belongs to F (A∗).

Observe that a formation of languages is closed under inverse of surjective mor-
phisms, but this condition is not equivalent to (F2).

To each formation of monoids F, let us associate the class of languages F (F)
defined as follows: for each alphabet A, F (F)(A∗) is the set of languages of A∗

whose syntactic monoid belongs to F.
Given a formation of languages F , let F(F) denote the formation of monoids

generated by the syntactic monoids of the languages of F . The following statement
is the main result of [2].

Theorem 1 (Formation Theorem). The correspondences F → F (F) and F →
F(F) are two mutually inverse, order preserving, bijections between formations of
monoids and formations of languages.

3 Binomial coefficients on words

Binomial coefficients on words were first defined in [6, p. 238]. Useful references
include [8, Chapter 6] and [10].

3.1 Definition of binomial coefficients on words

A word u = a1a2 · · ·an (where a1, . . . ,an are letters) is a subword of a word v if v
can be factored as v = v0a1v1 · · ·anvn. For instance, ab is a subword of cacbc. Given
two words u and v, we denote by

(v
u

)

the number of distinct ways to write u as a
subword of v.

More formally, if u = a1a2 · · ·an, then

6

(

v

u

)

= Card{(v0,v1, . . . ,vn) | v0a1v1 · · ·anvn = v}

Observe that if u is a letter a, then
(v

a

)

is simply the number of occurrences of the
letter a in v, also denoted by |v|a. These binomial coefficients satisfy the following
recursive formula, where u,v ∈ A∗ and a,b ∈ A:



















(u
1

)

= 1
(1

u

)

= 0 if u 6= 1
(va

ub

)

=

{

(v
ub

)

if a 6= b
(v

ub

)

+
(v

u

)

if a = b

(1)

We shall later use the following elementary result.

Proposition 1. Let u ∈ {a,b}∗. Then the following formula holds

(

u

a

)(

u

b

)

+

(

u

ab

)

+

(

u

ba

)

≡ 0 mod 2 (2)

Proof. Let us prove (2) by induction on |u|. The result is trivial if |u| = 0. For the
induction step, it suffices to prove the result for ua, the case ub being symmetrical.

(

ua

a

)(

ua

b

)

+

(

ua

ab

)

+

(

ua

ba

)

=
(

(

u

a

)

+1
)

(

u

b

)

+

(

u

ab

)

+

(

u

ba

)

+
(

u

b

)

≡

(

u

a

)(

u

b

)

+

(

u

ab

)

+

(

u

ba

)

≡ 0 mod 2.

3.2 Binomial coefficients and morphisms

Let Z〈A〉 be the ring of noncommutative polynomials with coefficients in Z and
variables in A (see [8, Chapter 6] or [10]). Given a polynomial P ∈ Z〈A〉 and a word
x, we let 〈P,x〉 denote the coefficient of P in x. Thus all but a finite number of these
coefficients are null and P = ∑x∈A∗〈P,x〉x.

In this section, we study the behaviour of binomial coefficients under monoid
morphisms. More precisely, given a monoid morphism ϕ : A∗ → B∗ and words u ∈

A∗ and x ∈ B∗, we give a formula to compute
(

ϕ(u)
x

)

.
The proof of this result relies on properties of the Magnus automorphism of the

ring Z〈A〉. This automorphism µA is defined, for each letter a ∈ A, by µA(a) = 1+a.
Its inverse is defined by µ−1

A (a)= a−1. The following binomial identity [8, Formula
6.3.4]

for all u ∈ A∗, µA(u) = ∑
x∈A∗

(

u

x

)

x (3)

can be used to give an alternative definition of the binomial coefficients.

7

If ϕ : A∗ → B∗ be a monoid morphism, then ϕ can be extended by linearity to
a ring morphism from Z〈A〉 to Z〈B〉. Let γ : Z〈A〉 → Z〈B〉 be the ring morphism
defined by γ = µB ◦ϕ ◦µ−1

A .
Then for each s ∈ A∗, γ(s) is a polynomial of Z〈B〉.

γ(s) = ∑
x∈B∗

〈γ(s),x〉x (4)

We are now ready to present the announced formula:

Proposition 2. If ϕ : A∗ → B∗ is a morphism, then

(

ϕ(u)

x

)

= ∑
s∈A∗

(

u

s

)

〈γ(s),x〉= ∑
|s|6|x|

(

u

s

)

〈γ(s),x〉 (5)

Proof. Observing that µ−1
A (a) = a−1 for each letter a ∈ A, one gets

γ(a) = µB(ϕ(a)−1) = µB(ϕ(a))−1 =
(

∑
x∈B∗

(

ϕ(a)

x

)

x
)

−1 = ∑
x∈B+

(

ϕ(a)

x

)

x

and thus 〈γ(a),1〉= 0. It follows that 〈γ(s),x〉= 0 if |x|< |s|. Furthermore, for each
u ∈ A∗, one gets on the one hand from (3)

µB(ϕ(u)) = ∑
x∈B∗

(

ϕ(u)

x

)

x

and on the other hand, using (3) and (4)

γ(µA(u)) = γ
(

∑
s∈A∗

(

u

s

)

s
)

= ∑
s∈A∗

(

u

s

)

γ(s) = ∑
s∈A∗

∑
x∈B∗

(

u

s

)

〈γ(s),x〉x

Now since γ ◦µA = µB ◦ϕ , the polynomials µB(ϕ(u)) and γ(µA(u)) have the same
coefficients, which gives (5).

Example 1. To illustrate the use of (5), let us show how to compute
(ϕ(u)

ab

)

. Let A =
{a,b,c}, B = {a,b} and let ϕ : A∗ → B∗ be the morphism defined by ϕ(a) = a,
ϕ(b) = ab and ϕ(c) = a2b. First, γ = µB ◦ϕ ◦µ−1

A is defined as follows:

γ(a) = µB(ϕ(a−1)) = µB(a−1) = a

γ(b) = µB(ϕ(b−1)) = µB(ab−1) = (1+a)(1+b)−1 = a+b+ab

γ(c) = µB(ϕ(c−1)) = µB(a
2b−1) = µB(a

2b)−1

= (1+a)(1+a)(1+b)−1 = 2a+aa+b+2ab+aab

Thus we get by (5)
(

ϕ(u)

ab

)

= ∑
s∈A∗

(

u

s

)

〈γ(s),ab〉= ∑
|s|62

(

u

s

)

〈γ(s),ab〉

8

We now need to compute the coefficients 〈γ(s),ab〉 for |s| 6 2. The non-zero coef-
ficients are the following:

〈γ(b),ab〉= 1 〈γ(c),ab〉= 2 〈γ(ab),ab〉= 1 〈γ(ac),ab〉= 1

〈γ(bb),ab〉= 1 〈γ(bc),ab〉= 1 〈γ(cb),ab〉= 2 〈γ(cc),ab〉= 2

and finally
(

ϕ(u)

ab

)

=

(

u

b

)

+2

(

u

c

)

+

(

u

ab

)

+

(

u

ac

)

+

(

u

bb

)

+

(

u

bc

)

+2

(

u

cb

)

+2

(

u

cc

)

.

4 Languages recognized by p-groups

Let p be a prime number. A p-group is a group whose order is a power of p. A
p-group language is a language whose syntactic monoid is a p-group.

4.1 Two descriptions of the p-group languages

The following result is credited to Eilenberg and Schützenberger in [6].

Proposition 3. A language of A∗ is a p-group language if and only if it is a Boolean
combination of languages of the form

L(x,r, p) = {u ∈ A∗ |
(

u

x

)

≡ r mod p}, (6)

where 0 6 r < p and x ∈ A∗.

We now give another characterization. A function f : A∗ → Z is said to be a linear
combination of binomial coefficients if there exist c1, . . . ,cn ∈ Z and x1, . . . ,xn ∈ A∗

such that, for all u ∈ A∗,

f (u) = c1

(

u

x1

)

+ · · · + cn

(

u

xn

)

(7)

Since the function f (u) = c
(

u

1

)

maps every word to the constant c, every constant

function is a linear combination of binomial coefficients.

Proposition 4. A language of A∗ is a p-group language if and only if it is a finite
union of languages of the form

L(f1, . . . , fr, p) = {u ∈ A∗ | f1(u)≡ ·· · ≡ fr(u)≡ 0 mod p} (8)

where f1, . . . , fr are linear combinations of binomial coefficients.

9

Proof. Let Gp be the Boolean algebra generated by the languages of the form
L(x,r, p) and let Sp be the set of languages that are finite unions of languages of the
form L(f1, . . . , fr, p).

Step 1. Sp is a Boolean algebra. First, Sp is closed under union by definition. It is
also closed under intersection since

L(f1, . . . , fr, p)∩L(g1, . . . ,gs, p) = L(f1, . . . , fr,g1, . . . ,gs, p). (9)

In particular,
L(f1, . . . , fr, p) = L(f1, p)∩ ·· · ∩L(fr, p). (10)

It remains to show that Sp is closed under complementation. Since Sp is closed
under union and intersection, it suffices to prove that the complement of each lan-
guage of the form L(f , p), where f is a linear combination of binomial coefficients,
belongs Sp. Now

L(f , p)c = {u ∈ A∗ | f (u) 6≡ 0 mod p}

=
⋃

c∈Fp\{0}

{u ∈ A∗ | f (u)≡ c mod p}

=
⋃

c∈Fp\{0}

{u ∈ A∗ | (f − c)(u)≡ 0 mod p}

It remains to observe that f − c is a linear combination of binomial coefficients to
conclude.

Step 2: Sp ⊆ Gp. It suffices to show that every language of the form L(f , p) belongs
to Gp. Now if f is given by (7), one gets

L(f , p) =
⋃

{(r1,...,rn)|c1r1+···+cnrn≡0 mod p}

(

L(x1,r1, p)∩ ·· · ∩L(xn,rn, p)
)

(11)

and thus L(f , p) ∈ Gp as required. Thus Sp ⊆ Gp.

Step 3: Gp ⊆ Sp. This immediately follows from the formula

L(x,r, p) = L(f , p) where f (u) =−r
(

u

1

)

+
(

u

x

)

.

Thus Gp = Sp and it now suffices to apply Proposition 3 to conclude the proof.

Note that one can compute the minimal automaton of a language of the form
L(f1, . . . , fr, p) by computing its derivatives as follows:

u−1L = {x ∈ A∗ | f1(ux) = f2(ux) = · · ·= fn(ux)≡ 0 mod p} .

10

4.2 An algorithm for p-group languages

Let p be a prime number and let Un(Fp) be the group of unitriangular2 n × n-
matrices with coefficients in Fp, the finite field of order p. Then Un(Fp) is a p-group
and it is a well-known fact that every p-group is isomorphic to a subgroup of some
Un(Fp), for a suitable choice of n.

Let π : A→Un+1(Fp) be a map3 and let G be the subgroup of Un+1(Fp) generated
by π(A). Then π extends to a surjective monoid morphism π : A∗ → G which maps
every word a1 · · ·ak ∈ A∗ to the matrix π(a1) · · ·π(ak). For 1 6 i < j 6 n+1, we let
πi, j : A∗ → Fp be the map defined, for all u ∈ A∗, by

πi, j(u) = (π(u))i, j (12)

By definition, a language K is recognized by π if there exists a subset S of G such
that K = π−1(S). According to Proposition 4, K is a finite union of languages of
the form L(f1, . . . , fr, p). We now give an algorithm to obtain this representation
explicitly.
Setting, for each s ∈ S, Ks = π−1(s), one gets

K =
⋃

s∈S

Ks and

Ks = {u ∈ A∗ | for 1 6 i < j 6 n+1, πi, j(u) = si, j }

It just remains to verify that the languages Ks are of the form L(f1, . . . , fr, p). But
this follows immediately from the following result:

Proposition 5. Each function πi, j is a linear combination of binomial coefficients.

Proof. Let θ : A →Un+1(Fp) be the map defined by θ(a) = π(a)−1 for all a ∈ A.
Then θ extends to a ring morphism θ : Z〈A〉→Un+1(Fp) and for 1 6 i < j 6 n+1,
the maps θi, j : A∗ → Fp are defined as in (12). Since θ(a) is a strictly triangular
matrix for all a ∈ A, it follows that θ(x) = 0 for all words x of length > n. Note
however that θ(x) is not in general equal to π(x)−1.

Let also µ : A∗ → Z〈A〉 be the monoid morphism defined by µ(a) = 1+ a for
all a ∈ A. Thus µ is the restriction to A∗ of the Magnus automorphism introduced
in Section . Since the formula θ(µ(a)) = θ(1+a) = 1+θ(a) = π(a) holds for all
a ∈ A, one has π = θ ◦µ .

A∗ Z〈A〉 Un+1(Fp)

π

µ θ

2 An n×n-matrix is unitriangular if its diagonal coefficients are all equal to 1 and all its coefficients
below the diagonal are equal to 0.
3 The switch from n to n+1 will be justified later on.

11

It follows by (3) that

π(u) = θ(µ(u)) = θ
(

∑
x∈A∗

(

u

x

)

x
)

= ∑
x∈A∗

(

u

x

)

θ(x) = ∑
|x|6n

(

u

x

)

θ(x)

and hence

πi, j(u) = ∑
|x|6n

θi, j(x)
(

u

x

)

(13)

which shows that πi, j is a linear combination of binomial coefficients.

An interesting special case occurs if the language is defined by constraints on the
first row of the matrix, for instance for a language of the form

L = {u ∈ A∗ | π1,2(u) = · · · = π1,n(u) = 0}

Observing that L can also be written as

L = {u ∈ A∗ | (1,0, . . . ,0)π(u) = (1,0, . . . ,0)}

one can directly obtain a deterministic automaton for L by taking F
n
p as set of states,

the state (0, . . . ,0) as initial and unique final state and by defining the transitions,
for each (z1, . . . ,zn) ∈ F

n
p and each letter a, by setting

(z1, . . . ,zn)·a = (z′1, . . . ,z
′
n),

where (1,z1, . . . ,zn)π(a) = (1,z′1, . . . ,z
′
n), (14)

that is,

z′1 = π1,2(a)+ z1,

z′2 = π1,3(a)+π2,3(a)z1 + z2,

z′3 = π1,4(a)+π2,4(a)z1 +π3,4(a)z2 + z3, etc.

This algorithm is illustrated by the examples presented in Section .

4.3 Three examples

These three examples will be used in Section . The languages of the first two exam-
ples were also considered by Thérien [15].

Example 2. The subgroup of U3(F2) generated by the two matrices

a =

(

1 1 0
0 1 0
0 0 1

)

and b =

(

1 0 0
0 1 1
0 0 1

)

is isomorphic to D4. A confluent rewriting system for this group is a2 → 1, b2 → 1
and baba → abab. The group consists of the matrices

12

1 =

(

1 0 0
0 1 0
0 0 1

)

a =

(

1 1 0
0 1 0
0 0 1

)

b =

(

1 0 0
0 1 1
0 0 1

)

ab =

(

1 0 1
0 1 0
0 0 1

)

ba =

(

1 1 0
0 1 1
0 0 1

)

aba =

(

1 0 1
0 1 1
0 0 1

)

bab =

(

1 1 1
0 1 0
0 0 1

)

abab =

(

1 0 1
0 1 0
0 0 1

)

Let π : A∗ → D4 be the natural morphism and let

L1 = {u ∈ A∗ | π1,2(u) = π1,3(u) = 0}.

To obtain a deterministic automaton for L1, we take F2
2 as the set of states and define

the transitions, for all (z1,z2) ∈ F
2
2, by setting

{

(z1,z2) ·a = (1+ z1,z2)

(z1,z2) ·b = (z1,z1 + z2)

(15)

(16)

The resulting automaton, which turns out to be minimal, is the following:

0,0 1,0 1,1 0,1

a

a b

b a

a

b b

Figure 1 The minimal automaton of L1.

The syntactic monoid of L1 is the group D4 presented by the relations a2 = 1, b2 = 1
and (ba)2 = (ab)2. Its syntactic image is {1,b}.

1 2 3 4

∗ 1 1 2 3 4

a 2 1 4 3

b 1 3 2 4

ab 3 1 4 2

1 2 3 4

ba 2 4 1 3

aba 4 2 3 1

bab 3 4 1 2

abab 4 3 2 1

Applying (13) with n = 2 one gets

13

π1,2(u) = ∑
|x|62

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1)+
(

u

a

)

θ1,2(a)+
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa)+
(

u

ab

)

θ1,2(ab)+
(

u

ba

)

θ1,2(ba)+
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

π1,3(u) = ∑
|x|62

(

u

x

)

x1,3 =
(

u

1

)

θ1,3(1)+
(

u

a

)

θ1,3(a)+
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa)+
(

u

ab

)

θ1,3(ab)+
(

u

ba

)

θ1,3(ba)+
(

u

bb

)

θ1,3(bb)

=
(

u

ab

)

It follows that
L1 =

{

u ∈ {a,b}∗ |
(

u

a

)

≡
(

u

ab

)

≡ 0 mod 2
}

(17)

Moreover, for all u ∈ {a,b}∗,

(0,0)·u =

(

(

u

a

)

,
(

u

ab

)

)

where the binomial coefficients are computed modulo 2. Thus the states of the min-
imal automaton of L1 encode the possible values modulo 2 of these two binomial
coefficients. Now, one can recover (15) and (16) by observing that, if

(0,0)·u =
(

z1,z2
)

=

(

(

u

a

)

,
(

u

ab

)

)

then

(0,0)·ua =
(

z1,z2
)

·a =

(

(

ua

a

)

,
(

ua

ab

)

)

=

(

(

u

a

)

+1,
(

u

ab

)

)

= (z1 +1,z2)

and

(0,0)·ub = (z1,z2) ·b =

(

(

ub

a

)

,
(

ub

ab

)

)

=

(

(

u

a

)

,
(

u

ab

)

+
(

u

a

)

)

= (z1,z1 + z2) .

Example 3. The group D4 is also generated by the two matrices

a =

(

1 1 0
0 1 1
0 0 1

)

and b =

(

1 1 1
0 1 0
0 0 1

)

A confluent rewriting system for this group is b2 → 1, aba → b, ba2 → a2b, bab →
a3, a4 → 1 and a3b → ba. The group consists of the matrices

14

1 =

(

1 0 0
0 1 0
0 0 1

)

a =

(

1 1 0
0 1 1
0 0 1

)

b =

(

1 1 1
0 1 0
0 0 1

)

a2 =

(

1 0 1
0 1 0
0 0 1

)

ab =

(

1 0 1
0 1 1
0 0 1

)

ba =

(

1 0 0
0 1 1
0 0 1

)

a3 =

(

1 1 1
0 1 1
0 0 1

)

a2b =

(

1 1 0
0 1 0
0 0 1

)

Let π : A∗ → D4 be the natural morphism and let

L2 = {u ∈ A∗ | π1,2(u) = π1,3(u) = 0}.

To obtain a deterministic automaton for L2, we take F2
2 as the set of states and define

the transitions, for all (z1,z2) ∈ F
2
2, by setting

{

(z1,z2) ·a = (1+ z1,z1 + z2)

(z1,z2) ·b = (1+ z1,1+ z2)

(18)

(19)

The resulting automaton, which turns out to be minimal, is the following:

0,0 1,0

0,11,1

a

a,b

a

a,b b b

Figure 2 The minimal automaton of L2.

Applying (13) with n = 2 one gets4

4 It is easy to make mistakes in this computation. Recall that in general θ(x) 6= π(x)−1. Thus for

instance θ(ba) = θ(b)θ(a) =
(

0 0 1
0 0 0
0 0 0

)

and π(ba)−1 =
(

0 0 0
0 0 1
0 0 0

)

, whence θ1,3(ba) = 1.

15

π1,2(u) = ∑
|x|62

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1)+
(

u

a

)

θ1,2(a)+
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa)+
(

u

ab

)

θ1,2(ab)+
(

u

ba

)

θ1,2(ba)+
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

+
(

u

b

)

π1,3(u) = ∑
|x|62

(

u

x

)

θ1,3(x) =
(

u

1

)

θ1,3(1)+
(

u

a

)

θ1,3(a)+
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa)+
(

u

ab

)

θ1,3(ab)+
(

u

ba

)

θ1,3(ba)+
(

u

bb

)

θ1,3(bb)

=
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

It follows that

L2 =
{

u ∈ {a,b}∗ |
(

u

a

)

+
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

≡ 0 mod 2
}

(20)

Moreover, for all u ∈ {a,b}∗,

(0,0)·u =

(

(

u

a

)

+
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

)

where the binomial coefficients are computed modulo 2. Thus the states of the min-
imal automaton of L1 encode the possible values modulo 2 of these two linear com-
binations of binomial coefficients. Now, one can recover (18) and (19) by observing
that, if

(0,0)·u =
(

z1,z2
)

=

(

(

u

a

)

+
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

ba

)

)

then

(0,0)·ua =
(

z1,z2
)

·a =

(

(

ua

a

)

+
(

ua

b

)

,
(

ua

b

)

+
(

ua

aa

)

+
(

ua

ba

)

)

=

(

(

u

a

)

+1+
(

u

b

)

,
(

u

b

)

+
(

u

aa

)

+
(

u

a

)

+
(

u

ba

)

+
(

u

b

)

)

= (z1 +1,z1 + z2)

and

(0,0)·ub = (z1,z2) ·b =

(

(

ub

b

)

+
(

ub

a

)

,
(

ub

b

)

+
(

ub

aa

)

+
(

ub

ba

)

)

=

(

(

u

a

)

+
(

u

b

)

+1,
(

u

b

)

+1+
(

u

aa

)

+
(

u

ba

)

)

= (z1 +1,z2 +1) .

The syntactic monoid of L2 is the group D4, but this time presented by the group
relations b2 = 1, a4 = 1 and a3b = ba. Its syntactic image is {1,ba}.

16

1 2 3 4

∗ 1 1 2 3 4

a 2 3 4 1

b 4 3 2 1

a2 3 4 1 2

1 2 3 4

ab 3 2 1 4

ba 1 4 3 2

a3 4 1 2 3

a2b 2 1 4 3

Example 4. The subgroup of U4(F2) generated by the two matrices

a =





1 1 0 0
0 1 0 1
0 0 1 0
0 0 0 1



 b =





1 0 1 0
0 1 0 1
0 0 1 1
0 0 0 1





is isomorphic to Q8. A confluent rewriting system for this group is b2 → a2, aba→ b,
ba2 → a2b, bab → a, a4 → 1 and a3b → ba. The group consists of the matrices of
the following form, where ε1,ε2,ε3 ∈ F2.





1 ε1 ε2 ε3
0 1 0 ε1 + ε2
0 0 1 ε2
0 0 0 1





Let π : A∗ → Q8 be the natural morphism and let

L3 = {u ∈ A∗ | π1,2(u) = π1,3(u) = π1,4(u) = 0}.

To obtain a deterministic automaton for L2, we take F3
2 as the set of states and define

the transitions, for all (z1,z2,z3) ∈ F
3
2, by setting

{

(z1,z2,z3) ·a = (z1 +1,z2,z1 + z3)

(z1,z2,z3) ·b = (z1,z2 +1,z1 + z2 + z3)

(21)

(22)

17

0,0,0 1,0,0

0,0,11,0,1

1,1,1 0,1,0

1,1,00,1,1

a

a

a

a

a

a

a

a

bb

b b

b b

bb

Figure 3 The minimal automaton of L3.

Applying (13) with n = 3 one gets

π1,2(u) = ∑
|x|63

(

u

x

)

θ1,2(x) =
(

u

1

)

θ1,2(1)+
(

u

a

)

θ1,2(a)+
(

u

b

)

θ1,2(b)

+
(

u

aa

)

θ1,2(aa)+
(

u

ab

)

θ1,2(ab)+
(

u

θ

)

(ba)1,2ba+
(

u

bb

)

θ1,2(bb)

=
(

u

a

)

π1,3(u) = ∑
|x|63

(

u

x

)

θ1,3(x) =
(

u

1

)

θ1,3(1)+
(

u

a

)

θ1,3(a)+
(

u

b

)

θ1,3(b)

+
(

u

aa

)

θ1,3(aa)+
(

u

ab

)

θ1,3(ab)+
(

u

ba

)

θ1,3(ba)+
(

u

bb

)

θ1,3(bb)

=
(

u

b

)

π1,4(u) = ∑
|x|63

(

u

x

)

θ1,4(x) =
(

u

1

)

θ1,4(1)+
(

u

a

)

θ1,4(a)+
(

u

b

)

θ1,4(b)

+
(

u

aa

)

θ1,4(aa)+
(

u

ab

)

θ1,4(ab)+
(

u

ba

)

θ1,4(ba)+
(

u

bb

)

θ1,4(bb)

=
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

It follows that

18

L3 =

{

u ∈ {a,b}∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2

}

(23)

Moreover, for all u ∈ {a,b}∗,

(0,0,0)·u =

(

(

u

a

)

,
(

u

b

)

,
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

)

where the binomial coefficients are computed modulo 2. Thus the states of the min-
imal automaton of L1 encode the possible values modulo 2 of these two linear com-
binations of binomial coefficients. Now, one can recover (21) and (22) by observing
that, if

(0,0,0)·u =
(

z1,z2,z3
)

=

(

(

u

a

)

,
(

u

b

)

,
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

)

then

(0,0,0)·ua =
(

z1,z2,z3
)

·a =

(

(

ua

a

)

,
(

ua

b

)

,
(

ua

aa

)

+
(

ua

ab

)

+
(

ua

bb

)

)

=

(

(

u

a

)

+1,
(

u

b

)

,
(

u

aa

)

+
(

u

a

)

+
(

u

ab

)

+
(

u

bb

)

)

= (z1 +1,z2,z1 + z3)

and

(0,0,0)·ub =
(

z1,z2,z3
)

·b =

(

(

ub

a

)

,
(

ub

b

)

,
(

ub

aa

)

+
(

ub

ab

)

+
(

ub

bb

)

)

=

(

(

u

a

)

,
(

u

b

)

+1,
(

u

aa

)

+
(

u

ab

)

+
(

u

a

)

+
(

u

bb

)

+
(

u

b

)

)

= (z1,z2 +1,z1 + z2 + z3)

The syntactic monoid of L3 is the group Q8 presented by the group relations a4 = 1,
b2 = a2 and a3b = ba. Its syntactic image is {1}.

1 2 3 4 5 6 7 8

∗ 1 1 2 3 4 5 6 7 8

a 2 3 4 1 6 7 8 5

b 6 5 8 7 4 3 2 1

a2 3 4 1 2 7 8 5 6

1 2 3 4 5 6 7 8

ab 5 8 7 6 3 2 1 4

ba 7 6 5 8 1 4 3 2

a3 4 1 2 3 8 5 6 7

a2b 8 7 6 5 2 1 4 3

The Cayley graph of this group is represented in Figure 4. As one can see, this
is exactly the same automaton as in Figure 3, up to the following renaming of the
states:

(0,0,0)↔ 1 (1,0,0)↔ a (0,0,1)↔ a2 (1,0,1)↔ a3

(0,1,0)↔ b (1,1,0)↔ ba (0,1,1)↔ a2b (1,1,1)↔ ab
(24)

19

1 a

a2a3

ab b

baa2b

a

a

a

a

a

a

a

a

bb

b b

b b

bb

Figure 4 The Cayley graph of Q8.

4.4 The varieties of languages Vc,p

In this section, we revisit the congruences first introduced in [6, p. 240] and also
studied in [15]. Let c be a nonnegative integer. For each alphabet A, let ∼p,c be
the congruence on A∗ defined by u ∼p,c v if and only if, for all words x such that
0 6 |x|6 c,

(

u

x

)

≡
(

v

x

)

mod p

This congruence has finite index and the languages which are saturated for this
congruence form a Boolean algebra Vc,p(A∗), which is also the Boolean algebra
generated by the languages L(x,r, p) for 0 6 r < p and |x| 6 c. x Let us first show
that the class Vc,p is closed under inverses of morphisms. This relies on the following
result.

Proposition 6. Let ϕ : A∗ → B∗ be a morphism. Let u and v be two words of A∗ such
that u ∼p,c v. Then ϕ(u)∼p,c ϕ(v).

Proof. If u ∼p,c v, one has, for 0 6 |s|6 c,
(

u

s

)

≡
(

v

s

)

mod p. Therefore by (5) we

obtain for |x|6 c,

(

ϕ(u)

x

)

−
(

ϕ(v)

x

)

= ∑
|s|6|x|

(

(

u

s

)

−
(

v

s

)

)

〈γ(s),x〉 ≡ 0 mod p

Thus ϕ(u)∼p,c ϕ(v).

We can now state:

20

Proposition 7. Let ϕ : A∗ → B∗ be a morphism and L a language of Vc,p(B∗). Then
ϕ−1(L) belongs to Vc,p(A∗).

Proof. Let L be a language of Vc,p(B∗). Let u∈ ϕ−1(L) and let v be a word such that
u ∼p,c v. Then ϕ(u) ∼p,c ϕ(v) by Proposition 6, and since u ∈ L and L is saturated
by ∼p,c, we get ϕ(v) ∈ L, that is, v ∈ ϕ−1(L). This proves that ϕ−1(L) is saturated
by ∼p,c and therefore ϕ−1(L) belongs to Vc,p(A∗).

Proposition 8. For each c, the class Vc,p is a variety of languages.

Proof. Proposition 7 shows that he class Vc,p is closed under inverses of morphisms.
Furthermore, Vc,p(A∗) is by definition a Boolean algebra, generated by the lan-
guages of the form L(x,r, p). We claim that it is closed under left quotient by a word
u. Arguing on induction on the length of u, it suffices to consider the case where u
is a letter a. Now, since left quotients commute with Boolean operations, it suffices
to prove that any left quotient of the form a−1

(

L(x,r, p)
)

belongs to Vc,p(A∗). If x is
the empty word, then L(x,r, p) is either empty or equal to A∗ and the result is trivial.
Suppose that x is nonempty. Then, we get by (1):

a−1(L(x,r, p)
)

=

{

u ∈ A∗ |
(

au

x

)

≡ r mod p

}

=







{u ∈ A∗ |
(

u

x

)

+
(

u

s

)

≡ r mod p} if x = as for some s

{u ∈ A∗ |
(

u

x

)

≡ r mod p} otherwise

=

{

∪r1+r2≡r mod p

(

L(x,r1, p)∩L(s,r2, p)
)

if x = as

L(x,r, p) otherwise

which proves the claim. A dual argument proves that Vc,p(A∗) is closed under right
quotient. Thus Vc,p is a variety of languages.

5 The formation generated by D4 and by Q8

We are now ready to prove our main result.

Theorem 2. The groups D4 and Q8 generate the same formation and the associated
formation of languages is the variety V2,2.

Proof. Let F1 [F2] be the formation generated by D4 [Q8] and let F1 [F2] be the
associated formation of languages. Let V = V2,2 and let V be the associated group
formation, which is actually a variety. For each alphabet A, V (A∗) is by definition
the Boolean algebra generated by the languages L(x,r,2) for 0 6 r < 2 and |x|6 2.
Proposition 8 shows that V is a variety. We shall prove successively the following
properties:

(1) D4 and Q8 belong to V, and hence F1 and F2 are contained in V ,

21

(2) for each alphabet A, for 0 6 r < 2 and |x|6 1, the language L(x,r,2) belongs
to F1(A∗) and to F2(A∗),

(3) V is contained in F1 and hence V = F1,

(4) F1 is contained in F2.

Step 1. The syntactic monoids of L1 and L2 are both equal to D4 and that of L3 is
equal to Q8. Formula (17) shows that L1 belongs to V ({a,b}∗) and thus D4 belongs
to V. Moreover, Formula (23) shows that L3 can be written as

L(a,0,2)∩L(b,0,2)∩
(

⋃

i+ j+k≡0 mod 2

(L(ab, i,2)∩L(aa, j,2)∩L(bb,k,2))
)

and thus L3 belongs to V ({a,b}∗). It follows that Q8 belongs to V.

Step 2. If x = 1, the result is trivial. If x = a, where a is a letter, the syntactic
monoid of L(a,r,2) is the cyclic group C2. Since C2 is a quotient of both D4 and Q8,
it belongs to F1 and to F2 and thus L(a,r,2) belongs to F1(A∗) and to F2(A∗).

Step 3. Let A be an alphabet. It suffices to prove that, for |x|6 2 and r = 0 or r = 1,
the language L(x,r,2) belongs to F1(A∗). Let c(x) be the set of all letters occurring
in x. In the minimal automaton of L(x,r,2), every letter of A\c(x) acts as the identity
on the set of states. It follows that the languages L(x,r,2) and the language

{

u ∈ c(x)∗ |
(

u

x

)

≡ r mod 2

}

have the same syntactic monoid. Therefore, we may assume without loss of gener-
ality that A = {a,b}.

It already follows from (2) that for |x|6 1, L(x,r,2) belongs to F1(A∗). Suppose
now that x = ab with a 6= b. Then the minimal automaton of L(ab,0,2) is obtained
from the automaton of Figure 1 by taking (0,0) and (1,0) as final states. Indeed in
this way the parameter z2 =

(u
ab

)

will be equal to zero modulo 2. Thus the syntactic
monoid of L(ab,0,2) is D4 and since D4 belongs to F1, the language L(ab,0,2)
belongs to F1(A∗) and so does its complement L(ab,1,2).

Consider now the case x = aa. The automaton obtained from the automaton of
Figure 2 by taking (0,0) and (1,0) as final states recognizes the language

K =

{

u ∈ {a,b}∗ |
(

u

b

)

+
(

u

ba

)

+
(

u

aa

)

≡ 0 mod 2

}

The syntactic monoid of K is also D4 and thus K ∈ F1(A∗). Now since

L(aa,0,2) = (K ∩L(b,0,2)∩L(ba,0,2))∪ (K ∩L(b,1,2)∩L(ba,1,2))

∪ (Kc ∩L(b,0,2)∩L(ba,1,2))∪ (Kc ∩L(b,1,2)∩L(ba,0,2))

the language L(aa,0,2) and its complement L(aa,1,2) belong to F1({a,b}∗). Since
the languages L(bb,r,2) and L(aa,r,2) have the same syntactic monoid, we also
have L(bb,r,2) ∈ F1({a,b}∗) for r = 0 and r = 1.

22

Step 4. We will show that some language L having D4 as syntactic monoid belongs
to F2. By the Formation Theorem, this will show that D4 belongs to F2 and hence
that F1 is contained in F2 as required. We choose for L the language of Example
3:

L = ϕ−1(1) =

{

u ∈ {a,b}∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

≡ 0 mod 2

}

Let us now view D4 as the group {1,a,b,a2,ab,ba,a3,a2b} presented by the group
relations b2 = 1, a4 = 1 and a3b= ba and Q8 as the group {1,a,b,a2,ab,ba,a3,a2b}
presented by the group relations a4 = 1, b2 = a2 and a3b = ba.

Let B = {a,b} and C = {a,b,c}. Consider the following diagram,

B∗

D4 Q8

B∗C∗

ϕ κ

α

νi

αi

κi ϕi

in which the morphisms are defined by

ϕ(a) = a ϕ(b) = b α(a) = c α(b) = a

ϕ1(a) = a ϕ1(b) = b ϕ2(a) = a ϕ2(b) = b

ν1(a) = a2b ν1(b) = a ν2(a) = 1 ν2(b) = a

and

α1(a) = a α1(b) = b α1(c) = a2b

α2(a) = a α2(b) = b α2(c) = 1

κ1(a) = a κ1(b) = b κ1(c) = a2b

κ2(a) = a κ2(b) = b κ2(c) = 1

κ(a) = b κ(b) = 1 κ(c) = a

Note that ϕ1 = ϕ2, but we keep two distinct names to preserve homogeneity of the
notation. All these morphisms make the diagram commutative. Let

R1 = ϕ−1
1 (1) = ϕ−1

2 (1) Rb = ϕ−1
1 (b) = ϕ−1

2 (b)

Ra2 = ϕ−1
1 (a2) = ϕ−1

2 (a2) Ra2b = ϕ−1
1 (a2b) = ϕ−1

2 (a2b)

Lemma 1. The languages R1, Rb, Ra2 and Ra2b are all recognized by Q8 and hence
belong to F2(B∗).

23

Proof. Indeed, these languages are accepted by the automaton represented in Fig-
ure 4 by taking as final state 1, b, a2 and a2b respectively. Therefore, these four
languages are recognized by Q8 and belong to F2(B∗).

Using the state renaming described in (24), one sees that R1, Rb, Ra2 and Ra2b
are also accepted by the automaton represented in Figure 3 by taking as final state
(0,0,0), (0,1,0), (0,0,1) and (0,1,1) respectively. Coming back to the interpreta-
tion of these states as linear combinations of binomial coefficients, as described in
Example 4, one gets the following explicit descriptions:

R1 =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

Rb =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

+1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

≡ 0 mod 2
}

Ra2 =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+1 ≡ 0 mod 2
}

Ra2b =
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

+1 ≡
(

u

aa

)

+
(

u

ab

)

+
(

u

bb

)

+1 ≡ 0 mod 2
}

Let

R =
(

α−1
1 (R1)∩α−1

2 (R1)
)

∪
(

α−1
1 (Rb)∩α−1

2 (Rb)
)

∪
(

α−1
1 (Ra2)∩α−1

2 (Ra2)
)

∪
(

α−1
1 (Ra2b)∩α−1

2 (Ra2b)
)

A lengthy computation5 shows that

R =
{

u ∈C∗ |
(

u

a

)

≡
(

u

c

)

≡
(

u

ac

)

+
(

u

bc

)

+
(

u

cb

)

+
(

u

cc

)

≡ 0 mod 2
}

Now, by (2), one gets
(

u

bc

)

+
(

u

cb

)

=
(

u

b

)(

u

c

)

and
(

u

ac

)

+
(

u

ca

)

=
(

u

a

)(

u

c

)

. It follows

that
R =

{

u ∈C∗ |
(

u

a

)

≡
(

u

c

)

≡
(

u

ca

)

+
(

u

cc

)

≡ 0 mod 2
}

The syntactic monoid of R is D4 and is syntactic morphism is κ .

Lemma 2. The language R belongs to F2(C∗).

Proof. For i = 1,2, the morphism ϕi ◦αi is equal to κi and thus is surjective. By
definition of a formation of languages, the languages α−1

i (R1), α−1
i (Rb), α−1

i (Ra2)

and α−1
i (Ra2b) belong to F2(C∗). It follows that R belongs to F2(C∗).

Lemma 3. The language α−1(R) belongs to F2(B∗).

Proof. The syntactic morphism of R is κ . Then since κ ◦α = ϕ , κ ◦α is surjective
and by definition of a formation of languages, α−1(R) belongs to F2(B∗).

The last step consists in computing α−1(R).

5 See the Appendix.

24

Lemma 4. One has α−1(R) = L and thus L belongs to F2({a,b}∗).

Proof. Since νi = αi ◦α , one gets

α−1(R) =
(

ν−1
1 (R1)∩ν−1

2 (R1)
)

∪
(

ν−1
1 (Rb)∩ν−1

2 (Rb)
)

∪
(

ν−1
1 (Ra2)∩ν−1

2 (Ra2)
)

∪
(

ν−1
1 (Ra2b)∩ν−1

2 (Ra2b)
)

Another lengthy computation shows that

α−1(R) =
(

ν−1
1 (R1)∩ν−1

2 (R1)
)

∪
(

ν−1
1 (Ra2)∩ν−1

2 (Ra2)
)

=
{

u ∈ B∗ |
(

u

a

)

≡
(

u

b

)

≡
(

u

aa

)

+
(

u

ba

)

≡ 0 mod 2
}

Finally, Proposition 1 shows that when
(u

a

)

≡
(u

b

)

≡ 0 mod 2, then
(u

ab

)

≡
(u

ba

)

≡

0 mod 2. It follows that α−1(R) = L.

This concludes the proof of Theorem 2.

Important remark. It is tempting to prove directly that the languages ν−1
1 (R1),

ν−1
2 (R1), etc. belong to F2({a,b}∗). However, the morphism ϕ2 ◦ν2 is not surjec-

tive and one cannot conclude directly.

6 Conclusion

We used language theory to prove that D4 and Q8 generate the same formation and
that this formation is a variety of groups. Our project for the future would be to
show, also by language theoretic means, that any formation generated by a single
nilpotent group is a variety.

Acknowledgements

We would like to thank Ramón Esteban-Romero and Adolfo Ballester-Bolinches for
their useful comments and suggestions.

References

1. A. BALLESTER-BOLINCHES AND L. M. EZQUERRO, Classes of finite groups, Mathematics
and Its Applications (Springer) vol. 584, Springer, Dordrecht, 2006.

2. A. BALLESTER-BOLINCHES, J.-É. PIN AND X. SOLER-ESCRIVÀ, Formations of finite
monoids and formal languages: Eilenberg’s variety theorem revisited, Forum Math. 26 (2014),
1737–1761.

25

3. A. BALLESTER-BOLINCHES, J.-É. PIN AND X. SOLER-ESCRIVÀ, Languages associated
with saturated formations of groups, Forum Math. 27 (2015), 1471–1505.

4. O. CARTON, J.-E. PIN AND X. SOLER-ESCRIVÀ, Languages Recognized by Finite Super-
soluble Groups, Journal of Automata, Languages and Combinatorics 14,2 (2009), 149–161.

5. K. DOERK AND T. HAWKES, Finite soluble groups, de Gruyter Expositions in Mathematics
vol. 4, Walter De Gruyter & Co., Berlin, 1992.

6. S. EILENBERG, Automata, languages, and machines. Vol. B, Academic Press [Harcourt
Brace Jovanovich Publishers], New York, 1976. Pure and Applied Mathematics, Vol. 59.

7. W. GASCHÜTZ AND U. LUBESEDER, Kennzeichnung gesättigter Formationen, Math. Z. 82

(1963), 198–199.
8. M. LOTHAIRE, Combinatorics on words, Cambridge University Press, Cambridge, 1997.

With a foreword by Roger Lyndon and a preface by Dominique Perrin, corrected reprint of
the 1983 original, with a new preface by Perrin.

9. P. M. NEUMANN, A note on formations of finite nilpotent groups, Bull. London Math. Soc.
2 (1970), 91.

10. C. REUTENAUER, Free Lie algebras, London Mathematical Society Monographs. New Series
vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science
Publications.

11. L. A. SHEMETKOV, Product of formations of algebraic systems, Algebra and Logic 23,6
(1984), 484–490.

12. L. A. SHEMETKOV AND A. N. SKIBA, Formations of algebraic systems. (Formatsii al-
gebraicheskikh sistem.), Sovremenna� Algebra. [Modern Algebra], Sovremennaya
Algebra. Moskva: Nauka. 256 P. R. 3.00, Moscow, 1989. With an English summary.

13. A. N. SKIBA, Finite subformations of varieties of algebraic systems, in Problems in algebra,
No. 2 (Russian), pp. 7–20, 126, “Universitet.skoe”, Minsk, 1986.

14. H. STRAUBING, Families of recognizable sets corresponding to certain varieties of finite
monoids, J. Pure Appl. Algebra 15,3 (1979), 305–318.

15. D. THÉRIEN, Subword counting and nilpotent groups, in Combinatorics on words (Waterloo,
Ont., 1982), pp. 297–305, Academic Press, Toronto, ON, 1983.

16. P. WEIL, An extension of the Schützenberger product, in Lattices, semigroups, and universal
algebra (Lisbon, 1988), pp. 315–321, Plenum, New York, 1990.

17. P. WEIL, Products of languages with counter, Theoret. Comput. Sci. 76 (1990), 251–260.
18. P. WEIL, Closure of varieties of languages under products with counter, J. Comput. System

Sci. 45 (1992), 316–339.

26

Syntactic Structures of Regular Languages

O. Klíma1, L. Polák1

1 Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic,

{klima,polak}@math.muni.cz

Abstract

We introduce here the notion of syntactic lattice algebra which is an analogy of the
syntactic monoid and of the syntactic semiring. We present a unified approach to

get those three structures.

1 Introduction

The Eilenberg like theorems establish bijections between the class of all (in some
sense generalized) varieties of regular languages and the class of all pseudovari-
eties of certain algebraic structures — see Eilenberg [4], Pin [7], Straubing [12],
Polák [10]. The classical result concerns the varieties of regular languages and pseu-
dovarieties of finite monoids. The goal is an algorithmic procedure for deciding the
membership of a given language in various significant classes of regular languages.
A basic source of that theory is the book by Pin [9].

The aim of the present contribution is to introduce modifications of the notion
of the syntactic monoid which would be useful in other variants of Eilenberg type
theorems. As well-known the syntactic monoid of a language L over the alphabet A

can be viewed as the transformation monoid of the minimal complete deterministic
automaton DL of L. More precisely, we let words of A∗ act on states of DL and the
composition of such transformations corresponds to multiplication in the syntactic
monoid.

To get analogues of A∗ with the multiplication, we consider structures with more
operations, namely we use here the following three term algebras:

• F is the absolutely free algebra over the alphabet A with the operation symbol ·
and nullary symbol λ ,

• to get F ′ we enrich the previous signature by binary ∧ and nullary ⊤,
• to get F ′′ we enrich the last signature by binary ∨ and nullary ⊥.

Now we let our terms act on the set 2A∗
of all languages over A in a natural way (the

formal definitions are in Section 3).
We show here that identifying terms of F (F ′ and F ′′) giving the same transfor-

mations, we get exactly the free monoid A∗ over A, (the free semiring A� over A and
the free, so-called, lattice algebra A⋄ over A, respectively). Let us stress that all our
considerations concern three levels: level of monoids – the classical one (Pin [8, 9]),
level of semirings (considered also in Polák [10, 11]), and that of lattice algebras –
a new contribution.

27

When generating subalgebras in 2A∗
by a single regular language L using terms

from F , F ′ and F ′′, and choosing the final states appropriately, we get the classi-
cal minimal complete deterministic finite automaton of L (here called the canon-
ical finite automaton of L), the canonical meet automaton of L (see Section 6 of
Polák [10]) and the canonical lattice automaton of L, respectively. Then transform-
ing those automata accordingly, we get the corresponding syntactic structures.

Our constructions are also accompanied by examples. Moreover, a significant
instance of a future Eilenberg type theorems is presented.

2 Specific Algebraic Structures

Usually, a semiring has two binary operations denoted by + and ·, where the neutral
element for + is denoted by 0. Since we work with idempotent semirings, which
can be naturally ordered, we use the symbol ∧ instead of +, and the symbol ⊤
instead of 0 in the following basic definition. By an idempotent semiring we mean
the structure (S,∧, ·,⊤,1) where (S,∧,⊤) is a commutative idempotent monoid,
also called semilattice, with the neutral element ⊤, (S, ·,1) is a monoid with the
neutral element 1 and the zero element ⊤, and the operations ∧ and · satisfy the
usual distributivity laws

(∀a,b,c ∈ S) a · (b∧ c) = a ·b∧a · c, (b∧ c) ·a = b ·a∧ c ·a .

The set S can be naturally ordered: for every a,b ∈ S we have a ≤ b if and only if
a∧b = a. Then ⊤ becomes the greatest element in (S,≤). This explains our choice
of the symbol ⊤.

The elements of the free idempotent semiring A� over the set A can be repre-
sented by finite subsets of A∗. This representation is one-to-one. Operations are the
operation of union and the obvious multiplication, /0 is the neutral element for ∧, the
zero for · and {λ} is the neutral element for the multiplication. If we identify each
word u ∈ A∗ with the element {u} ∈ A�, then we can see A∗ as a subset of A�. For
each U = {u1, . . . ,uk}, k > 0, u1, . . . ,uk ∈ A∗ we can write U = u1 ∧·· ·∧uk.

Next structure we use is the free bounded distributive lattice A⋄ over A∗. The
elements of A⋄ are of the form

{{u1,1, . . . ,u1,r1}, . . . ,{uk,1, . . . ,uk,rk
}}, where k,r1, . . . ,rk ≥ 0,

ui, j ∈ A∗ for i = 1, . . . ,k, j = 1, . . . ,ri and the inner sets (1)

{ui,1, . . . ,ui,ri
}’s are incomparable with respect to ⊆ .

The interpretation of the element of the form (1) is

(u1,1 ∧·· ·∧u1,r1)∨·· ·∨ (uk,1 ∧·· ·∧uk,rk
) . (2)

28

Particularly, each element of the form {{u1, . . . ,uk}} ∈ A⋄ is identified with u1 ∧
·· ·∧uk, which is equal to {u1, . . . ,uk} in A�. Thus we can see A� as a subset of A⋄

under the identification U 7→ {U}. Defining the operations ∧ and ∨ on the set A⋄,
one uses the form (2) for the element of the form (1). For both operations, one uses
the distributivity laws first and then the superfluous (u j,1∧·· ·∧u j,r j

)’s are omitted to
get the (unique) element of the form (1). Notice that { /0} is the greatest element in A⋄

and /0 is the smallest one. For more details concerning the free bounded distributive
lattice see Appendix.

The structure A⋄ is equipped also with a multiplication, namely extend the mul-
tiplication from A∗ to A⋄ using

U · (V ∧W) = U ·V ∧U ·W , (U ∧V) ·w = U ·w∧V ·w , (3)

U · (V ∨W) = U ·V ∨U ·W , (U ∨V) ·w = U ·w∨V ·w ,

for U ,V ,W ∈ A⋄, w ∈ A∗.

We consider various kinds of automata. All of them are deterministic and com-
plete and could have infinite number of states. When using the term semiautomata,
no initial nor final states are specified.

Having an equivalence relation ρ on a set G and an element a ∈ G, we denote by
aρ the class of G/ρ containing a.

3 Transformation structures

Let A be a finite non-empty set. We consider the actions of term algebras mentioned
above on languages over the alphabet A.

For u ∈ A∗ and L ⊆ A∗, we write u−1L = {v ∈ A∗ | uv ∈ L}. We speak about a left

quotient of L.

Monoids. Let F be the absolutely free algebra (that is, the algebra of all terms)
over a set A with respect to the binary operational symbol · and nullary operational
symbol λ .

We define inductively the actions of elements of F on subsets of A∗ :

L◦λ = L, L◦a = a−1L for a ∈ A, L◦ (u · v) = (L◦u)◦ v for u,v ∈ F . (4)

This leads to a natural identification of certain pairs of elements of F , namely:
for u,v ∈ F , we put u ρ∗ v if and only if (∀ L ⊆ A∗) L◦u = L◦ v.

Proposition 1. The relation ρ∗ is a congruence relation on F and F/ρ∗ is isomor-

phic to the free monoid A∗ over A via the extension of the mapping aρ∗ 7→ a, a ∈ A.

Proof. Let u,v,w∈F . If u ρ∗ v then, for each L⊆A∗, we have L◦u= L◦v. Therefore
L◦(u ·w) = (L◦u)◦w = (L◦v)◦w = L◦(v ·w), which gives u ·w ρ∗ v ·w. Similarly,
L◦ (w ·u) = (L◦w)◦u = (L◦w)◦v = L◦ (w ·v), which gives w ·u ρ∗ w ·v. Thus ρ∗

is a congruence relation on F .

29

Now we prove that, for each u,v,w ∈ F , we have (u ·v) ·w ρ∗ u · (v ·w), λ ·u ρ∗ u

and u ·λ ρ∗ u. Indeed, choosing L ⊆ A∗, it holds L◦ ((u · v) ·w) = (L◦ (u · v))◦w =
((L ◦ u) ◦ v) ◦w = (L ◦ u) ◦ (v ·w) = L ◦ (u · (v ·w)). Furthermore, L ◦ (λ · u) = (L ◦
λ)◦u = L◦u, and L◦ (u ·λ) = (L◦u)◦λ = L◦u.

Thus we can omit brackets in elements of F and λ acts as a neutral element.
Therefore every element of F/ρ∗ can be represented by a word from A∗. It remains
to show that different words u and v represent different elements of F/ρ∗. Indeed,
for u 6= v, we have λ ∈ {u}◦u but λ 6∈ {u}◦ v.

Semirings. Let F ′ be the absolutely free algebra over A with respect to the opera-
tional symbols ·,λ , binary symbol ∧ and nullary symbol ⊤. We define inductively
the actions of elements of F ′ on 2A∗

: we use the formulas from (4) for u,v ∈ F ′ and

L◦⊤= A∗, L◦ (u∧ v) = (L◦u)∩ (L◦ v) for u,v ∈ F ′ . (5)

Again, it leads to certain identification of pairs of elements of F ′, namely: for
u,v ∈ F ′, we put u ρ� v if and only if (∀ L ⊆ A∗) L◦u = L◦ v.

Proposition 2. The relation ρ� is a congruence relation on F ′ and F ′/ρ� is iso-

morphic to the free idempotent semiring A� over A via the extension of the mapping

aρ� 7→ a, a ∈ A.

Proof. Let u,v,w ∈ F ′. If u ρ� v then, for each L ⊆ A∗, we have L ◦ u = L ◦ v. We
get u ·w ρ� v ·w and w ·u ρ� w · v as in the case of Proposition 1.

Furthermore, L◦(u∧w) = (L◦u)∩(L◦w) = (L◦v)∩(L◦w) = L◦(v∧w), which
gives u∧w ρ� v∧w. In the same way we can prove that w∧u ρ� w∧ v. Thus ρ�

is a congruence relation on F ′.
Now we show that (F ′/ρ�,∧,⊤ρ�) is a commutative idempotent monoid with

the neutral element ⊤ρ�. The commutativity and associativity of ∧ is clear as
well as the fact that ⊤ρ� is a neutral element for the operation ∧. To show the
idempotency of ∧ notice that, for each L ⊆ A∗ and u ∈ F ′, we have L ◦ (u∧ u) =
(L◦u)∩ (L◦u) = L◦u.

The proof of the associativity of · on F ′/ρ� and the fact that λρ� is a neutral
element for the operation · is similar to that for monoids. The fact that ⊤ρ� is a zero
element for · is clear.

Finally, we prove the distributivity laws. Let L⊆ A∗, u,v,w∈ F ′. Then L◦(u ·(v∧
w)) = (L◦u)◦(v∧w) = (L◦u)◦v∩(L◦u)◦w = L◦u ·v∩L◦u ·w = L◦(u ·v∧u ·w).
Similarly, L◦ ((u∧ v) ·w) = (L◦ (u∧ v))◦w = (L◦u∩L◦ v)◦w = (L◦u)◦w∩ (L◦
v)◦w = (L◦u ·w)∩ (L◦ v ·w) = L◦ (u ·w∧ v ·w).

We have proved that F ′/ρ� with the appropriate operations is an idempotent
semiring. Therefore every element of F ′/ρ� can be represented by u1 ∧ ·· · ∧ uk

with k ≥ 0 and u1, . . . ,uk ∈ A∗. To get the unique representation of such element we
use the idempotency and commutativity law and represent the element in F ′/ρ� by
the set {u1, . . . ,uk}. Having such two different sets {u1, . . . ,uk} and {v1, . . . ,vℓ}, ℓ≥
0, v1, . . . ,vℓ ∈A∗, we show that they are not ρ�-related. Indeed, put L= {u1, . . . ,uk}.
Then λ ∈ L ◦ {u1, . . . ,uk} = u−1

1 L∩ ·· · ∩ u−1
k L and λ ∈ L ◦ {v1, . . . ,vℓ} would give

{v1, . . . ,vℓ}$ {u1, . . . ,uk}. Take L = {v1, . . . ,vℓ} in this case.

30

Lattice algebras. Let F ′′ be the absolutely free algebra over A with respect to the
operational symbols ·,λ , ∧, ⊤, binary ∨ and nullary ⊥. We use (4), (5) with u,v∈F ′′

and
L◦ ⊥= /0, L◦ (u∨ v) = (L◦u)∪ (L◦ v) for u,v ∈ F ′′ . (6)

Again, it leads to certain identification of pairs of elements of F ′′, namely: for u,v ∈
F ′′, we put u ρ⋄ v if and only if (∀L ⊆ A∗) L◦u = L◦ v.

Proposition 3. The relation ρ⋄ is a congruence relation on F ′′ and F ′′/ρ⋄ is isomor-

phic to the free bounded distributive lattice A⋄ over A∗ equipped with multiplication

satisfying (3), via the extension of the mapping aρ⋄ 7→ a, a ∈ A.

Proof. Let u,v,w ∈ F ′′. If u ρ⋄ v then, for each L ⊆ A∗, we have L◦u = L◦v. We get
u ·w ρ⋄ v ·w, w ·u ρ⋄ w ·v, u∧w ρ⋄ v∧w, w∧u ρ⋄ w∧v as in the case of Proposition 2.
Furthermore, L◦ (u∨w) = (L◦u)∪ (L◦w) = (L◦ v)∪ (L◦w) = L◦ (v∨w), which
gives u∨w ρ⋄ v∨w. In the same way we can prove that w∨u ρ⋄ w∨ v. Thus ρ⋄ is
a congruence relation on F ′′.

Now we state the properties of operations ∧,∨, ·,⊤,⊥ and λ on F ′′/ρ⋄. Proofs of
all statements are straightforward and therefore omitted. The operation ∧ is commu-
tative, associative and idempotent, ⊤ is the neutral element and ⊥ is the zero. The
operation ∨ is commutative, associative and idempotent, ⊥ is the neutral element
and ⊤ is the zero. The operations ∧ and ∨ are connected by the distributivity laws.
The operation · is associative, λ is the neutral element, ⊤ and ⊥ are right zeros, and
⊤·a ρ⋄ ⊤, ⊥ ·a ρ⋄⊥ for all a ∈ A. Finally, the distributivity u · (v∨w) = u ·v∨u ·w
holds for arbitrary u,v,w ∈ F ′′ and the distributivity (u∨ v) ·w = u ·w∨ v ·w for
u,v ∈ F ′′ and w ∈ A∗. Similarly for the operation ∧.

We have proved that every element of F ′′/ρ⋄ can be represented as

(u1,1 ∧·· ·∧u1,r1)∨·· ·∨ (uk,1 ∧·· ·∧uk,rk
) ,

where k,r1, . . . ,rk ≥ 0 and ui, j ∈ A∗ for all i = 1, . . . ,k, j = 1, . . . ,ri. (Here k = 0
corresponds to the element ⊥ and k = 1, r1 = 0 corresponds to the element ⊤.)
Using the idempotency and commutativity of ∧ and ∨ we can write such element
even as {{u1,1, . . . ,u1,r1}, . . . ,{uk,1, . . . ,uk,rk

}}. To get canonical forms remove the
richer one from each pair of comparable inner sets.

Let U = {U1, . . . ,Uk} and V = {V1, . . . ,Vℓ} be different canonical forms. We
show that U and V represent elements of F ′′ which are not ρ⋄-related. If Ui 6∈ V ,
take L =Ui. Then λ ∈ L◦U and λ ∈ L◦V would give that Vj ⊆Ui for some Vj ∈ V

and we can take L =Vj. Therefore F ′′/ρ⋄ is isomorphic to A⋄.

Example 1. The distributivity (3) is not true for w∈A⋄ in general. Indeed, let a,b∈A

be different and let L = {aa,bb}. Then λ ∈ L◦ (a · (a∨b)∧b · (a∨b)) but L◦ ((a∧
b) · (a∨b)) = /0.

31

4 Canonical Automata

In each level, we consider the canonical finite automaton of a given regular lan-
guage. To show examples of three types of automata, we consider the language
L = a+b+ over the alphabet A = {a,b}.

Monoids. We considered the structure (2A∗
,A,◦) defined by (4). It is called here the

canonical semiautomaton on A. Given a regular language L over A, we can generate
a subsemiautomaton by L in (2A∗

,A,◦) called the canonical finite semiautomaton of
L; namely

DL = ({ L◦u | u ∈ A∗ },A,◦) .

It is really finite due to Proposition 4. Notice that L◦u = u−1L for all u ∈ A∗. Taking
L as the unique initial state and T = {L◦u | λ ∈ L◦u} as the set of all final states,
we get the canonical finite automaton of L.

Proposition 4 ([13]). Given a regular language L over the alphabet A, the automa-

ton DL = ({u−1L | u ∈ A∗},A,◦,L,T) is finite and accepts L.

For the sake of the completeness we prove this result in Appendix.

Example 2. In the canonical finite automaton DL of the language L = a+b+, we
have four states L = a+b+, K = a−1L = a∗b+, b−1L = /0 and b−1K = b∗. There is
just one state containing the empty word, namely the state b∗. Thus T = {b∗}. The
automaton is depicted on Figure 1.

L

K

/0

b∗

ab

a

b

b

a b

a

Fig. 1 The canonical finite automaton of the language L = a+b+.

Semirings. The structure (2A∗
,A,◦,∩) forms the canonical meet semiautomaton

on A. Moreover, given a regular language L over A, we can generate by L in
(2A∗

,A,◦,∩) the canonical finite meet semiautomaton of L; namely

ML = ({L◦U | U ∈ A� },A,◦,∩) .

Taking L as the unique initial state and all states containing λ as the set of all final
states, we get the canonical finite meet automaton ML of L.

32

Example 3. To construct the canonical finite meet automaton ML of the language
L = a+b+ we need to consider all possible intersections of states from DL. There
are two new states: the intersection K ∩ b∗ = b+ and the intersection of the empty
system

⋂
/0 = A∗. The canonical finite meet automaton is depicted on Figure 2.

L

K

b+

/0

A∗

b∗

ab

ab

a

b

b

a

b

a

b

a

Fig. 2 The canonical finite meet automaton of the language L = a+b+.

Dashed lines indicate the inclusion relation on the set of all states. The inclusion
relation completely describes a semilattice structure of the meet automaton ML.

Lattice algebras. The structure (2A∗
,A,◦,∩,∪) forms the canonical lattice semiau-

tomaton on A. Moreover, given a regular language L over A, we can generate by L

in (2A∗
,A,◦,∩,∪) the canonical finite lattice semiautomaton of L; namely

LL = ({L◦U | U ∈ A⋄},A,◦,∩,∪).

This structure is already mentioned in Klíma [5]. Taking L as the unique initial state
and all states containing λ as the set of all final states, we get the canonical finite

lattice automaton LL of L.

Example 4. We consider the canonical finite lattice automaton LL of the language
L = a+b+, which is depicted on Figure 3. There is only one new state, namely
Kλ = K ∪ b∗ = K ∪ {λ} in addition to the canonical finite meet automaton ML.
Now, the inclusion relation describes a lattice structure of LL.

5 Syntactic structures

The basic tool of the algebraic language theory is the concept of the syntactic
monoid of a regular language. It is a certain finite quotient of the free monoid on the

33

L

K

b+

/0

Kλ

A∗

b∗

ab

ab

a

b

b

a

b

a

a

b

b

a

Fig. 3 The canonical finite lattice automaton of the language L = a+b+.

corresponding alphabet. We recall here its definition and its construction. Then we
consider modifications for the remaining two levels.

Monoids. Given a regular language L over the alphabet A, we define the syntactic

congruence ∼∗
L of L on A∗ as follows: for u,v ∈ A∗, put u ∼∗

L v if and only if

(∀ p,q ∈ A∗) (puq ∈ L ⇐⇒ pvq ∈ L) .

The following is a folklore result.

Proposition 5. The relation ∼∗
L is a congruence relation on A∗. Moreover, for u,v ∈

A∗, we have that u ∼∗
L v if and only if

(∀ p ∈ A∗) (p−1L)◦u = (p−1L)◦ v .

Therefore, the structure A∗/∼∗
L is isomorphic to the transformation monoid of the

canonical finite semiautomaton of L.

We present here a proof since it is a suitable preparation for similar results in the
next levels.

Proof. Clearly, the relation ∼∗
L is reflexive, symmetric and transitive. Furthermore,

for u,v,w ∈ A∗, if u ∼∗
L v then uw ∼∗

L vw and wu ∼∗
L wv. Clearly, the fact u ∼∗

L v

is equivalent to (∀ p,q ∈ A∗)(q ∈ (pu)−1L ⇐⇒ q ∈ (pv)−1L), which is (∀ p ∈
A∗)(pu)−1L = (pv)−1L, that is (∀ p ∈ A∗)(p−1L)◦u = (p−1L)◦ v.

The structure A∗/∼∗
L is called the syntactic monoid of L.

34

Semirings. Given a regular language L over the alphabet A, we define the syntac-

tic (semiring) congruence ∼�

L of L on A� as follows: For U = {u1, . . . ,uk},V =
{v1, . . . ,vℓ} ∈ A�, we put U ∼�

L V if and only if

(∀ p,q ∈ A∗) (pu1q ∈ L, . . . , pukq ∈ L ⇐⇒ pv1q ∈ L, . . . , pvℓq ∈ L) .

Proposition 6 ([11]). The relation ∼�

L is a congruence relation on A�. Moreover,

for U,V ∈ A�, we have that U ∼�

L V if and only if

(∀ p ∈ A∗) (p−1L)◦U = (p−1L)◦V .

Proof. To show that the relation ∼�

L is a congruence relation on A� is easy and
similar to the case of monoids. Clearly, the fact U ∼�

L V is equivalent to

(∀ p,q ∈ A∗) q ∈ (pu1)
−1L∩·· ·∩ (puk)

−1L ⇐⇒ q ∈ (pv1)
−1L∩·· ·∩ (pvℓ)

−1L .

The last formula can be written as

(∀ p ∈ A∗)(pu1)
−1L∩·· ·∩ (puk)

−1L = (pv1)
−1L∩·· ·∩ (pvℓ)

−1L ,

which is (∀ p ∈ A∗) p−1L◦U = p−1L◦V .

Note that one can show (see [10]) that the structure A�/∼�

L is isomorphic to the
transformation semiring of the whole canonical finite meet semiautomata ML of L.
The structure A�/∼�

L is called the syntactic semiring of L.

Numerous examples of syntactic semirings can be found e.g. in [10]. In [11] it
is described how one can compute the syntactic semiring algorithmically from the
syntactic monoid. For the handmade computations we can use Proposition 6.

Example 5. Consider again the language L = a+b+. We can choose the words λ ,
a, b, ab, and ba to represent five different transformations. There are no others, be-
cause both a and b are idempotent elements of both syntactic monoid and syntactic
semiring and ba is a zero element. Moreover, ba is the smallest element in the syn-
tactic semiring, because ba transforms all states, with exception of A∗, to the state
/0. So, if we want to compute all elements of the syntactic semiring, it is enough to
consider only intersections of the elements λ , a, b and ab. The crucial observation
is that both λ ∧ ab and a∧ b give the same transformation as well as the intersec-
tion of any triple of elements. Hence in the syntactic semiring there are, besides the
element ⊤ and elements λ , a, b, ab, and ba, just five elements given by intersec-
tions λ ∧ a, λ ∧ b, λ ∧ ab, a∧ ab and b∧ ab. In Table 1 we present how all these
elements transform the canonical finite meet automaton. The semilattice part of the
syntactic semiring is fully described by Figure 4. Notice that for the computation of
the syntactic semiring we do not need to know all the information from Table 1. For
example, if a term U ∈ F ′ acts on the state b+, then the image is the intersection
of images of the states K and b∗. Moreover, the images of states /0 and A∗ are clear.
Thus we need to work only with first three columns.

35

L K b∗ b+ A∗ /0
λ L K b∗ b+ A∗ /0
a K K /0 /0 A∗ /0
b /0 b∗ b∗ b∗ A∗ /0
ab b∗ b∗ /0 /0 A∗ /0
ba /0 /0 /0 /0 A∗ /0
⊤ A∗ A∗ A∗ A∗ A∗ A∗

λ ∧a L K /0 /0 A∗ /0
λ ∧b /0 b+ b∗ b+ A∗ /0

λ ∧ab /0 b+ /0 /0 A∗ /0
a∧ab b+ b+ /0 /0 A∗ /0
b∧ab /0 b∗ /0 /0 A∗ /0

Table 1 The transformations of ML for the language L = a+b+.

λ∧a λ∧b a∧ab b∧ab

λ a b ab

⊤

λ∧ab

ba

Fig. 4 The semilattice order of the syntactic semiring of the language L = a+b+.

Lattice algebras. Given a regular language L over the alphabet A, we define
the so-called syntactic (lattice) congruence ∼⋄

L of L on A⋄ as follows: for U =
{U1, . . . ,Uk},V = {V1, . . . ,Vℓ} ∈ A⋄ we put U ∼⋄

L V if and only if, for every
p,q ∈ A∗, the condition

pU1q ⊆ L or . . . or pUkq ⊆ L

is equivalent to
pV1q ⊆ L or . . . or pVℓq ⊆ L .

Proposition 7. The relation ∼⋄
L is a congruence relation on A⋄. Moreover, for

U ,V ∈ A⋄, it holds that U ∼⋄
L V if and only if

(∀ p ∈ A∗) p−1L◦U = p−1L◦V .

36

Proof. To show that the relation ∼⋄
L is a congruence relation on A⋄ is easy and

similar to the case of monoids.
Let U ,V ∈ A⋄ are of the form

U = {U1, . . . ,Uk}, where U1 = {u1,1, . . . ,u1,r1}, . . . ,Uk = {uk,1, . . . ,uk,rk
} ,

V = {V1, . . . ,Vℓ}, where V1 = {v1,1, . . . ,v1,s1}, . . . ,Vℓ = {vℓ,1, . . . ,vℓ,sℓ} .

Clearly, U ∼⋄
L V is equivalent to (∀ p,q ∈ A∗)

q ∈ ((pu1,1)
−1L∩·· ·∩ (pu1,r1)

−1L)∪·· ·∪ ((puk,1)
−1L∩·· ·∩ (puk,rk

)−1L)

⇐⇒ q ∈ (pv1,1)
−1L∩·· ·∩ (pv1,s1)

−1L∪·· ·∪ (pvℓ,1)
−1L∩·· ·∩ (pvℓ,sℓ)

−1L ,

which is

(∀ p ∈ A∗) ((pu1,1)
−1L∩·· ·∩ (pu1,r1)

−1L)∪·· ·∪ ((puk,1)
−1L∩·· ·∩ (puk,rk

)−1L)

= ((pv1,1)
−1L∩·· ·∩ (pv1,s1)

−1L)∪·· ·∪ ((pvℓ,1)
−1L∩·· ·∩ (pvℓ,sk

)−1L) ,

that is (∀ p ∈ A∗) p−1L◦U = p−1L◦V .

The structure A⋄/∼⋄
L is called the syntactic lattice algebra of L.

Note that in this third level it is not true that the structure A⋄/∼⋄
L is isomorphic

to the transformation lattice algebra of the whole canonical lattice semiautomaton
LL of L as mentioned in the next example.

Example 6. Now we present the syntactic lattice algebra of the language L = a+b+.
First of all, we could mentioned an interesting fact: the terms λ ∧ ab and a∧ b

transform LL in a different way, namely Kλ ◦ (λ ∧ab) = b∗ and Kλ ◦ (a∧b) = b+.
However these two terms λ ∧ ab and a∧ b give the same element in the syntactic
semiring of L, because they transform the states from DL in the same way. In other
words, λ ∧abρ⋄

L a∧b. This example just recalls the observation from Proposition 7,
that we need to check the images of the three states L, K and b∗ only.

We can start from the syntactic semiring of L, since the syntactic lattice algebra
can be viewed as an extension of the syntactic semiring by adding joins. Thus we
need to compute joins of all elements described in Table 1. This can be done by a
brute force algorithm, which gives Table 2.

To see that the computation is complete, we have to add some basic observations.
At first, one can check the following equalities λ = (λ ∧a)∨ (λ ∧b), a = (λ ∧a)∨
(a∧ ab) and b = (λ ∧ b)∨ (b∧ ab). Therefore we can remove elements λ , a and b

from the generating set. Since the elements ⊤, λ ∧ ab and ba are comparable with
the others, we do not obtain new elements adding these element into the joins. Thus,
we need to compute the joins for five elements λ ∧a, λ ∧b, a∧ab b∧ab and ab.

We observe that a∧ab transforms the state L to b+, and that no other image of L

under applications λ ∧a, λ ∧b, b∧ab contains the word b. This means that a∧ab

can not be covered by a join of elements λ ∧ a, λ ∧ b, b∧ ab. In the similar way,
b∧ab transforms K to b∗ which contains λ , and therefore b∧ab can not be covered

37

L K b∗ L K b∗

λ L K b∗ (λ ∧a)∨ (b∧ab) L Kλ /0
a K K /0 (λ ∧a)∨b L Kλ b∗

b /0 b∗ b∗ (λ ∧a)∨ab Kλ Kλ /0
ab b∗ b∗ /0 (λ ∧b)∨ (a∧ab) b+ b+ b∗

ba /0 /0 /0 (λ ∧b)∨a K Kλ b∗

⊤ A∗ A∗ A∗ (λ ∧b)∨ab b∗ b∗ b∗

λ ∧a L K /0 (a∧ab)∨ (b∧ab) b+ b∗ /0
λ ∧b /0 b+ b∗ (a∧ab)∨λ K K b∗

λ ∧ab /0 b+ /0 (a∧ab)∨b b+ b∗ b∗

a∧ab b+ b+ /0 (b∧ab)∨a K Kλ /0
b∧ab /0 b∗ /0 λ ∨ab Kλ Kλ b∗

Table 2 The transformations of LL for the language L = a+b+.

by a join of elements λ ∧a, λ ∧b, a∧ab. To see that both λ ∧a and λ ∧b can not be
covered by a join of the others elements from the following ones λ ∧a, λ ∧b, a∧ab

b∧ ab, ab, we just mention that K ◦ (λ ∧ a) = K contains ab and b∗ ◦ (λ ∧ b) = b∗

contains λ .
From the observations from the previous paragraph we can state that joins of

elements λ ∧a,λ ∧b,a∧ab,b∧ab are pairwise different elements of the syntactic
lattice algebra of L. So we obtain 15 elements in this way. If we add the element ab

into some of these joins, then we can remove from this join both a∧ab and b∧ab if
they occur. So, we obtain additionally four elements ab, ab∨ (λ ∧a), ab∨ (λ ∧b),
ab∨ (λ ∧a)∨ (λ ∧b) = ab∨λ .

Altogether, the syntactic lattice of L consists of 22 elements (see Figure 5): ⊥=
ba, λ ∧ab, 15 elements described above as joins of elements λ ∧a,λ ∧b,a∧ab,b∧
ab, and finally the elements ab, ab∨ (λ ∧a), ab∨ (λ ∧b), ab∨λ , ⊤.

6 General algebras

The Eilenberg like theorems establish bijections between certain varieties of regular
languages and pseudovarieties of certain algebraic systems. Not every finite monoid
is isomorphic to a syntactic one, we have to generate the appropriate pseudovariety.
Similarly in remaining levels.

Monoids. Here one considers varieties of languages and pseudovarieties of finite
monoids. The Eilenberg theorem can be find in e.g. [8].

Semirings. Here one considers the so-called conjunctive varieties of languages and
pseudovarieties of finite semirings. For more details see e.g. [10].

Lattice algebras. The following new definition of a notion of lattice algebras is
a part of an effort of formulation of Eilenberg like theorem using the notion of

38

λ∧a λ∧b a∧ab

λ a

λ∧ab

⊥

b

b∧ab

ab

⊤

Fig. 5 The order of the syntactic lattice algebra of the language L = a+b+.

syntactic lattice algebra. Such a theorem is not formulated or even proved in this
paper. Nevertheless, we try here to characterize the finite factors of A⋄.

A lattice algebra is 8-tuple (K,∧,∨, ·,P,⊥,⊤,1) where (K,∧,∨) is a bounded
distributive lattice with the bottom element ⊥ and the top element ⊤, (K, ·,1) is
a monoid with right zero elements ⊥ and ⊤, P is a finite subset of K such that
the lattice (K,∧,∨) is generated by the set of all products of elements from P and
⊤· p =⊤ and ⊥· p =⊥ hold for p ∈ P, and finally such that the distributivities

q · (r∧ s) = q · r∧q · s, q · (r∨ s) = q · r∨q · s ,

(q∧ r) · p = q · p∧ r · p, (q∨ r) · p = q · p∨ r · p

hold for all q,r,s ∈ K and p ∈ P.
Notice that, considering A⋄, take P equal to the image of A, ⊤ the image of { /0}

and ⊥ the image of /0.

39

7 Characterizing Reversible Languages

We consider the class of all reversible languages (see Golovkins and Pin [2]). We
present them using the Ambainis and Freivalds condition (see [1]).

Proposition 8 ([1, 2]). Let L be a regular language over an alphabet A. Then L is

recognized by a reversible automaton if and only if the following condition for the

canonical automaton of L holds:

(∀x,y ∈ A∗, f ,g ∈ Q) f 6= g, f ◦ x = g = g◦ x =⇒ g◦ y = g . (7)

Note that a condition from the previous statement is usually formulated in a dif-
ferent way, namely that the canonical automaton of L does not contain the following
configuration, with f 6= g 6= h.

f g h

x

x y

Fig. 6 The forbidden configuration for reversible language.

In [2] the Ambainis-Freivalds condition (7) for the language L was translated to
a certain algebraic condition concerning the syntactic monoid of L together with the
image of L in the syntactic homomorphism. They also mention that this class is not
closed under binary intersections nor unions. Therefore it is not an instance of any
known Eilenberg correspondence.

Here we show an equivalent condition which is, in some sense, an identity for
the canonical lattice algebra of the considered language. We need the following
classical notion from the semigroup theory. Each element s in a finite semigroup
has a unique idempotent element among its powers, which is denoted by sω . So
we use this notation for lattice algebra, where this operation ()ω is related to the
operation of multiplication. Moreover, in a fixed finite semigroup S, one can find
natural number m such that sω = sm for every element s ∈ S.

We are not going to define here the notion of an identity for (finite) lattice alge-
bras in a full generality. Nevertheless, we use the concrete condition

xω y∨ (xω z∧ t) = xω y∨ (xω t ∧ z) . (8)

It is valid in the syntactic lattice algebra LL of the language L if we get the same
element of (8) on left and right sides after substituting p ∼⋄

L, u ∼⋄
L, v ∼⋄

L and w ∼⋄
L

(p,u,v,w ∈ A∗), for x,y,z and t, respectively.

Proposition 9. The canonical automaton of a regular language L satisfies (7) if and

only if the canonical lattice algebra of L satisfies condition (8).

40

Proof. To simplify notation we write simply u instead of u ∼⋄
L, for any u ∈ A∗. This

simplification does not lead to a confusion, because for a state of K of the canonical
semiautomaton of a language L, by K ◦ (U ∼⋄

L) is meant K ◦U .
Let L be a regular language with the canonical automaton satisfying the condition

(7). Let p,u,v,w ∈ A∗ be arbitrary words and denote U = pω u∨ (pω v∧w),V =
pω u∨(pω w∧v), both from A⋄/∼⋄

L. Furthermore, let s∈A∗ be an arbitrary word and
consider the state K = s−1L in the canonical automaton of L. We need to show that
K◦U =K◦V . At first, assume that K◦ pω =K. Then K◦U =K◦u∪(K◦v∩K◦w)
which is equal to K ◦V . Assume now that K ◦ pω 6= K, particularly K ◦ p 6= K. From
the definition of pω we know that (K ◦ pω) ◦ pω = K ◦ pω . Since the canonical
semiautomaton DL satisfies (7), we get that (K ◦ pω)◦ y = K ◦ pω for every y ∈ A∗.
Therefore, K ◦U = K ◦ pω ∪ (K ◦ pω ∩K ◦w) = K ◦ pω and similarly we obtain
K ◦V = K ◦ pω ∪ (K ◦ pω ∩K ◦ v) = K ◦ pω .

To prove the opposite implication, we consider a regular language L which has
the forbidden configuration in its canonical semiautomaton DL and then we show
that its canonical lattice algebra does not satisfy (8). Let f ,g,h be states in DL and
x,y ∈ A∗ be words such that f 6= g 6= h, f ◦ x = g = g ◦ x and h = g ◦ y. Recall that
f ,g,h ⊆ A∗, because there are left quotient of L. Since f 6= g, there is a word s ∈ A∗

such that s ∈ f , s 6∈ g or s 6∈ f , s ∈ g. Note that the condition s ∈ f is equivalent to
λ ∈ s−1 f , i.e. λ ∈ f ◦ s. Similarly, since g 6= h, there is a word r such that r ∈ g,
r 6∈ h or r 6∈ g, r ∈ h. Thus there are four cases to be discussed. In all these cases,
the word p = x is already fixed by the forbidden configuration. For this p, we have
f ◦ pω = g.

Case I) If s ∈ f , s 6∈ g, r ∈ g, r 6∈ h then we put u = s, v = r and w = s and
consequently we denote U = pω u∨ (pω v∧w), V = pω u∨ (pω w∧v). Now we see
that

λ 6∈ g◦ s = (f ◦ pω)◦ s = f ◦ (pω u) = f ◦ (pω w) ,

λ ∈ g◦ r = (f ◦ pω)◦ r = f ◦ (pω v) and

λ ∈ f ◦ s = f ◦w .

Therefore, λ ∈ f ◦ pω u∪(f ◦ pω v∩ f ◦w) = f ◦U and λ 6∈ f ◦ pω u∪(f ◦ pω w∩ f ◦
v) = f ◦V . Hence f ◦U 6= f ◦V and U , V are different elements in the canonical
lattice algebra of L.

Case II) If s ∈ f , s 6∈ g, r 6∈ g, r ∈ h then we put u = s, v = yr and w = s and again
U = pω u∨ (pω v∧w), V = pω u∨ (pω w∧ v). Now we have

λ 6∈ g◦ s = (f ◦ pω)◦ s = f ◦ (pω u) = f ◦ (pω w) ,

λ ∈ h◦ r = (f ◦ pω y)◦ r = f ◦ (pω v) and

λ ∈ f ◦ s = f ◦w .

Therefore, λ ∈ f ◦ pω u∪ (f ◦ pω v∩ f ◦w) = f ◦U and λ 6∈ f ◦ pω u∪ (f ◦ pω w∩
f ◦ v) = f ◦V . This means that U 6= V in the canonical lattice algebra of L.

Case III) If s 6∈ f , s ∈ g, r ∈ g, r 6∈ h then we put u = yr, v = s, w = pr, U =
pω u∨ (pω v∧w) and V = pω u∨ (pω w∧ v). Now we have

41

λ 6∈ h◦ r = (g◦ y)◦ r = g◦u = (f ◦ pω)◦u = f ◦ (pω u) ,

λ ∈ g◦ s = g◦ v = (f ◦ pω)◦ v = f ◦ (pω v) ,

λ ∈ g◦ r = (f ◦ p)◦ r = f ◦w and

λ 6∈ f ◦ s = f ◦ v .

Hence, λ ∈ f ◦ pω u∪(f ◦ pω v∩ f ◦w) = f ◦U and λ 6∈ f ◦ pω u∪(f ◦ pω w∩ f ◦v) =
f ◦V .

Case IV) If s 6∈ f , s ∈ g, r 6∈ g, r ∈ h then we put u = r, v = s and w = ps and
consequently U = pω u∨ (pω v∧w), V = pω u∨ (pω w∧ v). Now we see that

λ 6∈ g◦ r = g◦u = (f ◦ pω)◦u = f ◦ (pω u) ,

λ ∈ g◦ s = g◦ v = (f ◦ pω)◦ v = f ◦ (pω v) ,

λ ∈ g◦ s = (f ◦ p)◦ s = f ◦w and

λ 6∈ f ◦ s = f ◦ v .

And we can finish this case in the same manner as the previous ones.

8 Appendix

8.1 The Free Bounded Distributive Lattice

The free (bounded) distributive lattice over a finite set is well-known – see i.e.
Grätzer [3]. Here we describe how to get a free distributive lattice over an arbitrary
set.

Proposition 10. Let X be an arbitrary set. The set X of all elements

{{u1,1, . . . ,u1,r1}, . . . ,{uk,1, . . . ,uk,rk
}}, (9)

k,r1, . . . ,rk ≥ 0, ui, j ∈ X for i = 1, . . . ,k, j = 1, . . . ,ri ,

with the inner sets incomparable is the carrier of a free bounded distributive lattice

over X. The interpretation of the above element is

(u1,1 ∧·· ·∧u1,r1)∨·· ·∨ (uk,1 ∧·· ·∧u1,rk
). (10)

This tells us how to apply the lattice operations. Notice that { /0} is the greatest

element and /0 is the smallest one.

Proof. We present here the elements of the free object by canonical forms.
Taking a term over X with respect to operational symbols ∧ and ∨ and using the

laws of associativity, idempotency, commutativity and distributivity, we can get a
term of the form (10). If two inner set are comparable, we can omit the richer one.

42

We show that two different elements of X differ by an appropriate evaluation of
variables in the two element lattice {0,1}, 0 < 1. So let U and V be two different
canonical forms. We assume that

U = {U1, . . . ,Uk}, U1 = {u1,1, . . . ,u1,r1}, . . . ,Uk = {uk,1, . . . ,uk,rk
} ,

V = {V1, . . . ,Vℓ}, V1 = {v1,1, . . . ,v1,s1}, . . . ,Vℓ = {vℓ,1, . . . ,vℓ,sℓ} ,

There exists i ∈ {1, . . . ,k} such that Ui 6∈ V (the case of the Vi 6∈ U can be treated
similarly). Send ui,1, . . . ,ui,ri

to 1 and all other variables to 0. Then U goes to 1 and
V goes to 1 only if there is a proper subset Vi′ of Ui. In this case, send all elements
of Vi′ to 1 and all other variables to 0. Then V goes to 1 and it is impossible that
there is some Ui′′ ∈ U such that Ui′′ ⊆Vi′ . Thus U goes to 0.

Thus the elements of X can be treated as the canonical forms.

8.2 Proof of Proposition 4

Proposition 4 ([13]). Given a regular language L over the alphabet A, the automa-

ton DL = ({u−1L | u ∈ A∗},A,◦,L,T) is finite and accepts L.

Proof. Take a finite automaton (Q,A, ·, i,T ′) accepting L. For q ∈ Q, put Lq = {v ∈
A∗ | q · v ∈ T ′}. In particular Li = L. Notice that, for each q ∈ Q and a ∈ A, we have
Lq·a = a−1Lq. Furthermore, in DL we have that, for each u ∈ A∗, it holds u−1L = Li·u

and therefore there are only finitely many (u−1L)’s.
Now the automaton DL accepts a word u if and only if λ ∈ L◦u = u−1L, that is

u ∈ L.

References

1. A. Ambainis and R. Freivalds, 1-Way Quantum Finite Automata: Strengths, Weaknesses and

Generalizations, In Proc. FOCS 1998, pp. 332-341 (1998).
2. M. Golovkins and J.-É. Pin, Varieties generated by certain models of reversible finite au-

tomata, Chicago Journal of Theoretical Computer Science 2, (2010).
3. G. Grätzer, General Lattice Theory, Second edition, Birkhäuser (2003).
4. S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press (1976).
5. O. Klíma, On varieties of automata enriched with an algebraic structure (Extended abstract),

In Proc. AFL 2014, EPTCS 151, pp 49-54 (2014), arXiv:1405.5272.
6. O. Klíma and L. Polák, Hierarchies of piecewise testable languages, In Proc. Developments

Language Theory 2008, LNCS 5257, pp 479-490 (2008).
7. J.-É. Pin, A variety theorem without complementation, Russian Mathem. (Iz. VUZ) 39, pp

74-83 (1995).
8. J.-É. Pin, Syntactic Semigroups, Chapter 10 in Handbook of Formal Languages, G. Rozenberg

and A. Salomaa eds, Springer (1997).
9. J.-É. Pin, Varieties of Formal Languages, North Oxford Academic, Plenum (1986).

10. L. Polák, Syntactic semiring of a language, In Proc. Mathematical Foundations of Computer
Science 2001, LNCS 2136, pp 611–620 (2001).

43

11. L. Polák, Syntactic semiring and universal automaton, In Proc. Developments Language The-
ory, Szeged 2003, LNCS 2710, pp 411-422 (2003).

12. Straubing, H.: On logical descriptions of regular languages, In Proc. LATIN 2002, Springer
Lecture Notes in Computer Science, Vol. 2286, pp 528-538 (2002).

13. Yu, S.: Regular languages, Chapter 2 in Handbook of Formal Languages. G. Rozenberg and
A. Salomaa eds, Springer (1997).

44

Improving witnesses for state complexity of catenation

combined with boolean operations

P. Caron, J.-G. Luque, B. Patrou

Université de Rouen, France, {Pascal.Caron, Jean-Gabriel.Luque, Bruno.Ptrrou}@univ-rouen.fr

Abstract

We propose a common 3-letters witness for state complexity of catenation

combined with union and catenation combined with intersection proving two

conjectures of Brzozowski. We use some combinatorial tools to prove that this

witness does not fit for the combination of the catenation with the symmetric

difference.

1 Introduction

Cui et al. [3] compute the state complexity for the combination of catenation with

union and intersection operations. They build a witness over a 3-letters alphabet for

the ∪-case and over a 4-letters alphabet for the ∩-case.

Furthermore, Brzozowski [1] proposes a family of automata which should be

good candidates for witnesses for many combinations of operations. In his work,

several conjectures are stated. In particular, he proposes a common 4-letters witness

for the previous combinations. An equivalent work for the combination of catenation

with symmetric difference is done in [2] where a 4-letters Brzozowski witness is

built.

In this paper, we give a Brozowski witness with only 3 letters which improves

conjecture 18 and 19 of [1]. It is still common for both combinations and also im-

proves the result of Cui et al. [3].

We also prove, using some combinatorial objects, this witness does not suit for

the symmetric difference operation.

Section and give some definitions and notations about automata and combina-

toric. In section , we show that every state of our witness is accessible. Section ,

is devoted to separability of pair of states for both combinations. In Section 1, we

explain using some combinatorial tools why our witness fails for the combination

of the catenation and the symmetric difference.

2 Preliminaries

For any integer i ∈ Z, any p ∈N\{0}, we set ip = min{ j | j ≥ 0∧ j ≡ i(p)}. Let Σ
denotes a finite alphabet. A word w over Σ is a finite sequence of symbols of Σ . The

length of w, denoted by |w| is the number of occurrences of symbols of Σ in w. For

45

a ∈ Σ , we denote by |w|a the number of a in w. The set of all finite words over Σ is

denoted by Σ ∗. The empty word is denoted by ε . A language is a subset of Σ ∗. The

set of subsets of a finite set A is denoted by 2A and |A| denotes the cardinality of A.

The symbol ◦ denotes any binary boolean operation on languages. In the following,

by abuse of notation, we often write q for any singleton {q}.

A finite automaton (FA) is a 5-tuple A = (Σ ,Q, I,F, ·) where Σ is the input alpha-

bet, Q is a finite set of states, I ⊂ Q is the set of initial states, F ⊂ Q is the set of

final states and · is the transition function from Q×Σ to 2Q. An FA is deterministic

(DFA) if |I|= 1 and for all q ∈ Q, for all a ∈ Σ , |q ·a| ≤ 1. The transition function is

extended to any word by q · aw =
⋃

q′∈q·a q′ ·w and q · ε = q for any symbol a of Σ

and any word w of Σ ∗. For convenience, we sometimes use the notation q
w
−→ q′ to

denote that q′ ∈ q ·w.

The dual operation is defined by w · q = {q′ | q ∈ q′ · w}. We extend the dot

notation to any set of states S by S ·w =
⋃

s∈S s ·w and w · S =
⋃

s∈S w · s. A word

w ∈ Σ ∗ is recognized by an FA A if I ·w∩F 6= /0.

We assume that all FAs are complete which means that for all q∈Q, for all a∈ Σ ,

|q · a| ≥ 1. A state q is accessible in an FA if there exists a word w ∈ Σ ∗ such that

q ∈ I ·w. The language recognized by an FA A is the set L(A) of words recognized

by A. For convenience we will often identify A with L(A). Two automata are said to

be equivalent if they recognize the same language.

Let D = (Σ ,QD, iD,FD, ·) be a DFA. Two states q1,q2 of D are equivalent if for

any word w of Σ ∗, q1 ·w ∈ FD if and only if q2 ·w ∈ FD. Such an equivalence is

denoted by q1 ∼ q2. A DFA is minimal if there does not exist any equivalent com-

plete DFA with less states and it is well known that for any DFA, there exists a

unique minimal equivalent one [6]. Such a minimal DFA can be obtained from D by

computing the accessible part of the automaton D/ ∼= (Σ ,QD/ ∼, [iD],FD/ ∼, ·)
where for any q ∈ QD, [q] is the ∼-class of the state q and satisfies the property

[q] ·a = [q ·a], for any a ∈ Σ . In a minimal DFA, any two distinct states are pairwise

inequivalent.

The state complexity of a regular language L denoted by (L) is the number of

states of its minimal DFA. Let Ln be the set of languages of state complexity n. The

state complexity of a unary operation ⊗ is the function ⊗ associating with an integer

n the maximum of the state complexities of (⊗L) for L ∈ Ln. A language L ∈ Ln

is a witness (for ⊗) if (⊗L) =⊗ (n). This can be generalized, and the state com-

plexity of a k-ary operation ⊗ is the k-ary function which associates with any tuple

(n1, . . . ,nk) the integer max{(⊗(L1, . . . ,Lk))|Li ∈ L\〉
,∀〉 ∈ [∞,‖]}. Then, a witness

is a tuple (L1, . . . ,Lk)∈ (Ln1
×·· ·×Lnk

) such that (⊗(L1, . . . ,Lk)) =⊗ (n1, . . . ,nk).
An important research area consists in finding witnesses for any (n1, . . . ,nk) ∈ N

k.

The state complexity of an operation defined as a composition of more elemen-

tary ones is upper-bounded by the composition of the corresponding elementary

state complexities.

For example, consider the ternary operation defined for any three languages

L1,L2,L3 by L1 · (L2 ∪L3) and let h be its state complexity. Denote f ,g the respec-

tive state complexity of catenation and union. Then for any three integers n1,n2,n3,

46

it holds h(n1,n2,n3)≤ f (n1,g(n2,n3)) [5]. In fact, applying the union on a witness

does not produce a good candidate for a witness for catenation.

In [1], Brzozowski defines a family of languages that turns to be universal wit-

nesses for several operations. The automata denoting these languages are called

Brzozowski automata. We need some background to define these automata. We fol-

low the terminology of [4]. Let Q = {0, . . . ,n−1} be a set. A transformation of the

set Q is a mapping of Q into itself. If t is a transformation and i an element of Q,

we denote by it the image of i under t. A transformation of Q can be represented

by t = [i0, i1, . . . in−1] which means that ik = kt for each 0 ≤ k ≤ n− 1 and ik ∈ Q.

A permutation is a bijective transformation on Q. The identity permutation of Q is

denoted by 1. A cycle of length ℓ≤ n is a permutation c, denoted by (i0, i1, . . . iℓ−1),
on a subset I = {i0, . . . , iℓ−1} of Q where ikc = ik+1 for 0 ≤ k < ℓ−1 and iℓ−1c = i0.

A transposition t = (i, j) is a permutation on Q where it = j and jt = i and for every

elements k ∈ Q \ {i, j}, kt = k. A contraction t =

(

i

j

)

is a transformation where

it = j and for every elements k ∈ Q \ {i}, kt = k. Then, a Brzozowski automaton

is a complete DFA (Σ ,Q = {0, . . . ,n− 1},0,F = {n− 1}, ·), where any letter of Σ
induces one of the transformation among transposition, cycle over Q, contraction

and identity.

3 Tools

In the following of this paper, let A = (Σ ,QA, iA,FA, ·A), B = (Σ ,QB, iB,FB, ·B) and

C = (Σ ,QC, iC,FC, ·C) be any three DFAs with |QA| = m, |QB| = n and |QC| = p

for any three integers m, n, p. We recall two classical constructions allowing to

compute a DFA for the catenation and for any binary boolean operation over two

rational languages.

We define the DFA A ·B = (Σ ,Q, i,F, ·) as follows :

• Q = {(p,S) | p ∈ QA,S ⊂ QB}

• i =

{

(iA, /0) if iA 6∈ FA

(iA,{iB}) otherwise

• F = {(p,S) | S∩FB 6= /0}

• (p,S) ·a =

{

(p ·a,S ·a) if p ·a 6∈ FA

(p ·a,S ·a∪{iB}) otherwise

We define the DFA A◦B = (Σ ,Q, i,F, ·) as follows :

• Q = {(p,q) | p ∈ QA,q ∈ QB}
• i = (iA, iB)
• F = {(p,q) | p ∈ FA}◦{(p,q) | q ∈ FB}
• (p,q) ·a = (p ·a,q ·a)

It is easy to verify the following lemma:

Lemma 1. L(A ·B) = L(A) ·L(B) and L(A◦B) = L(A)◦L(B).

47

Combining these two constructions, we obtain the DFA A · (B ◦C) whose states

are of the form (i,T) where i ∈ QA and T ⊂ QB ×QC.

For any state (i,T), assuming |QB| = n and |QC| = p, the set T can be seen as a

tableau with n rows and p columns where any cell (j,k) is marked if and only if the

couple of states (j,k) is in T (see Figure 5). In the following, for simplicity, when

the dimensions are fixed, we assimilate a tableau with the set of its marked cells.

Fig. 1 The tableau corresponding to T = {(3,2),(1,5),(3,5)} with n = 6 and p = 7.

Since the state complexity of catenation is •(m,m′) = (m− 1)2m′
+ 2m′−1 and

the state complexity of a binary boolean operation ◦ is bounded by ◦(n, p) = np

(see [7]), from Claim , their composition allows to bound the state complexity of

A · (B◦C) by (m−1)2np +2np−1. This bound is reached when ◦= ∩ [3].

The state complexity for the combination of catenation with union (A · (B∪C))
has been studied in [3] but it can be reinterpreted using the tableaux defined pre-

viously. Let (i,T) and (i,T ′) be two distinct states such that the couples (x,x′) and

(y,y′) are in T ′ and T = T ′ ∪ {(x,y′)}. Then the two states (i,T) and (i,T ′) are

equivalent. Indeed, to separate these states, one has to find a word w such that (1)
T ′ ·w is equal to a set of couples which members are both non-final and (2) (x,y′) ·w
leads to a couple of states at least one of the two is final. The fact that x ·w or y′ ·w
is final contradicts (1). So (i,T) and (i,T ′) are equivalent.

Such equivalent states have tableaux with specific patterns. Indeed, the tableaux

for T and T ′ contain the pattern of Figure 6(a) and Figure 6(b) respectively. None of

them can be distinguished from the pattern of Figure 6(c). So the number of equiva-

lent states is the number of indistinguishable tableaux represented by the patterns of

Figure 6. The number of tableaux not containing patterns of Figure 6(a) or Figure

6(b) is (2n −1)(2p −1)+1.

Fig. 2 Three indistinguishable tableaux (a), (b), (c), for the union operator.

48

Indeed, one has to choose among n rows and p columns (at least one of each) and

mark every cell at the intersection of the chosen rows and columns ((2n − 1)(2p −
1)) plus one configuration with no cell marked. We also have to count the same

tableaux but with the cell (0,0) marked (2n−12p−1 tableaux). Combined with the

state complexity of catenation, these observations lead to the state complexity (m−
1)((2n − 1)(2p − 1) + 1) + 2n−12p−1 = (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 of

A · (B∪C).
As there exist DFAs A, B and C such that there are no indistinguishable tableaux

for A · (B∩C), the state complexity of catenation combined with intersection coin-

cides with the bound.

As for the union, some particular states are necessarily equivalent for A · (B⊕C).
Let (i,T) and (i,T ′) be two distinct states such that the couples (x,x′), (x,y′) and

(y,y′) are in T ′ and T = T ′ ∪ {(y,x′)}. Then the two states (i,T) and (i,T ′) are

equivalent. Indeed, if a word w separates (i,T) and (i,T ′), then w sends y in FB or

x′ in FC but not both, sending (i,T) to a final state of A · (B⊕C). This cannot be

achieved without sending (i,T ′) to a final state of A · (B⊕C), thus contradicting the

separation by w.

Such equivalent states imply indistinguishable tableaux as described below. Four

distinct marked cells s1, s2, s3 and s4 define a rectangle if there exist four integers

x, x′, y and y′ such that {s1,s2,s3,s4}= {x,y}×{x′,y′}. Three distinct marked cells

s1, s2 and s3 form a right triangle if there exists an unmarked cell s4 such that s1,

s2, s3 and s4 form a rectangle (See Figure 3 and Figure 4). A tableau T is saturated

if it does not contain any right triangle. For each tableau T , we define Sat(T) as the

smallest saturated tableau containing T . Notice that Sat(T) is the intersection of all

saturated tableaux containing T . Its existence is ensured since the tableau with each

cell marked is saturated. Its unicity is due to the fact that the intersection of two

saturated tableau containing T is still a saturated tableau containing T .

Fig. 3 A rectangle.

Let αn,p be the number of saturated tableaux with n lines and p rows. Further-

more, if i is final in A, then T contains (0,0) and consequently so does Sat(T). Let

α ′
n,p be the number of such tableaux where the cell (0,0) is marked. The values αn,p

and α ′
n,p are precised in [2] where it is proved that

Theorem 1. sc(A · (B⊕C)) = (m−1)αn,p +α ′
n,p

Combining these two constructions, we obtain the DFA A · (B ◦C) whose states

are of the form (i,T) where i ∈ QA and T ⊂ QB ×QC.

49

Fig. 4 A right triangle.

For any state (i,T), assuming |QB| = n and |QC| = p, the set T can be seen as a

tableau with n rows and p columns where any cell (j,k) is marked if and only if the

couple of states (j,k) is in T (see Figure 5). In the following, for simplicity, when

the dimensions are fixed, we assimilate a tableau with the set of its marked cells.

Fig. 5 The tableau corresponding to T = {(3,2),(1,5),(3,5)} with n = 6 and p = 7.

Since the state complexity of catenation is •(m,m′) = (m− 1)2m′
+ 2m′−1 and

the state complexity of a binary boolean operation ◦ is bounded by ◦(n, p) = np

(see [7]), from Claim , their composition allows to bound the state complexity of

A · (B◦C) by (m−1)2np +2np−1. This bound is reached when ◦= ∩ [3].

The state complexity for the combination of catenation with union (A · (B∪C))
has been studied in [3] but it can be reinterpreted using the tableaux defined pre-

viously. Let (i,T) and (i,T ′) be two distinct states such that the couples (x,x′) and

(y,y′) are in T ′ and T = T ′ ∪ {(x,y′)}. Then the two states (i,T) and (i,T ′) are

equivalent. Indeed, to separate these states, one has to find a word w such that (1)
T ′ ·w is equal to a set of couples which members are both non-final and (2) (x,y′) ·w
leads to a couple of states at least one of the two is final. The fact that x ·w or y′ ·w
is final contradicts (1). So (i,T) and (i,T ′) are equivalent.

Such equivalent states have tableaux with specific patterns. Indeed, the tableaux

for T and T ′ contain the pattern of Figure 6(a) and Figure 6(b) respectively. None of

them can be distinguished from the pattern of Figure 6(c). So the number of equiva-

lent states is the number of indistinguishable tableaux represented by the patterns of

Figure 6. The number of tableaux not containing patterns of Figure 6(a) or Figure

6(b) is (2n −1)(2p −1)+1.

Indeed, one has to choose among n rows and p columns (at least one of each) and

mark every cell at the intersection of the chosen rows and columns ((2n − 1)(2p −

50

Fig. 6 Three indistinguishable tableaux (a), (b), (c), for the union operator.

1)) plus one configuration with no cell marked. We also have to count the same

tableaux but with the cell (0,0) marked (2n−12p−1 tableaux). Combined with the

state complexity of catenation, these observations lead to the state complexity (m−
1)((2n − 1)(2p − 1) + 1) + 2n−12p−1 = (m− 1)(2n+p − 2n − 2p + 2) + 2n+p−2 of

A · (B∪C).
As there exist DFAs A, B and C such that there are no indistinguishable tableaux

for A · (B∩C), the state complexity of catenation combined with intersection coin-

cides with the bound.

As for the union, some particular states are necessarily equivalent for A · (B⊕C).
Let (i,T) and (i,T ′) be two distinct states such that the couples (x,x′), (x,y′) and

(y,y′) are in T ′ and T = T ′ ∪ {(y,x′)}. Then the two states (i,T) and (i,T ′) are

equivalent. Indeed, if a word w separates (i,T) and (i,T ′), then w sends y in FB or

x′ in FC but not both, sending (i,T) to a final state of A · (B⊕C). This cannot be

achieved without sending (i,T ′) to a final state of A · (B⊕C), thus contradicting the

separation by w.

Such equivalent states imply indistinguishable tableaux as described below. Four

distinct marked cells s1, s2, s3 and s4 define a rectangle if there exist four integers

x, x′, y and y′ such that {s1,s2,s3,s4}= {x,y}×{x′,y′}. Three distinct marked cells

s1, s2 and s3 form a right triangle if there exists an unmarked cell s4 such that s1,

s2, s3 and s4 form a rectangle (See Figure 3 and Figure 4). A tableau T is saturated

if it does not contain any right triangle. For each tableau T , we define Sat(T) as the

smallest saturated tableau containing T . Notice that Sat(T) is the intersection of all

saturated tableaux containing T . Its existence is ensured since the tableau with each

cell marked is saturated. Its unicity is due to the fact that the intersection of two

saturated tableau containing T is still a saturated tableau containing T .

Let αn,p be the number of saturated tableaux with n lines and p rows. Further-

more, if i is final in A, then T contains (0,0) and consequently so does Sat(T). Let

α ′
n,p be the number of such tableaux where the cell (0,0) is marked. The values αn,p

and α ′
n,p are precised in [2] where it is proved that

Theorem 2. sc(A · (B⊕C)) = (m−1)αn,p +α ′
n,p

51

4 Accessibility

We propose as a common family of witnesses for A · (B∪C) and A · (B∩C) the

family of triples Wm,n,p presented in Figure 9.

0 1 2 . . . m−2 m−1

a,b a a a a

a

c c b,c b,c b,c

b 0 1 2 . . . n−2 n−1

a,b b b b b

b

c a,c a,c a,c

a,c

0 1 2 . . . p−2 p−1

b b b b b

b

a,c a a,c a,c a,c

c

Fig. 9 3-letters witness for A · (B∪C) and A · (B∩C)

According to the constructions described in Section , we define, for each m,n, p≥
3 the automaton A · (B◦C) whose accessible states are indexed by pairs (i,T) where

0≤ i≤ m−1 and T ⊂ [0,n−1]× [0, p−1]. The transitions are described as follows:

for each pair (i,T) and each symbol σ ,

(i,T) ·σ =

{

(i ·σ ,{(j ·σ ,k ·σ) : (j,k) ∈ T}) if i ·σ 6= m−1

(i ·σ ,{(j ·σ ,k ·σ) : (j,k) ∈ T}∪{(0,0)}) if i ·σ = m−1

It is easy to see that only the states (i,T) satisfying i = m− 1 ⇒ (0,0) ∈ T are

accessible. We set

Acc
A·(B◦C)
m,n,p = {(i,T) : 0 ≤ i < m−1,T ⊂ Qn ×Qp}

∪{(m−1,{(0,0)}∪T) : T ⊂ Qn ×Qp}

Notice that the set Acc
A·(B◦C)
m,n,p does not depend on ◦.

Lemma 2. For any state s = (i,{(j,k)}) with i 6= m− 1, there exists a word w ∈
{a,b}∗ such that (m−1,{(0,0)}) ·w = s.

Proof. We have to consider three cases:

1. If j > 2 then we have

(m−1,{(0,0)})
a
−→ (0,{(1,0)})

(ab)k− j+1p

−−−−−−→ (0,{(1,k− j+1)}
b j−2

−−→ (j2,{(j−1,k−1)}).
Since j−1 > 1, one obtains

(j2,{(j−1,k−1)})
a[j+1]2
−−−−→ (1,{(j−1,k−1)})
b
−→ (0,{(j,k)}

ai

−→ (i,{(j,k)}).
In conclusion, the word

52

w = a(ab)k− j+1pb j−2a j+12bai ∈ {a,b}∗

is such that (m−1,{(0,0)}).w = (i,{(j,k)}). This proves the lemma.

2. If j = 2 then we have

(m−1,{(0,0)})
a
−→ (0,{(1,0)})

(ab)k−1p

−−−−−→ (0,{(1,k−1)}
bnp−2

−−−→ (np2,{(n−1,k−3)}).
Hence,

(np2,{(n−1,k−3)})
anp+12

−−−−→ (1,{(n−1,k−3)})
b3

−→ (0,{(2,k)}
ai

−→ (i,{(2,k)}).
In conclusion, the word

w = a(ab)k−1pbnp−2anp+12b3ai ∈ {a,b}∗

is such that (m−1,{(0,0)}) ·w = (i,{(j,k)}). This proves the lemma.

3. If j < 2 then set γi = i if i > 1 and γi = i+ j+12 if i ≤ 1. One has

(γi,{(n−1,k− j−1)})
b j+1

−−→ (i,{(j,k)}).

Hence, as γi 6= m−1, there exists a word v such that (m−1,{(0,0)})
v
−→ (γi,n−

1,k− j− 1) due to one of the previous cases. So one obtains (m− 1,{(0,0)}) ·
vb j+1 = (i,{(j,k)}) as expected.

Proposition 1. For any boolean operation ◦, all the states of Acc
A·(B◦C)
m,n,p are acces-

sible.

Proof. We prove by induction on |T | that each state (i,T) is accessible. First, ob-

serve that all the states (i, /0) are reachable from (0, /0) reading ai. Now consider a

state (i,T) with T 6= /0.

1. Suppose that i = m− 1 then the states (m− 1,T) is reachable by a from (m−
2,a · (T \{(0,0)}) which is accessible by induction.

2. Suppose now i < m− 1 and let (j,k) ∈ T . Since i 6= m− 1, by Lemma 3, there

exists a word w ∈ {a,b}∗ such that (m− 1,{(0,0)}) ·w = (i,{(j,k)}). Observe

that, from the definition of the automata, the letters a and b encode permutations

of the states (no contraction is involved). It follows that w ·T has the same number

of elements as T and so the state (i,T) is accessible by w from (m− 1,w · T)
which is accessible from (1).

According to the constructions described in Section , we define, for each m,n, p≥
3 the automaton A · (B◦C) whose accessible states are indexed by pairs (i,T) where

0≤ i≤ m−1 and T ⊂ [0,n−1]× [0, p−1]. The transitions are described as follows:

for each pair (i,T) and each symbol σ ,

(i,T) ·σ =

{

(i ·σ ,{(j ·σ ,k ·σ) : (j,k) ∈ T}) if i ·σ 6= m−1

(i ·σ ,{(j ·σ ,k ·σ) : (j,k) ∈ T}∪{(0,0)}) if i ·σ = m−1

53

It is easy to see that only the states (i,T) satisfying i = m− 1 ⇒ (0,0) ∈ T are

accessible. We set

Acc
A·(B◦C)
m,n,p = {(i,T) : 0 ≤ i < m−1,T ⊂ Qn ×Qp}

∪{(m−1,{(0,0)}∪T) : T ⊂ Qn ×Qp}

Notice that the set Acc
A·(B◦C)
m,n,p does not depend on ◦.

Lemma 3. For any state s = (i,{(j,k)}) with i 6= m− 1, there exists a word w ∈
{a,b}∗ such that (m−1,{(0,0)}) ·w = s.

Proof. We have to consider three cases:

1. If j > 2 then we have

(m−1,{(0,0)})
a
−→ (0,{(1,0)})

(ab)k− j+1p

−−−−−−→ (0,{(1,k− j+1)}
b j−2

−−→ (j2,{(j−1,k−1)}).
Since j−1 > 1, one obtains

(j2,{(j−1,k−1)})
a[j+1]2
−−−−→ (1,{(j−1,k−1)})
b
−→ (0,{(j,k)}

ai

−→ (i,{(j,k)}).
In conclusion, the word

w = a(ab)k− j+1pb j−2a j+12bai ∈ {a,b}∗

is such that (m−1,{(0,0)}).w = (i,{(j,k)}). This proves the lemma.

2. If j = 2 then we have

(m−1,{(0,0)})
a
−→ (0,{(1,0)})

(ab)k−1p

−−−−−→ (0,{(1,k−1)}
bnp−2

−−−→ (np2,{(n−1,k−3)}).
Hence,

(np2,{(n−1,k−3)})
anp+12

−−−−→ (1,{(n−1,k−3)})
b3

−→ (0,{(2,k)}
ai

−→ (i,{(2,k)}).
In conclusion, the word

w = a(ab)k−1pbnp−2anp+12b3ai ∈ {a,b}∗

is such that (m−1,{(0,0)}) ·w = (i,{(j,k)}). This proves the lemma.

3. If j < 2 then set γi = i if i > 1 and γi = i+ j+12 if i ≤ 1. One has

(γi,{(n−1,k− j−1)})
b j+1

−−→ (i,{(j,k)}).

Hence, as γi 6= m−1, there exists a word v such that (m−1,{(0,0)})
v
−→ (γi,n−

1,k− j− 1) due to one of the previous cases. So one obtains (m− 1,{(0,0)}) ·
vb j+1 = (i,{(j,k)}) as expected.

Proposition 2. For any boolean operation ◦, all the states of Acc
A·(B◦C)
m,n,p are acces-

sible.

54

Proof. We prove by induction on |T | that each state (i,T) is accessible. First, ob-

serve that all the states (i, /0) are reachable from (0, /0) reading ai. Now consider a

state (i,T) with T 6= /0.

1. Suppose that i = m− 1 then the states (m− 1,T) is reachable by a from (m−
2,a · (T \{(0,0)}) which is accessible by induction.

2. Suppose now i < m− 1 and let (j,k) ∈ T . Since i 6= m− 1, by Lemma 3, there

exists a word w ∈ {a,b}∗ such that (m− 1,{(0,0)}) ·w = (i,{(j,k)}). Observe

that, from the definition of the automata, the letters a and b encode permutations

of the states (no contraction is involved). It follows that w ·T has the same number

of elements as T and so the state (i,T) is accessible by w from (m− 1,w · T)
which is accessible from (1).

5 Pairwise non-equivalence

In this section, we restrict the ◦ notation to ∪ and ∩ only. Notice that the accessibility

proved in the previous section is valid for any boolean operation.

Let us first notice that the action of the letter c is not used to prove the accessi-

bility of the states. Nevertheless, this letter is needed to separate the states. The fol-

lowing lemma highlights a property of the action of c which is central in the study

of the separability. Its proof is straightforward from the definition of A · (B◦C).

Lemma 4. Let (i,T) be a state in Acc
A·(B◦C)
m,n,p . We have (i,T) · c = (i,T ′) with

T ′ ⊂ (Qn \{1})× (Qp \{1})

Let us consider first the case where ◦= ∩. Notice that a state (i,T) of Acc
A·(B∩C)
m,n,p

is final if and only if (n−1, p−1) ∈ T .

Proposition 3. The states belonging to Acc
A·(B∩C)
m,n,p are pairwise nonequivalent.

Proof. Let s = (i,T) and s′ = (i′,T ′) be two distinct states. Without loss of general-

ity we assume i′ ≤ i (otherwise we permute the role of the states) and we construct a

word ws,s′ sending one of the state on a final state and the other on a non final state.

We consider several cases as follows

1. Suppose i′ < i < m−1. We have

s
am−i−2c
−−−−→ (m−2,T2) and s′

am−i−2c
−−−−→ (m−2+ i′− i,T ′

2)

with, from Lemma 4, (1,0) 6∈ T2 ∪T ′
2 .

Hence,

(m−2,T2)
a
−→ (m−1,T3)

bnp−1

−−−→ (m−1,T4)

with (0,0) ∈ T3 and (n−1, p−1) ∈ T4, and

55

(m−2+ i′− i,T ′
2)

a
−→ (m−1+ i′− i,T ′

3)
bnp−1

−−−→ (i′4,T
′

4)

with (0,0) 6∈ T ′
3 because both m−1+ i′− i 6= m−1 and (1,0) 6∈ T ′

2 . Furthermore

as m−1 is never reached from m−1+ i′− i reading bnp−1, we have (n−1, p−
1) 6∈ T ′

4 . Setting ws,s′ = am−i−2cabnp−1, we have s ·ws,s′ = (m− 1,T4) which is

final and s′ ·ws,s′ = (i′4,T
′

4) which is not final. So, s and s′ are not equivalent.

2. If i′ < i = m−1 then reading a sends s to a state s1 = (0,T1) and s′ to a state s′1 =
(i′+1,T ′

1). If i′+1 6= m−1,then we set ws,s′ = aws′1,s1
where ws′1,s1

is computed

from the previous case. If i′+ 1 = m− 1 then we read another a and this sends

s1 to a state s2 = (1,T2) and s′1 to a state s′2 = (0,T ′
2). As A has at least 3 states,

m−1 6= 1. So ws,s′ = a2ws2,s
′
2

where ws2,s
′
2

is the word computed in the previous

case.

3. If i = i′ then T 6= T ′. Without loss of generality we assume that there exists

(j,k) ∈ T \T ′. Let us recall the Kronecker delta δi, j =

{

0 if i 6= j

1 if i = j
We have :

s
b

δ0,k

−−→ (i1,T1) and s′
b

δ0,k

−−→ (i1,T
′

1)

with i1 ∈ {0,1, i} and (j1,k1) ∈ T1 \T ′
1 where j1 = j+δ0,k and k1 = k+δ0,k.

Let us notice that k1 6= 0. Then, we have

(i1,T1)
am−i1+1

−−−−→ (1,T2)
(ba)n− j2

−−−−−→ (1,T3)
(ba)−n−k3 p

−−−−−−→ (1,T4)
bn−1

−−→ (ε ,T5)

and

(i1,T
′

1)
′ am−i1+1

−−−−→ (1,T ′
2)

(ba)n− j2

−−−−−→ (1,T ′
3)

(ba)−n−k3 p

−−−−−−→ (1,T ′
4)

bn−1

−−→ (ε ,T ′
5)

with (j2,k2) = (j1,k1) · am−i1+1 ∈ T2 \T ′
2 , (0,k3) = (j2,k2) · (ba)n− j2 ∈ T3 \T ′

3 ,

(0, p−n) = (0,k3) · (ba)−n−k3 p ∈ T4 \T ′
4 , (n−1, p−1) = (0, p−n) ·bn−1 ∈ T5 \

T ′
5 , and ε ∈ {0,1}. So, the state (ε ,T5) is final while (ε ,T ′

5) is not.

Setting ws,s′ = bδ0,k am−i1+1(ba)n− j2+−n−k3 pbn−1 we obtain that s.ws,s′ is final

while s′.ws,s′ is not final. In other words, s and s′ are nonequivalent.

Now, we consider the case where ◦ = ∪. The final states of A · (B∪C) are the

pairs (i,T) such that

T ∩ ({n−1}×Qp ∪Qn ×{p−1}) 6= /0.

We say that a set T is saturated if (j,k),(j′,k′) ∈ T implies (j,k′) ∈ T .

(T) = { j : (j,k) ∈ T}×{k : (j,k) ∈ T}. (1)

Lemma 5. In Acc
A·(B∪C)
m,n,p , any state (i,T) is equivalent to (i,(T)).

Proof. Suppose that there exists a word w such that (i,(T)) ·w is final and (i,T) ·w
is not final. Then, there are two couples (j,k) and (j′,k′) in T with (j,k′) ∈ (T)\T

56

and

(j,k′) ·w ∈ ({n−1}×Qp)∪ (Qn ×{p−1}).

This means that either j ·w = n−1 or k′ ·w = p−1. But since (j,k) ·w,(j′,k′) ·w ∈
T ·w we have

T ·w∩ ({n−1}×Qp ∪Qn ×{p−1}) 6= /0

and this is not possible because (i,T) ·w = (i ·w,T ·w) which is not final.

Corollary 1. Let (i,T) and (i,T ′) be two states of Acc
A·(B∪C)
m,n,p such that (T) = (T ′).

Then (i,T) and (i,T ′) are equivalent.

From now, we will only consider the set of saturated states defined as follows :

Sat = {(i,(T)) ∈ Acc
A·(B∪C)
m,n,p }

We define split(T) = ({ j : (j,k) ∈ T},{k : (j,k) ∈ T}). For any s = (i,T) ∈ Sat

we define L(s) = S1 and R(s) = S2 if split(T) = (S1,S2). With this notation, a state

s is final if and only if n−1 ∈ L(s) or p−1 ∈ R(s). Notice that Lemma 4 can be

restated as follows.

Lemma 6. Let s ∈ Acc
A·(B∪C)
m,n,p . Then s · c = s′ with 1 6∈ L(s′) and 1 6∈ R(s′).

Now we have defined all the material we need to prove the pairwise non-

equivalence of the states of Sat.

Proposition 4. The states belonging to Sat are pairwise non-equivalent.

Proof. Let s = (i,T) and s′ = (i′,T ′) be two distinct states of Sat . Without loss of

generality we assume i′ ≤ i. First suppose i′ < i. We have to consider the following

cases.

• If i′ < i < m−1 then we set

s
am−i+1(ba)i−i′−1

−−−−−−−−−→ s1 = (1,T1)
am−3c
−−−→ s2 = (m−2,T2)

s′
am−i+1(ba)i−i′−1

−−−−−−−−−→ s′1 = (0,T ′
1)

am−3c
−−−→ s′2 = (m−3,T ′

2)

Using Lemma 6 we observe that 1 6∈ L(s′2) and 1 6∈ R(s′2). Setting

s2
a
−→ s3 = (m−1,T3)

aba
−−→ s4 = (2,T4)

bnp−3

−−−→ s5 = (2,T5),

We observe that 0 ∈ L(s3), 2 ∈ L(s4), and then n−1 ∈ L(s5). In other words s5

is a final state. In the other hand, we set

s′2
a
−→ s′3 = (m−2,T ′

3)
aba
−−→ s′4 = (0,T ′

4)
bnp−3

−−−→ s′5 = (ε ,T ′
5),

with ε ∈ {0,1}. We observe that 0 6∈ L(s′3) and 1 6∈R(s′3), 2 6∈ L(s′4) and 2 6∈R(s′4),
and finally n−1 6∈ L(s′5) and p−1 6∈ R(s′5). In other words s′5 is not a final state.

57

Setting ws,s′ = am−i+1(ba)i−i′−1am−3caababnp−3, we obtain that s ·ws,s′ is final

but not s′ ·ws,s′ . This proves that s and s′ are not equivalent.

• If i′ < i=m−1 then, by reading a or aa, we recover the case where i′ < i<m−1.

Suppose now that i = i′ and L(s) 6= L(s′). Without loss of generality we consider

j ∈ L(s)\L(s′). We have two cases to consider:

• If j > 1 then we set

s
am−i

−−→ s1 = (0,T1)
(ab)n−1− j

−−−−−→ s2 = (0,T2)

and

s′
am−i

−−→ s′1 = (0,T ′
1)

(ab)n−1− j

−−−−−→ s′2 = (0,T ′
2)

We observe that j ∈ L(s1)\L(s′1) and n−1 ∈ L(s2)\L(s′2). We set

s2
cb
−→ s3 = (1,T3)

(ba)−n−2p

−−−−−−→ s4 = (1,T4)
bn−1

−−→ s5 = (ε ,T5)

and

s′2
cb
−→ s′3 = (1,T ′

3)
(ba)−n−2p

−−−−−−→ s′4 = (1,T ′
4)

bn−1

−−→ s′5 = (ε ,T ′
5)

with ε ∈ {0,1}. We have 0∈ L(s3)\L(s′3) and 2 6∈ R(s′3). Hence, 0∈ L(s4)\L(s′4)
and p−n 6∈ R(s′4). Finally, n−1 ∈ L(s5)\L(s′5) and p−1 6∈ R(s′5). In conclusion,

if we set ws,s′ = am−i(ab)n−1− jcb(ba)−n−2pbn−1 then the state s5 = s ·ws,s′ is

final while s′5 = s′ ·ws,s′ is not. Consequently, s and s′ are not equivalent.

• If j ≤ 1 then we act by b or b2 in the aim to send s and s′ respectively to s1 =
(i1,T1) and s′1 = (i1,T

′
1) with 2 ∈ L(s1)\L(s′1). So we find the result by applying

the previous point.

Now we suppose i = i′ and R(s) 6= R(s′). Without loss of generality we assume

that there exists k ∈ R(s)\R(s′). We have to consider two cases:

• If k > 1 then we set

s
am−i

−−→ s1 = (0,T1)
c
−→ s2 = (0,T2)

and

s′
am−i

−−→ s′1 = (0,T ′
1)

c
−→ s′2 = (0,T ′

2)

We observe that k ∈ R(s1)\R(s′1), 1 6∈ L(s′2) and k ∈ R(s2)\R(s′2). We set

s2
(ab)−n−k+1p

−−−−−−−→ s3 = (0,T3)
(b)n−2

−−−→ s4 = (ε ,T4)

and

s′2
(ab)−n−k+1p

−−−−−−−→ s′3 = (0,T ′
3)

(b)n−2

−−−→ s′4 = (ε ,T ′
4)

with ε ∈ {0,1}. We have 1 6∈ L(s′3) and p−n+1 ∈ R(s3)\R(s′3). Finally, n−1 6∈
L(s′4) and p−1∈R(s4)\R(s′4). In conclusion, if we set ws,s′ = am−ic(ab)−n−k+1pbn−2

58

then the state s4 = s ·ws,s′ is final while s′4 = s′ ·ws,s′ is not. Consequently, s and

s′ are not equivalent.

• If k ≤ 1 then we act by b or b2 in the aim to send s and s′ respectively to s1 =
(i1,T1) and s′1 = (i1,T

′
1) with 2 ∈ R(s1)\R(s′1). So we find the result by applying

the previous point.

The following theorem summarizes our main results.

Theorem 3. For A · (B ∩C) as well as A · (B ∪C), the bound given by the state

complexity of these two combinations is reached by the 3-letters witnesses family

Wm,n,p.

1 The symmetric difference case

Unfortunatly, the family Wm,n,p fails for the combination of catenation with boolean

xor operator. We prove it by studying the case m = n = 3 and p = 4 using tableaux

described in Section .

A final state of the catenation combined with the xor has at least one marked cell

on the last line or row but not both.

Let us show that the two final states represented by t = (i,) and t ′ =

(j,) are not distinguishable. Indeed, Figure 10 denotes all accessible con-

figurations starting from the tableaux of t and t ′. Every couple of tableaux represent

a couple of final states. In this figure, we suppose that j ·w is not m−1. If we have

j ·w = m−1, we have two cases to consider:

1. the cell (0,0) is marked in t ′. As accessing m−1 creates this state, both tableaux

are unchanged;

2. the cell (0,0) is not marked in t ′. In this case, we have to notice that marking this

state and saturating the obtained tableau gives the full tableau for t ′ and so the

states are undistinguishable.

Conclusion

In this paper, we have improved witnesses for the state complexity of catenation

combined with the union and the intersection. We give a common 3-letters witness

for both combinations resolving two conjectures of Brzozowski. Moreover, these

witnesses are Brzozowski automata. We also show, using combinatorial tools, why

these witnesses fail for the combination of the catenation and the symmetric differ-

ence. Furthermore, after numerous unsuccessful attempts to find a 3-letters witness

59

for this combination with the Sage software, we conjecture that 4 letters are needed

to obtain a witness. Such a 4-letters witness is provided in [2].

References

1. Janusz A. Brzozowski. In search of most complex regular languages. Int. J. Found. Comput.

Sci., 24(6):691–708, 2013.

2. Pascal Caron, Jean-Gabriel Luque, Ludovic Mignot, and Bruno Patrou. State complexity of

catenation combined with a boolean operation: A unified approach. Int. J. Found. Comput.

Sci., 27(6):675–704, 2016.

3. Bo Cui, Yuan Gao, Lila Kari, and Sheng Yu. State complexity of two combined operations:

Catenation-union and catenation-intersection. Int. J. Found. Comput. Sci., 22(8):1797–1812,

2011.

4. O Ganyushkin and Volodymyr Mazorchuk. Classical finite transformation semigroups: an

introduction. Algebra and Applications. Springer, Dordrecht, 2008.

5. Yuan Gao and Sheng Yu. State complexity approximation. In Jürgen Dassow, Giovanni

Pighizzini, and Bianca Truthe, editors, Proceedings Eleventh International Workshop on De-

scriptional Complexity of Formal Systems, DCFS 2009, Magdeburg, Germany, July 6-9, 2009.,

volume 3 of EPTCS, pages 121–130, 2009.

6. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley, Reading, MA, 1979.

7. Sheng Yu, Qingyu Zhuang, and Kai Salomaa. The state complexities of some basic operations

on regular languages. Theoret. Comput. Sci., 125(2):315–328, 1994.

60

An improvement of the determinization of fuzzy finite

automata via factorization of fuzzy states

S. Stanimirović1, M. Ćirić2, J. Ignjatović3

University of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Srebia
1 stanimirovic.stefan@gmail.com
2 miroslav.ciric@pmf.edu.rs
3 jelena.ignjatovic@pmf.edu.rs

Unlike nondeterministic finite automata (NFAs, for short), which can always be

determinized, not all fuzzy finite automata (FFAs, for short) can be determinized.

Therefore, the determinization problem is of special interest for FFAs, and it was

well elaborated in the recent literature.

De Mendívil and Garitagoitia have developed in [3] the determinization method

that produces the complete and deterministic FFA for automata which accept fuzzy

languages of infinite range. They were motivated by the fact that the common pro-

cedure of conversion into an equivalent crisp-deterministic fuzzy finite automaton

may fail for such fuzzy automata. Their method is based on the idea of factoriza-

tions of fuzzy sets, and therefore it is called the determinization via factorization of

fuzzy states. The idea of factorizations was firstly introduced by Kirsten and Maürer

[2] in the determinization algorithm for weighted finite automata (WFAs, for short)

over semirings, in order to give a generalization of the well-known Mohri’s deter-

minization algorithm [4] for WFAs over tropical semirings.

In this paper we provide an improvement of the determinization via factorization

of fuzzy states. Our method is based on the usage of the fuzzy relational calculus,

namely, on the usage of the right invariant fuzzy quasi-orders. Similar approach

has been taken in [1], where it has been shown that such approach combines the

determinization and the state reduction methods into two-in-one algorithms that si-

multaneously perform the determinization and the state reduction. The aim of this

paper is to show that such approach can also be employed in the determinization via

factorization of fuzzy states.

The results of the paper are the following: For any fuzzy finite automaton A with

the set of states A, a factorization D on A and a fuzzy relation ϕ on A, we construct

the complete deterministic fuzzy automaton A D
ϕ of A . We show that A D

ϕ and A

recognize the same fuzzy language when ϕ is a reflexive weakly right invariant

fuzzy relation on A . We prove that, if ϕ and φ are right invariant fuzzy quasi-orders

on A that satisfy ϕ ≤ φ , then |A D
φ | ≤ |A D

ϕ |. In other words, larger right invariant

fuzzy quasi-orders determine smaller complete deterministic fuzzy automata. We

provide an example where our algorithm results in a finite complete deterministic

fuzzy automaton, while the method based on factorization of fuzzy states results in

an infinite one.

61

References

1. Z. Jančić, I. Micić, J. Ignjatović, M. Ćirić, Further improvement of determinization methods

for fuzzy finite automata, Fuzzy Sets and Systems 301, pp. 79–102 (2016).

2. D. Kirsten, L. Mäurer, On the determinization of weighted automata, J. Automata, Lang. Com-

bin. 10, pp. 287–312 (2005).

3. J. R. G. de Mendívil, J. R. Garitagoitia, Determinization of fuzzy automata via factorization of

fuzzy states, Inform. Sci. 283, pp. 165–179 (2014).

4. M. Mohri, Finite-state transducers in language and speech processing, Comput. Linguist. 23

(2), pp. 269–311 (1997).

62

a

b

c

a

b

c

a

b c

a

b

c

a

b

c

a

b

c

Fig. 10 Two undistinguishable tableaux

63

Track 2: Cryptography Coding
Theory

Chairs: Stephane Ballet (France), Dimitrios Poulakis
(Greece), Robert Rolland (France)

Invited Speaker: Claude Carlet

Boolean Functions With Constrained Inputs and the
Cryptosystem FLIP

Claude Carlet1

1 LAGA (Universités Paris 8 et Paris 13, CNRS)

Abstract
After a recall on the principle of Fully Homomorphic Encryption (FHE) and its

use in the Cloud, we shall recall the FLIP encryption model (EUROCRYPT 2016)
that minimizes the growth of the noise inherent in the FHE. In FLIP stream ci-
phering, a Boolean function (of a large number, at least 500, of variables, but very
simple) filters a register containing the bits of the secret key swapped at each clock
cycle by a pseudo-random permutation. The input to the filtering function has con-
stant Hamming weight since it is the permuted key, and the resistance of FLIP to
conventional attacks (the one that exploits the bias of the weight, that of Berlekamp-
Massey, the fast correlation attack, and algebraic attacks) need to be re-evaluated in
this new context (which did not make the article introducing FLIP). This opens a
new research field for Boolean functions. We shall study the cryptographic criteria
of balance, algebraic degree, nonlinearity and algebraic immunity under this type of
constraint.

64

A topological approach to network coding

Cristina Martínez and Alberto Besana

1 University of Maynooth, Ireland, {cristina.martinezramirez@nuim.ie}

Consider a network modelled as a digraph G = (V,E) with V the set of vertices
V = {1, . . . ,n} and E the set of edges m = |E|. An automorphism is a permutation of
the vertices of the network graph. The network automorphism group decomposition
relates automorphism group structure to network topology. There is a natural rep-
resentation given by a vector space V and a map of groups ρ : S n →GL(V), where
S n is the group of permutations of n elements. Codes over finite fields are very
much related with the study of the representation theory of the symmetric group
over finite fields. Let F be a field. Given integers n,k and d with 1 ≤ k ≤ n, an
[n,k,d]F−code is a subspace C of Fn of dimension k, such that every non-zero
codeword α ∈C satisfies wt(α) ≤ d, where the weight of α = (a0, . . . ,an−1) ∈ F is the
number of nonzero components ai. We study cyclic codes which include generalized
Reed-Solomon codes as subspaces subcodes [1]. Namely, consider the isomorphism
ln : Fn 7→ F[x]/(xn − 1) between Fn and the ring R = F[x]/(xn − 1). A subspace C
is a cyclic code over F iff C is an ideal of R. The variety of [n,k,d]F−codes over
F is parametrized by a Grassmannian Gn,k(F) of k−dimensional subspaces in the
F−vector space Fn, and the set of RS codes constitute a closed set in the Zariski
topology. We construct designs with prescribed groups where the blocks are the
orbits by the action of the general linear group GL(n + 1,F) on the Grassmannian
Gn,k(F). Moreover, we study the relation between t-designs of given parameters and
codes of constant weight, (see [2], [3]).

References

1. Maria Bras-Amorós and Michael E. O’Sullivan, From the Euclidean Algorithm for Solving a
Key Equation for Dual Reed-Solomon Codes to the Berlekamp-Massey Algorithm, AAECC
(2009), LNCS 5527, pp 32-42, 2009.

2. B. D. Mac Arthur, R. J. Sánchez García, James N. Anderson, Symmetry in complex networks,
Discrete Applied Mathematics 156 (2008), 525-531.

3. G. Ge, H. Wei, Group divisible designs with block sizes from K1(3) and Kirkman frames of type
hum1, Discrete Mathematics 329 (2014), 42-68.

4. M. Hattori, R. J. Mc Eliece, G. Solomon, Subspaces subcodes of Reed-Solomon Codes IEEE
Transactions on Information Theory, Vol. 44, No. 5., 1998.

65

Pairing-Friendly Elliptic Curves Resistant to TNFS
Attacks

G. Fotiadis1, E. Konstantinou1

1 University of the Aegean, Karlovassi, Samos, Greece, {gfotiadis,ekonstantinou}@aegean.gr

Abstract
The recent variants of the tower number field sieve method (TNFS) [4, 5] re-

duce the complexity of the discrete logarithm problem (DLP) in finite extensions
of composite degree and this has a major impact on the selection of elliptic curve
parameters for pairing-based applications. In this paper we update the criteria for
selecting these parameters in order to: (1) surpass the TNFS attacks in finite exten-
sions of composite embedding degree and (2) meet today’s security requirements
for both prime and composite embedding degrees.

For a prime q let E/Fq be an ordinary elliptic curve with Frobenius trace t.
An asymmetric pairing is a bilinear, non-degenerate, efficiently computable map
e : G1×G2→GT , where G1,G2 ⊂ E(Fq) and GT ⊂ F∗

qk . The order of all three groups
satisfies #G1 = #G2 = #GT = r, for some large prime r and k is the embedding de-
gree. An elliptic curve is suitable for pairing-based applications, if: (1) its order is
#E(Fq) = hr, for some integer h > 0, (2) the ρ-value: ρ = logq/ logr is close to 1, (3)
r is large enough, so that the DLP in G1,G2 is hard, (4) k is large enough, so that the
DLP in Fqk (hence in GT) is as hard as in G1,G2, (5) k is small enough for efficient
operations in GT and (6) the sizes of r and qk provide at least an 128 bits security
level in G1, G2 and GT . Such elliptic curves are called pairing-friendly.

A survey of pairing-friendly constructions can be found in [3]. In general, the
smallest ρ-values are achieved when representing q, t,r as polynomial families
q(x), t(x),r(x) ∈ Q[x]. This idea was introduced in [2]. In this case, pairing-friendly
parameters are generated by evaluating these polynomials at some integer x0, such
that q(x0) and r(x0) are both primes and the CM-equation 4q(x0)− t(x0)2 = Dy2 is
satisfied, for some square-free D > 0 and some integer y.

The complexity of the DLP in G1,G2 is O(
√

r), due to Pollard’s rho method. The
complexity of the DLP in the extension field Fqk depends on its characteristic and
the embedding degree k and it is measured asymptotically by the L-notation:

LN [`,c] := exp
[
(c + o(1))(ln N)`(ln ln N)1−`

]
, where N = qk (1)

for some real constants ` ∈ [0,1] and c > 0. For an extension Fqk , the NFS attack
has complexity LN[1/3,1.923] for prime k. In the case that k is composite, recent
variants of the TNFS method [4, 5] reduce the DLP complexity to LN[1/3,1.526].

The improvements of the TNFS method have a major effect on the construction of
pairing-friendly curves with composite embedding degree. The most important con-
sequence is that the extension field must be larger than before and thus the condition
ρ ≈ 1 may not be ideal for composite k any more. For example, the Barreto-Naehrig
(BN) curves [1] for k = 12 were optimal for generating a 256 bit prime r and a 3072

66

bit extension field (i.e. ρ ≈ 1). Such parameters correspond to an 128 bit security
level. After the improvements of the TNFS method, an extension field of this size
reaches a security level of 110 bits. In order to achieve an 128 bit security level, one
should now choose q12 around 4608 bits.

Considering the impact of the TNFS variants, in this paper we revise the cri-
teria for choosing polynomial families (q(x), t(x),r(x)). For composite embedding
degrees we propose the use of families that are likely to produce a balanced security
level between G1,G2 and GT and produce pairing-friendly parameters that are resis-
tant to TNFS attacks. Additionally, for prime values of k we recommend the use of
polynomial families that achieve balanced security levels. However, some of these
polynomial families were not considered before due to a larger ρ-value. All families
we present provide a security level of 128, 256 and 512 bits with ρ ≤ 2. We produce
numerical examples of cryptographic value obtained by the recommended families
where the asymptotic complexity of the DLP in the extensions Fqk is measured by
Equation 1.

References

1. P. S. L. M. Barreto and M. Naehrig, Pairing-friendly elliptic curves of prime order, Interna-
tional Workshop on Selected Areas in Cryptography–SAC’05, pp. 319-331 (2005).

2. F. Brezing and A. Weng, Elliptic curves suitable for pairing based cryptography, Designs,
codes and cryptography 37, 1, pp. 133-141 (2005).

3. D. Freeman, M. Scott and E. Teske, A taxonomy of pairing-friendly elliptic curves, Journal of
Cryptology 23, 2, pp. 224-280 (2010).

4. J. Jeong and T. Kim, Extended tower number field sieve with application to finite fields of
arbitrary composite extension degree, IACR Cryptology ePrint Archive (2016).

5. T. Kim and R. Barbulescu, Extended tower number field sieve: A new complexity for the
medium prime case, Advances in Cryptology–CRYPTO’16, pp. 543-571 (2016).

67

Collaborative Multi-Authority Key-Policy
Attribute-Based Encryption for Shorter Keys and
Parameters

R. Longo1, C. Marcolla2, M. Sala 3

1 University of Trento, Italy, riccardolongomath@gmail.com
2 University of Turin, Italy chiara.marcolla@gmail.com
3 University of Trento, Italy, maxsalacodes@gmail.com

Abstract
Architectures relying on a single central authority often offer a great efficiency

but suffer of resiliency problems and are quite vulnerable to attacks. In our pro-
posal, a Multiple-Authorities Key-Policy Attribute-Based Encryption scheme is
constructed in which the authorities collaborate to achieve shorter keys and param-
eters, enhancing the efficiency of encryption and decryption, since the key creation
requires the private secrets of all authorities.

The scheme that we propose in this paper evolves from the scheme presented in
[1] exploiting the collaboration between authorities to improve the efficiency.

Basically our scheme proceeds as follows: the first step is the creation of the
parameters. Namely, each authority sets up independently its master key and then
they collaborate together with the other authorities to create:

• a common public key used by users to encrypt,
• the authority parameters that will be used to generate secret keys (used to de-

crypt).

Once the public key is published, a user, who we will call Alice, chooses a set of at-
tributes that describe her message and encrypts it using this key. Let Bob be another
user, so he has an access policy. Suppose that Bob wants to decrypt Alice’s message
(note that he can do so if and only if the message has the attributes prescribed by his
policy). Bob requests a secret key for his policy to every authority. Independently,
each authority checks the policy pertinence and generates a secret key. Once he has
obtained all keys, he can merge them and obtain a single compact key. In this way
Bob may store and use them as a single key.

We prove our system secure under a variation of the bilinear Diffie-Hellman as-
sumption, providing also a lower bound on its complexity.

References

1. R. Longo, C. Marcolla, M. Sala, Key-policy multi-authority attribute-based encryption, Alge-
braic Informatics, pp. 152-164. Springer (2015).

68

Conditional Blind Signatures

A. Zacharakis1, P. Grontas2, A. Pagourtzis3

1 National Technical University of Athens, azacharakis@yandex.com
2 National Technical University of Athens, pgrontas@gmail.com
3 National Technical University of Athens, pagour@cs.ntua.gr

Abstract
We propose a novel cryptographic primitive that we call conditional blind sig-

natures. Our primitive allows a user to request blind signatures on messages of her
choice. The signer has a secret Boolean input which determines if the supplied sig-
nature is valid or not. The user should not be able to distinguish between valid and
invalid signatures. A designated verifier, however, can tell which signatures verify
correctly, and is in fact the only entity who can learn the secret input associated with
the signed message after the unblinding process. We instantiate our primitive as an
extension of the Okamoto-Schnorr blind signature scheme. We analyze and prove
the security properties of the new scheme and explore potential applications.

69

Hash Function Design for Cloud Storage Data Auditing

Nikolaos Doukas1, Oleksandr P. Markovskyi2, Nikolaos G. Bardis1

1 Department of Mathematics and Engineering Science, Hellenic Military Academy, Vari - 16673,
Greece.
2 Department of Computer Engineering, National Technical University of Ukraine, (Polytechnic
Inst. of),Peremohy pr.

Abstract
Cloud based storage is being widely used as a viable solution to the problem of

data storage in contexts where financial and practical considerations prohibit the use
of locally based hardware and software resources. User reservations and legal con-
straints however have given rise to questions about the verifiability of the integrity of
the stored data, especially in the case of public cloud infrastructure. A new problem
has hence arisen, that of auditing stored files in order to obtain Proof of Retrievabil-
ity. Secure cloud storage systems are limited by the overheads they require in order
to provide the required security levels. Combined use of cloud and local computa-
tional resources is necessary in order to enable the desirable user experiences. With
increasing local processing capacities, the most significant relevance is encountered
in the Big Data Processing paradigm. The volumes of data that need to be processed
are overwhelming to such an extent that approaches which use unlimited amounts
of power, for processing and storage are not feasible. This paper focuses on a recent
study of hash function requirements for big data applications and an associated key
â based hash function design technique that makes the real â time collection, sum-
marization, analysis and decision making based on streaming data. A file auditing
technique is proposed that uses fundamental big data mass processing operations in
order to.

Keywords: Secure cloud storage, Big data, proof of Retrievability, data auditing,
data summarization, hash functions, data mining

Introduction

Key based search is a fundamental component for various data processing routines,
such as real â time collection, summarization, analysis and decision making. The
progressive development of information systems and of information integration de-
termines a dynamic increase of the volume of the key indices upon which searches
are performed [1]. A particular field of application of key based searching, along
with other operations based on keys is the Big Data Processing paradigm, espe-
cially in Data Mining applications. The term Data Mining in this case, implies a
process by which a representative model is sought that adequately describes data
sets whose size renders them unmanageable via the classical sequential or batch
processing concepts of algorithmic design. The representative requirement that is

70

set for such models inherently dictates that the type of models that are sought are
statistical models.

The process of mining into data in streaming form and seeking to develop the cor-
responding model, may be described as learning the data, i.e. following the changes
in the characteristics of the data and continuously updating critical parameter esti-
mates that lead to decision making. The problems of interest that fall in this type of
applications may be in general classified in two categories:
Problems where a summary description of the data is required, e.g. when tracking
the progress of a measurement or a statistical measure related to the data, like a
mean or a higher order moment, or trying to obtain a representative subset of the
data.
Problems where characteristic features need to be determined that allow the determi-
nation of data values that usually appear in groups or data values that are similar, in
some sense. Depending on the context, this class of problems may also be described
as seeking to determine outlying values in the data stream.

Summarization algorithms may in some cases produce a single measurement
that determines the merit or the rank of a complex data value or may also track the
progress of a series of measurements that enable the process of decision making.
Characteristic features correspond to data values that present the extreme varia-
tions within a data set and hence may be described as outstanding or as outliers.
Being able to determine characteristics features serves multiple purposed, such as
describing complicated interconnections between measurement vectors observed in
different situations by only a limited number of values.

A fundamental problem in all the above applications is the requirement for accel-
erating searches based on a key, as well as the selection of this key, so that it exhibits
the required characteristics, given the nature of the data. The necessity for scalabil-
ity in such systems and increase of the volumes of the data that are required to be
processed, has as a consequence imposed stricter requirements for the efficiency of
search procedure results. More specifically, a large proportion of big data process-
ing systems, in which key search is actively used, operate in real time conditions, on
hardware that eventually is shown to have limited capabilities. Based on these facts,
the development of efficient key based search technologies is necessary in order for
the system to be scalable and viable.

The concept of Proof of Retrievability (POR) was introduced in [2] in order to
describe the process by which a user may obtain from a storage service provider,
such as a cloud storage service, evidence that the data file(s) of interest may be
retrieved in their entirety and with guaranteed integrity. The concept is similar to
that to the cryptographic proof of knowledge, but specific to large and time varying
files or bit â streams. Factors of significance include the numbers and size of the
exchanges that need to take place between the user and the provider, the numbers of
seek operations that the provider is required to make on the data and the amount of
data the user, or owner, of the data needs to store locally. An important requirement
is that the user should be able to update the data and insert new items, with minimal
necessity for computationally intensive recalculations.

71

This paper is organized as follows. In the following section an analysis of exist-
ing search technologies is presented, that illustrates how computational complexity
increases exponentially with data size. Following that, fundamental big data analysis
operations whose implementation is based on suitable hash functions are outlined.
The importance of suitably designed hash functions for achieving computational ef-
ficiency in big data processing contexts is hence explained. The concept of proof
of recoverability protocol design for secure cloud storage is explained. A recently
proposed class of hash functions is hence presented that provides suitable statis-
tical separation properties while maintaining a linear rate of increase of the com-
putational effort involved. Subsequently, the application of this class of functions
in fundamental big data processing problems is outlined. A POR protocol design
is hence presented that is consists of a sequence of these fundamental operations.
Conclusions are hence drawn for the mathematical specifications required for hash
function design for such protocols.

Analysis of Existing Search Technologies

An important factor for improving the efficiency of key based search, is the incorpo-
ration of the multilevel memory organization of modern computational systems into
search algorithms. In current conditions, where the volume of indices is constantly
increasing and the efficiency requirements upon the search are becoming ever more
demanding, the applicability of binary trees and B trees is significantly reduced,
given the dependence of the search time on the volume of the key index.

For most applications, hash addressing is considered to be the most efficient
search technique. There exist practical applications of key â based search, where
the key index is considered permanent or quasi-permanent (the computational load
required for the key based search procedures exceeds by several orders of magnitude
the computational load of the procedures for changing the search index).

During a hash search in permanent key indices, it is possible to determine a
one-way hash transformation that eliminates collisions. In bibliography, this class
of methods is referred to as perfect hash addressing [1]. The fundamental advan-
tage of perfect hash addressing is the absence of collisions, i.e. the key search time
is determined by the time required for a single memory access. This permits the
search schemes to attain maximum search speed, independent of the volume of the
search index [1]. The exercise of determining a hash transformation for perfect hash
addressing exhibits exponential complexity. For the completion of this exercise, a
series of methods have been proposed in bibliography [1], [3], [5], [6] and [7]. The
disadvantages of these methods are that they do not take into account the multilevel
organization of memories and that they do not allow changing of the keys during
operation. The purpose of this research is the modification of the organization of
hash searches so that it becomes oriented to the quasi-permanent nature of the key
index. Additionally, developments are sought in the mathematical model of such
hash searches for the optimization of its characteristics.

72

A hash search organization was recently proposed [8] that uses quasi â perma-
nent keys in conjunction with perfect hash addressing and probing. A mathematical
model of the hash search in multilevel memory has been developed that allows the
optimization of the hash memory parameters during the design
Big Data Mining Operations based on Hash Functions

Data mining, as it has already been defined and described in a previous section is
a topic that has attracted significant research interest in the context of mining when
the amount of data is characterized as ”Big ”, i.e. despite the evolution of processors,
multiprocessor information processing systems and the ample availability of storage
facilities, it is still infeasible to plan the processing, in whatever form of all the data.
It may be impossible to process the data in real â time, at the rate at which they arrive
or it may be economically or physically impractical to store all the data for online
processing. Such limitations affect the capability of data owners (users) to perform
POR calculations on their own infrastructure. This section summarizes common
required functionalities of big data processing systems [9], [10], [11], where all the
above restrictions may be satisfied via the use of appropriate search techniques that
are based on suitably designed hash functions.

Shingle Hashing

A large class of applications need to process observations that can be mapped to
a group of objects appearing together. An example of such application is the pro-
cessing of texts in the form of characters. Typically, the text will be segmented into
groups of characters of equal length, called shingles [9]. Typically, since objects are
not arithmetic values, an encoding is required for representing those objects that is
not based on the frequency of appearance of the corresponding shingles, but rather
on the size of the domain from which sample observed objects are drawn. The hash-
ing operation can be hence seen as a classification operation with the number of
categories (buckets) being significantly larger than the number of possible different
samples. The pre-requisite is that the hash function is collision â free, i.e. it will not
classify different shingles into the same bucket, despite of the existence of empty
buckets. In the case of document processing, the use of this type of hashing is an
enabling technique for processing and comparing documents that are of sizes that
are impossible to store into memory in their totality simultaneously.
Min Hashing

As the numbers of the objects under consideration increases, it becomes increas-
ingly infeasible to store even all the possible the compressed shingle â based repre-
sentations, corresponding to the pre â processing of all possible objects, in memory
for drawing global conclusions.

73

Object S1 S2 S3 S4 S5
Shingle a 0 0 0 1 0

b 1 0 1 1 0
c 0 0 0 1 1
d 0 1 1 0 1
e 1 1 0 0 1

Table 1. Representation of an object as a binary table

In order to overcome this problem, an alternative representation of an object
needs to be defined. Consider a set of 5 possible shingles {a, b, c, d, e } and ob-
jects consisting of collections (sets) of these shingles. It is then possible to represent
these objects using a binary matrix, such as the one shown in Table 1.
A value of 1 in a cell of the table shown in Table 1, means that the shingle corre-
sponding to that row is part of the object of the corresponding column. The repre-
sentation of Table 1 is therefore interpreted that object S1 = {b, e }, S2 = {d, e },
S3 = {b, d }, S4 = {a, b, c } and S5 = {c, d, e }. The set of all objects is hence rep-
resented, as far as the search for similarity is concerned as a binary matrix of size
NxM, where N the number of possible shingles and M the total number of objects
being processed. Furthermore, this table is, for large N and M, in general a sparse
matrix and the corresponding savings in the required amount of memory and pro-
cessing effort required may hence be achieved. It is trivial to deduce that two equal
objects will exhibit equal columns using this representation
Consider a permutation of the rows of Table 1. The minhash signature of each object
of this permutation is defined as the index of the first row of the permuted Table 1
where a value of 1 appears for this particular object. An example permutation is
shown in Table 2.
The minhash signature for each object is the set of the minhashes of that object
for all possible permutations of the table. It can be shown [9] that the probability
of two objects exhibiting the same minhash signature, is a similarity measure for
the two objects that approximates quantitative similarity measures based on vector
distances.

Object S1 S2 S3 S4 S5
Shingle a 1 1 0 0 1

b 0 1 1 0 1
c 0 0 0 1 1
d 0 0 0 1 0
e 1 0 1 1 0

Table 2. Permutation of the rows of the binary table

For this permutation, the minhash for S1 is 1, for S2 is 1, for S3 is 2 for S4 is 3
and for S5 is 1.

74

Generate the binary shingle table TGenerate a table S of size KxM, setting all cells to
∞Generate K hash functions h1 â hK mapping K items K bucketsFor each value i from
0 to K - 1
Calculate h1(i), h2(i), â, hK(i) For each column j from 1 to M â 1

For each value i from 0 to K - 1

If T(i, j) = 0, do nothing

If T(i, j) , 0, S(i, j) = min {S(i, j), hi(r) }.

Algorithm 1. Minhash signature similarity calculation based on hash functions

In practice, the number of shingles will be large and it is therefore computation-
ally expensive to examine all the permutations of the rows of the table. Additionally,
it becomes computationally expensive, even to generate random permutations of the
rows. This problem is overcome by defining a number K « N, of permutations to be
considered. An algorithm for estimating the similarity if the minhash signatures of
the objects may then be estimated as shown in Algorithm 1.The success of Algo-
rithm 1 is critically dependent on the hash signatures not presenting collisions.
Locality Sensitive Hashing

The Technique of Section 3.2 becomes infeasible as the table T of Algorithm
1 becomes larger, with increasing numbers of objects. Even though the amount of
information, or the number of bits, that need to be processed per object is small,
the number of pairs that exist is infeasibly large. As a consequence, the number of
comparisons that needs to be performed is correspondingly prohibitive for computa-
tion in some cases with reasonable resources, while in other cases the computations
cannot be realistically implemented. For example, with 106 objects to be compared,
the number of comparisons is of the order of 1012 and even with a hash signature
of 1KB, it would take about 6 days to complete in a powerful modern personal
computer [9].

The solution taken is a two pass approach; first the binary signature table is split
into horizontal bands, i.e. into bands of groups of shingles. Subsequently, smaller
hash functions are applied to hash all objects of a band to a small number of bins.
The same process is applied to all the bands. Objects that hashed into the same
bucket in multiple bands are considered to be candidate pairs and those are com-
pared using the full minhashing procedure described in the previous section.

The hash functions used for the first pass of the Locality Sensitive Hashing, map
many objects in the same buckets, i.e. present a large number of collisions. How-
ever these collisions need to satisfy similarity conditions. If d(x, y) is the distance
between the subset of shingles examined for a specific band and pair of objects then:
If d(x, y) ≤ d1, the probability of x and y hashing to the same bucket is at least p1

75

If d(x, y) ≥ d1, the probability of x and y hashing to the same bucket is at most p2

Suitable determination of the values of p1 and p2 attain a balance between the num-
ber of erroneous proclamations of candidate pairs and the number of misses, i.e. true
candidate pairs are classified as irrelevant.
Stream Data Sampling

When a stream of data is necessary to be processed in real time and the number
of unique elements is large, unknown and random, a common requirement is to be
able to derive a representative sample of the incoming values. Assuming for exam-
ple that the incoming tuples are {object _identity, variable _value }, where the object
is one of the unique entities and the variable is some observation, a natural inclina-
tion would be to select a portion of the objects, such that storage and processing is
economically or environmentally viable and keep only tuples originating from these
objects. This could be performed by observing the following procedure:
For each incoming tuple

• Draw a random number in the range 1 â N, where N is the number of unique
entities

• If the number drawn is less than M, where M is an integer such that M/N is
equal to the portion of unique objects that are to be maintained, appropriately
process the tuple

However, this approach requires that the numbers and identities of the unique ob-
jects are known. This assumption is severely restricting, since applications of inter-
est usually deal with very large, unknown and rapidly varying numbers of unique
objects (e.g. the unique users visiting an e-shop). Additionally, it may be shown that
such an approach would fail when a tuple appear multiple times [9], an occasion
that is of particular interest.
This problem may be addressed by use of suitable hash functions. The number of
buckets is determined such that it is feasible to select the proportion of objects re-
quired. If for example a ratio of M/N of the overall tuples need to be maintained,
then the number of buckets may be assigned to N. A suitable hash function is re-
quired that will map incoming tuples to the N buckets and only buckets in the range
1 â N will be taken into consideration. Again, given that the number of unique tuples
is extremely large, and the number of buckets is comparatively very small, the hash
function is one that presents large numbers of collisions. However it is important
that all buckets are selected with equal probability. Given this implementation, it
becomes relatively easy to resize or alter the sample size or the proportion by alter-
ing the parameters or switching the hash function in real â time and waiting for a
significant number of samples to arrive and any transients to die out.
A Hash Search Model for Quasi-Permanent Indices
This section analyses design approaches for hash search models and presents a hash
function design model [8] that produces quasi â permanent indices.
The purpose of the hash search model presented is to incorporate the analytic form
of the dependencies between the characteristics of the hash-memory that determine
its organization into the model and enable it to solve problems of optimization of

76

the architecture of hash memory during the design phase. At the basis of the model
that will be presented, lies the concept of the determination of a hash transformation
H(X) the ensures the mapping of a given set Ω from m keys in s pages of hash
memory in such a way that the entire set of keys that are classified in each of the
pages do not exceed the value (α+ δ) ·w, where α is the load factor of the hash
memory, δ the allowed variability of the load of a hash memory page load and α+ δ
≤1. The load factor α of the hash memory is defined by the relation between the set
of m stored records to the maximum feasible record count M = sw that is determined
by the size of the memory:

(1)
As a record, one may consider the information taken as the key associated to a par-
ticular data item. The reference address of the position where the data is stored may
be found in the record instead of the data. The determination of the hash transfor-
mation H(X) that satisfies the above condition may be done by trial and error. As
the test mechanism for the hash transformations, it is proposed that the prototype,
block â based cryptographic algorithms (DES or Rijndael) be used, that incorporate
the one-way cryptographic encoding using the key K, of the data D in the codeword
C: C = HK(D) [4].

The key for the search data X in this case is used as input data to the cipher block
whence the key Ð of the cipher block assumes the role of synchronization code and
actually appears together with the number of the hash transformation. The resulting
code C of the cipher block is divided in two parts: an h-bit packet that serves as a
hash address AK(X) of the page and the remaining bits that become the hash Sign
SK(Ð) of the key X of the search [7], [8]. Consequently the choice of the Hash
transformation HK(Ð) is attained via the procedure of changing the key Ð of the
cipher block.

The analysis of the mathematical model given in [8] demonstrates that, the com-
promise involved in the hash search, exists in the selection of the number of the
pages among which exchanges take place between the main and the cache memory.
The analysis leads to the conclusion that the search speed essentially depends on the
time for transferring the arranged hash page addresses from the main hash memory
to the cache memory, which in turn depends on the size of the pages. Consequently,
from the point of view of attaining high speed hash searches, the page size needs
to be reduced. At the same time, reducing the time required for selecting the hash
transformation requires according to (5) an increase of the page size. A resolution
of the above compromise may be found by the defined frequency of the key index
reconstruction; the more frequently new keys are assigned, the smaller the required
time for selecting the hash transformation and the larger the page size δ may be. The
resolution of these contradicting requirements may be attained either by increasing

77

the size of the pages or by reducing the proportion of the hash memory that is occu-
pied. Within this context:

A hash search model was developed that corresponds to the nearly constant key
index case. The model takes into account the multilevel memory organization of
modern computational systems.
The basis of the model that was developed, proposed the organization of hash
searches in nearly constant key indices. It was shown that the search time is de-
fined by access to no more than low level memory pages.
In the case of shingle hashing, the proposed method provides satisfactory results
since it can be guaranteed by consideration of the encryption algorithm that each
value will produce a unique value, which is the fundamental requirement for this
operation
In the case of min hashing, it may be similarly guaranteed that the proposed method
will permute the rows of the signature table and this permutation will have random-
ness characteristics.
In the case of locality sensitive hashing, the hash function is required to maintain
similarity criteria, i.e. small variations in the input need to leave the output un-
changed. This requirement is fundamentally contrary to the operation of the encryp-
tion algorithm. The design of a suitable substitute hash function is being investi-
gated.
In the case of stream data sampling, it is required that hashing different tuple key
identities is mapped with uniform probability to a small number of buckets. This is
consistent with the operation of the encryption algorithm and is hence satisfied by
the proposed method.
POR protocol design

The problem of efficient Proof of Recoverability [2], [13] protocol design is
equivalent to storing data securely in storage facilities that are not under the direct
control of the data owner (user). There exists therefore one more entity that partic-
ipates in such transaction, namely the storage provider (provider). Without loss of
generality, the data may be considered to be contained in a single, suitably encoded
file. The user entrusts the data to the provider for storage. At any instant the user
may request to audit the data. The user performs audits by verifying the integrity
of the data and the fact that the file can be recovered in its entirety by suitably in-
teracting with the provider and giving them challenges to which they return with
responses. The series of exchanges taking place is governed by a suitably designed
POR protocol. This auditing is required so that the user can confirm that the provider
is suitably preserving and maintaining the data, e.g. by protecting against equipment
failure, accidental erasure, malicious actions etc. and does not attempt to modify it.
An additional danger is that the provider dumps the data in order to cut costs and
in the hope that the user will not need to access data that may be old, obsolete or
simply backups that are very rarely used.

Due to the data size considerations explained at the beginning of this article,
the fundamental requirement from a POR protocol is that the audit is performed
without the user or the provider having to process all the data. The computational

78

load necessary for the POR exchanges calculations should be balanced so that the
largest proportion of this load is performed by the provider, who is assumed to
possess significantly more powerful infrastructure. POR schemes may be classified
as publicly verifiable, if anyone can verify integrity or privately verifiable if only the
user is capable of performing the audit, by means of some secretly kept information
(key).

A brute force approach to solving the problem would be to download the entire
data and perform any calculations necessary. As it has been extensively analyzed
however, such an audit procedure would in general be impractical, since the user
may not be assumed to possess neither the space, not the time and processing power
to perform this action. Ideally, a POR protocol is required to be [14]:

• Efficient: measured in computational complexity, local storage and communi-
cation burden. Ideally the overall measure of complexity should be linear to the
level of security measure

• Publicly verifiable: this way a trusted third party auditor needs to be assigned
the task, a public one is preferred. Auditing service providers could hence be
established, similarly to digital signature authorities.

• Publicly retrievable: Any third party should be able to recover the data. It should
therefore be shown that an attacker cannot overcome the POR security, even if
they had access to all data. Separate access control functionalities should protect
the data from unauthorized access.

• Stateless: While the data is fixed, the user should only be required to store only
private key information but not any state information.

• Privacy preserving [15]: The auditors should not be able to derive content based
on the auditing data.

A stricter design process would require from the POR to be able to properly
detect anomalies even if a malicious provider manages to answer correctly a portion
of the challenges [16].
The proposed scheme

In this section, an outline will be given of how a POR design problem may be
addressed via a sequence of the operations described in Section 3. The user equip-
ment treats the data as a monolithic, block based file system, but outsources it as a
single, serially accessible file of size M. All data is suitably encoded so that all data
have uniform appearance, e.g. plain or uuencoded 32 â bit or 64 â bit words. The
high level perceived organization of the file is the sectored structure produced by the
locality sensitive hashing. The structure is predefined by the user. A maximum data
size S is defined, with S » M. The user maintains a local data organization table with
rows and columns as described in Section 3.1. The numbers of rows and columns is
a design parameter defined by the user.
For each data item (user file) a record is kept locally by the user with filename,
address and size. An identifier is constructed from this record, based on which the
item is hashed and stored onto the appropriate cell (row and column) of the file
structure.

79

For each data item, a number of challenge â response results are pre â calculated.
Each response is stored in different files that are decided based on hashing the re-
sponse text and the challenge number. The number of challenges and the number of
times each one is applied are design parameters decided by the user. A map of the
locations of the first challenge for each data item is stored locally by the user.
Data blocks may optionally be padded with pseudo random data, generated by suit-
able hash functions from the payload data of the actual data item, so that all data
items appear to be of equal size. Empty data blocks may be similarly padded ac-
cording to the same lightweight cryptography principle.
Auditing involves the comparison of a randomly selected subset of data. Columns
are permuted based on the principle of min-hashing described in Sections 3.1 and
3.2. The data items of first resulting row or a randomly selected row are then used
as the object of the challenges.
For the provider, an audit consists of the retrieval of a series of words from the
data. The user performs a number of simple hash calculation operations and value
comparisons.
For the initial data commitment to the provider, all calculations may be performed
on powerful provider equipment. The user submits a series of calculations to the
provider and all results are returned back to the user. The user then embeds the
responses into the appropriate files.
Data insertions and substitutions involve substituting the data items containing the
payload data and the challenge response data. The new response data are stored
in different data items from old ones, as the data and hence the hashes have been
modified.

The proposed scheme will be optimized and implemented in order to draw final
conclusions about the parametrizations necessary.
Conclusions

In this paper, the use of hash functions that are suitable for achieving compu-
tational efficiency when extracting information from extremely large sets of data
was used for data file auditing. The auditing is necessary for obtaining POR when
storing data in cloud resources. A technique that was recently proposed in order
to achieve quasi â permanent keys was employed to design appropriate hash func-
tions. Requirements for the design of efficient POR protocols were explained. Hash
functions were employed in order to implement a series of fundamental data manip-
ulation primitives. These primitives were combined in order to construct an imple-
mentable PRO protocol.
References
Berman F., Bock M.E., Dittert E., O‘Donnel M.J., Plank D. Collections of function
of perfect hashing // SIAM Journal Computers. â 1986, - Vol. 15, â2, - P. 604-618.
Juels, Ari, and Burton S. Kaliski Jr. "PORs: Proofs of retrievability for large files."
Proceedings of the 14th ACM conference on Computer and communications secu-
rity. Acm, 2007.
Czech Z.J., Havas G., Majevski B.S.. An Optimal algorithm for generating minimal
perfect hash functions.//Information processing letters. 1997, - 43(5). p. 257-264.

80

Jagannathan R. Optimal partial-match hashing design // ORSA Journal of Comput-
ing. â 1991, - Vol.3, â2, - P.86-91.
Ningping Sun, Ryozo Nakamura, Nonbing Zhu, Akiro Tada, Wenling Sun. An anal-
ysis of average search cost of external hashing with separate chain.// Processing of
7-th WSEAS International Conference on Circuits, Systems, Communications and
Computers (CSCC-2003).- 2003,-P. 315-324.
Ramakrishna M.V., Bannai Y. Direct perfect hashing function of external files. //

Journal of Database Administration. â 1991, - Vol.2, â1, - P.19-28.
Polymenopoulos A., Bardis E.G., Bardis N.G., Markovskaja N.A., "Perfect Hash-
ing Using Linear Boolean Functions", WSEAS Press â Problem in Applied the-
matics and Computational Intelligence, ISBN: 960-8052-30-0, 2001, pp. 5-11.
Bardis E.G., Bardis N.G., Markovskyy A.P., Spyropoulos A.K., "High Storage Uti-
lization of Hash Memory by Reducing of Information Redundancy for Hash-
ing". Submitting as a special issue of IMACS/IEEE CSCC’99 International Mul-
tiConference, "Software and Hardware Engineering for the 21th Century", ISBN:
960-8052-06-8, pp. 272-276, 1999
Bardis, Nikolaos G., Nikolaos Doukas, and Oleksandr P. Markovskyi. "Hash ad-
dressing of the quasi-permanent key arrays in multilevel memory." Journal of Ap-
plied Mathematics and Bioinformatics 3.4, pp 91 â 105, 2013.
Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive
datasets. Cambridge University Press, 2014.
Kharchenko V., Illiashenko O. Concepts of Green IT Engineering: Taxonomy,
Principles and Implementation. Inbook: Green IT Engineering: Concepts, Mod-
els, Complex Systems Architectures, Studies in Systems, Decision and Control,
V. Kharchenko, Y. Kondratenko, J.Kacprzyk (Eds.), Vol. 74. Berlin, Heidelberg:
Springer InternationalPublishing, 3–20 (2017) , DOI: 10.1007/978-3-319-44162-7
_1
Kondratenko Y.P., Korobko O.V.,Kozlov O.V.: PLC-Based Systems for Data Acqui-
sition and Supervisory Control of Environment-Friendly Energy-Saving Technolo-
gies. In book: Green IT Engineering: Concepts, Models, Complex Systems Archi-
tectures, Studies in Systems, Decision and Control, V. Kharchenko, Y. Kondratenko,
J. Kacprzyk (Eds.), Vol. 74.Berlin, Heidel-berg: Springer International Publishing,
247–267 (2017),DOI: 10.1007/978-3-319-44162-7 _13
Chen, Fei, et al. "Secure cloud storage meets with secure network coding." IEEE
Transactions on Computers 65.6 (2016): 1936-1948.
Shacham, Hovav, and Brent Waters. "Compact proofs of retrievability." Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. Springer Berlin Heidelberg, 2008.
Wang, Cong, et al. "Privacy-preserving public auditing for secure cloud storage."
IEEE transactions on computers 62.2 (2013): 362-375.
Wang, Cong, et al. "Privacy-preserving public auditing for secure cloud storage."
IEEE transactions on computers 62.2 (2013): 362-375.

81

Method for Accelerated Zero-Knowledge Identification
of Remote Users based on Standard Block Ciphers

Nikolaos G. Bardis1, Oleksandr P. Markovskyi2, Nikolaos Doukas1

1 Department of Mathematics and Engineering Science, Hellenic Military Academy, Vari - 16673,
Greece. nbardis@sse.gr, ndoukas@sse.gr
2 Department of Computer Engineering, National Technical University of Ukraine, (Polytechnic
Inst. of Kiev),Peremohy pr., Kiev 252056, KPI 2003, Ukraine. markovskyy@i.ua

Abstract
Identification of remote users that implements the cryptographic concept of zero

knowledge strict identification. In contrast to existing methods that implementing
this principle and are based on modular arithmetic, the proposed solution is based
on the use of standard block ciphers. This solution may significantly accelerate the
process of strict user identification. Existing zero â knowledge user identification
techniques are revised. The proposed procedure for user registration and for the
execution of a round of identification. Theoretical and experimental evaluation of
the effectiveness have demonstrated that the proposed method achieves an accelera-
tion of the identification process by two orders of magnitude, compared to existing
schemes.

Index Terms - multi user systems, remote users identification, methods of strong
identification, zero-knowledge identification, block ciphers.

1 Introduction

The efficiency of information security algorithms is defined based on two factors:
the level of security and the amount of computational resources required for the
implementation of the security functions. At the basis of all information security
algorithms lies an analytically insoluble mathematical problem. In practice, such
problems are one way transformations of the form Y = F(X). For such one way
transformations, the forward transformation F(X) is defined such that there is no
analytic way of deriving the inverse transformation () of the known function F(X)
such that X = Ω(Y). The only way to accomplish such a task, i.e. the determination
of a value X for a given value Y such that Y = F(X), is to tabulate all possible values
of X. The largest part of the problems that do not have an analytic solution and form
the basis of cryptographic algorithms, originate from the Boolean algebra and Num-
ber Theory. Especially for number theory, problems are related to discrete logarithm
calculations and are the basis of most asymmetric cryptographic algorithms (pub-
lic key encryption algorithms). Well known algorithms belonging in this class are
RSA or El-Gamal, as well as digital signature algorithms like DSS [1]. The basis of
another broad class of cryptographic algorithms, lies the difficult to solve Boolean

82

algebra problem of finding the roots of a system of non-linear Boolean functions. In
this class belong all symmetric encryption algorithms such as DES, IDEA, Rijndael,
as well as a significant proportion of hash RIPEMD-160 [2].

The basic advantage of algorithms based on number theory problems that cannot
be solved analytically, is the existence of multiple keys. This can be illustrated in the
cases of RSA, El-Gamal, EEC where the keys for the forward and backward trans-
formation are different. Hence, when there exist multiple keys, some of them may
be used for decryption and some of them may be used for encryption. This enables
more efficient information security schemes to be created on this basis, that permit a
more efficient organization of information resources, compared to algorithms based
on a single key.

This observation was the motivating force for the creation of the public key en-
cryption algorithm RSA in 1978, the basis of which was the one-way transformation
, that is connected to âa new era in information security technologyâ [2]. From a
theoretical point of view, the existence of multiple keys in cryptographic transfor-
mations is necessary so as to create multiple solutions, i.e. there exist at least two
keys X1 and X2, such that The basic drawback of algorithms based on the principle
of the difficult to solve number theory problems, is the low speed of implementation
that arises from the high computational complexity of the operations of modular
exponentiation in numbers whose size is of the order of several thousand bits.

This drawback is eliminated with information security algorithms that are based
on difficult to solve Boolean algebra problems. The recursive computation of a sys-
tem of Boolean equations may be organized efficiently enough, via software in gen-
eral purpose processors or on special computational hardware. As far as evaluation
is concerned, the speed of an implementation of a Boolean function based algorithm
and that of a modulo arithmetic based algorithm, differ by about a factor of 2-3 or-
ders of magnitude [3]. However, algorithms based on Boolean transformations have
fewer functional possibilities that do not permit the creation of efficient information
security protocols, similarly to those based on analytically impossible to solve num-
ber theory problems. More specifically, the use of Boolean transformation does not
permit the implementation of asymmetric cryptography, a very significant principle
of modern cryptography, the encoding of digital signatures and the identification
based on the basis of a âzero knowledgeâ scheme. One of the factors that contribute
to the limitation of the functional capabilities of Boolean transformations, is the
uniqueness of Boolean transformations [3].

One of the most promising research areas of current information security tech-
nologies is the extension of the functional capabilities of Boolean algebra based
algorithms [2]. On the basis of such algorithms, the design of efficient informa-
tion security protocols will be enabled. Such efficient information security proto-
cols require significantly less computational resources and may hence be executed
at speeds that are several orders of magnitude faster than the corresponding ones for

83

modular arithmetic based problems.

Towards the realization of this direction of modern information security technol-
ogy, an important goal is the development of a methodology for the design of one
way Boolean transformations that possess the non-single-value property [3]. Such
algorithms may be efficiently used in protocols for the âzero knowledgeâ based iden-
tification of remote subscribers in multi user systems [4].

An important problem regarding multi-subscriber distributed systems, such as
the networks used for multimedia content delivery, is user authentication and user
rights management. Due to the nature of such networks, it is imperative that the
security protocols are robust but minimize the storage needs and the computational
complexity. Analyses of the efficiency of such protocols and ways of improving it,
have been presented in [5], [6], [7] and [8]. Previous work on the front of remote
subscriber identification was focused on improving efficiency and increasing the
level of security by reducing the need for storage and communications [9]. The aim
of this research is the development of a method for designing Boolean functions
that have the necessary one way properties and present non-single-value during the
inverse transformation.

In its general form, the idea of the use of Boolean transformations for the imple-
mentation of identification based on the principle of zero knowledge consists of the
following steps. Subscriber A produces, via the pre-defined procedure a Boolean
transformation algorithm, FA(X) such that there exists a finite set Î c©A of m incom-
ing vectors ΩA = XA1,XA2, ,XAm, for which the transformation FA(X) assumes the
same values UA : Q,G ∈ΩA,Q : FA(Q) = FA(G) = U. The setΩA practically contains
a list of session passwords of subscriber A, that are known only to subscriber A. For
this reason it may be said that, the set ΩA is considered to be the private key of sub-
scriber A. The function FA(X) and the password UA, are considered to be the public
key of subscriber A and during the registration of the subscriber, it is communicated
to the system. During access to the system, the subscriber chooses a sequential pass-
word G that belongs to the set ΩA and sends it to the system. The system calculates
FA(G) and compares it to UA. If FA(G) = UA, then the subscriber A is considered
to have been successfully identified. The proposed identification scheme base on
the zero knowledge principle is designed for identification in m sessions. After that,
a new registration is required. Taking into account the non-reversibility of FA(X),
the system may not in any other way acquire the passwords that compose the setΩA.

84

2 Analysis of the problem of the efficiency of identification based
on the concept of zero knowledge

According to current trends in technological development and its applications, there
exist increased possibilities for unauthorized access to sensitive information re-
sources of the integrated systems, possibilities that are enabled by interventions to
the user identification procedures.

It is a well understood fact that the increased use of wireless data transmission
technologies makes it feasible for illegitimate users to mount attacks during the
stage of user identification. Specifically in the case of wireless communications ac-
tions like the sniffing of passwords for access of legal subscriber, as well as his re-
placement after the session of identification are facilitated. A robust defense mech-
anism against imitation of legitimate users is the periodical repetition of the user
identification procedures during the interaction of the system with a subscriber. For
this reason the process of identification should be such that it enables fast imple-
mentations.

Additional ways for illegitimate interventions during the identification process
are the side-channel directed interactions with the system simultaneously with le-
gitimate users, the use of viruses or via the actions of irresponsible personnel. For
the broad class of commercial multi-subscriber systems the elimination of the pos-
sibility of impersonation of user access by imitation of access codes is important.

On the basis of the circumstances indicated, the current means for subscriber
identification must satisfy the following requirements [1]:

1. The identifying information message (password) must change with each access
to the system and the passwords used must be statistically independent;

2. The length of password should be such that it completely excludes the possibil-
ity of a brute force attack;

3. The information, which is stored in the system must not be sufficient for the
reproduction of subscriber passwords;

4. Identification procedures must be carried out sufficiently rapidly

In literature [1] identification methods, which satisfy the first three of the given
requirements are classified as "strict", in contrast the remaining schemes that are
classified as "weak". In the class of the weak schemes belong, for example, the pro-
cedure of identification which is used in the UNIX [1] operating system. This pro-
cedure involves the storage in the system of only the hash value of the passwords of
users, that, with the use of the one way hash functions, excludes the possibility of
the reproduction of password of the system; however, passwords themselves do not
change, which makes it sufficient simple to intercept them.

85

The class of strict procedures is principally composed by methods of identifica-
tion that are based the concept "zero knowledge".

The most commonly known of these methods is the FFSIS (Feige Fiat Shamir
Identification Scheme) [4]. The basic computing operation of this method is the
modular squaring of numbers, with a length of 2048-4096 bits. Based on applica-
tions of using this scheme in practice, the main disadvantage of FFSIS are:

• The necessity for a large number of data exchanges during the user identification
process, which noticeably loads the communication channels used.

• The large computational complexity of the operation of modular squaring per-
formed on numbers whose bit capacity is much larger than the processor capac-
ity.

Other identification schemes that implement the concept of "zero knowledge" us-
ing modular arithmetic, such as Guillou-Quisquater [10], the Schnorr method [11]
require a significantly smaller volume of transfers, but the procedures they provide
are more computationally complex, thus, in place of squaring, they use operations
of modular exponentiation.

Thus, the main shortcoming of existing implementations of the progressive con-
cept of "zero knowledge" in identifying users is a long time, which is very critical
for modern integrated systems of collective access with millions of users.

A promising direction of radical acceleration of the implementation of strict iden-
tification is the transition to a different mathematical basis [12]. The aim of this
research is to improve the efficiency of identifying remote users by reducing the
execution time of the corresponding computational procedures while maintaining a
high level of security. The purpose of this research is the development of a modified
schemes for zero knowledge user identification, which involves significantly smaller
computational complexity and increases the speed of identification with software
and hardware implementations.

3 Method for accelerated zero-knowledge identification

The acceleration of zero â knowledge identification may be pursued via the use of
existing known methods, but also via the use of algebraic cryptographic transfor-
mations. It is known that the foundation of any cryptographic mechanism are non
â reversible cryptographic transformations. In modern applied cryptography, one â
way transformations from number theory and non â linear Boolean algebraic trans-
formations are used.

86

The one â way transformations are the foundation for the class of algorithms
known as modern public key cryptography and manifested by well-known algo-
rithms, such as RSA and DSA. The non â reversible Boolean transformations are
the mathematical foundation for all the symmetric cryptographic algorithms, in-
cluding algorithms that are in most countries certified as standard such as Rijndael,
all hash algorithms, such as SHA-1, RIPEMD -160, as well as stream cryptographic
algorithms.

It is known that the fundamental advantage of using non â reversible transforma-
tions from number theory is the wide and advanced functionality. On the other hand,
the principle advantage of the use of non â reversible Boolean transformations, is
the significantly larger speed of execution of the cryptographic calculations. As a
reference therefore, it may be stated [12] that for approximately the same level of
security, symmetric cryptography provides faster execution of three orders of mag-
nitude more compared to public key cryptography.

For the acceleration of user authentication according to the zero â knowledge
principle, an implementation method was developed that uses non â reversible
Boolean functional transformations. For the implementation of these transforma-
tions it is proposed that standardized block ciphers be used and more specifically
Rijndael block ciphers.

An important advantage of the use of standard block ciphers is that they have
undergone extensive and in â depth testing and therefore extensive experience from
their use has been acquired. This fact guarantees a high level of security and simpli-
fies the evaluation of the cryptographic security of the proposed method.

In this architecture, the Block Ciphers (BC) represent the encryption â decryp-
tion algorithm for the fixed length data block D, using a single key K. Later in this
section the process of the execution of the encryption defined as C=F(D, K), as well
as the complimentary process of the decryption D=R(C,K) are outlined.

The architecture of the cryptographic transformation associated with the pro-
posed authentication method is illustrated in Figure 1.

The proposed method includes a user registration procedure and a user authen-
tication cycle. During the registration, the following sequence of actions is executed.

1. The system sends to the user the authentication code U.
2. The user defines the number n that represents the number of authentication cy-

cles.
3. The user produces the random session password pn at the end of the nth authen-

tication cycle. The index j assumes the value n−1: j = n−1.
4. The user calculates q j = F(j|U, p j), where j|U is the of the number of the au-

thentication cycle and the authentication code.

87

5. The user calculates p j−1 = F(p j,q j).
6. The index j is decremented: j = j−1. If j > 0, then return to step 4.
7. Send the code p0 to the system.

The session passwords p0, p1, , pn are stored in user memory. The execution of
the jth cycle of user authentication consists of the following sequence of actions:

1. The user sends the jth session password p j to the system.
2. The system calculates d = F(j|U, p j).
3. The system calculates ζ = F(p j,d). If ζ = p j−1, then the user authentication was

successful and access to system resources is permitted.

4 Effectiveness Evaluation

The principal effectiveness evaluation for the proposed scheme are the security level
attained, regarding attempts illegitimate access to system resources, and the amount
of processing power used for the calculations required for authentication.

For the intruder, the achievement of unauthorized access to the system is equiv-
alent to acquiring the subsequent session password p j of the user, based on the
preceding sequence p + j−1, p j−2, , p0.

In reality, the session password p j is associated with the previous available pass-
word p j−1, available to the intruder and is the functional equation p j−1 = F(p j,d) =

F(p j,F(α, p j)),whereα = j|U.

If the intruder does not know the code U, then for breaching the security and
obtaining illegitimate access, then they must find λ, µ and p j−1 = F(λ,µ), such that
λ and µ are functionally connected with the equation µ = F(α,λ) where the code α

88

is not known. This exercise may not practically be solved, since it requires the ex-
haustive testing of two components: Î±andtheblockcipherλ. The volume of tests for
using the block cipher of the Rijndael algorithm with key length 256 is 2256+ L(U),
where L(U) is the length of the code U. Consequently, for the illegal calculation of
a session password, the required amount of computational resources is double of the
amount of computational resources required for breaking the block cipher.

The system is also not practically capable of creating the subsequent session
password p j of the user, since it only has available codes U and p j−1, p j−2, , p0.
Given that the system does not know the value of α = j|U, then for recovering the
session password a p j must be selected, such that it satisfies p j−1 = F(p j,F(α, p j)).
The volume of computational resources required for this task is equivalent to break-
ing the block cipher, a task beyond practical attainability. Another tactic for obtain-
ing the session password of the user for the system, is to test all possible values for
the initial session password pn of the user. Obviously, the solution to this problem
requires n times more computational resources than the exercise of testing in order
to recover the key of the block cipher.

Standard block ciphers have been exhibited to display resilience to different types
of cryptanalysis. It has also been shown that the volume of computational resources
required to break a block cipher via brute force, is beyond the scope of practical
applicability. Consequently, the above consideration confirm the high security level
attained by the proposed remote user authentication method, in terms of the re-
silience against possible attacks.

The principle advantage of the proposed method for remote user authentication
in the context of the strict zero knowledge concept is to increase the speed of com-
pletion of the required calculation procedures. From the authentication procedure
described above, it may be deduced that in each cycle of the user and the system the
block cipher is calculated twice. Considering the use of Rijndael block ciphers of
data packet size 256, the block cipher executes 14 rounds.

The data matrix and the key contain 4 rows and 8 columns. In each round, 32
substitution operations using tables are carried out, along with four 64 â bit shift
operations, four logical addition of 64 â bit words to the key and 40 logical lin-
ear column transformation operations. In general, the execution of a round requires
about 80 logical operations. Therefore the execution of the 14 rounds requires 1120
operations.

The FFSIS authentication operation involves 20 cycles for the exchange of data
between the user and the system. In each cycle of the system, modular exponentia-
tion is carried out, for sizes equal to the square of the bit size m of the number. In
most modern protocols, m = 2048. In practice the number of size m bits is divided
in d sections whose size is equal to that of the processor. For m = 2048 and for
processor size of 64 bits, the section d is equal to 32. The modular exponentiation

89

to the square requires d2 multiplications in the processor, plus some addition oper-
ations. The modular reduction operation involves, on average, m subtractions of m
â bit numbers, each of which consists of d subtraction operations at the processor.
Hence the time required for the execution of the modular squaring may be calcu-
lated as d2× (tm + ta) + m×d× ta, where tm is the time required for multiplication at
the microprocessor and ta the time for an addition or a subtraction operation by the
processor.

Considering that the multiplication operation in modern processors is performed
with about 10 times more computational effort than a logical operation and that an
addition requires about 2 times the effort of a logical operation, it may be stated
that for the evaluation, the execution of a modular squaring requires time equal to
322×12 + 2048×32×2 = 143×103.

Comparing these estimates it is derived that the application of the two block ci-
phers is performed by about 64 times faster than the modular exponentiation of 2048
bits. Given that the FFSIS technology requires about 20 executions of the modular
squaring, the estimated reduction in computational effort achieved by the use of the
proposed method is 1280.

Experimental studies have demonstrated that the proposed method provides a
real acceleration of the remote user authentication procedure by approximately three
orders of magnitude.

5 Conclusions

As a result of the research presented in this paper, a method for the fast authentica-
tion of remote users was proposed that is conformant to the cryptographically strict
concept of zero â knowledge. A particular characteristic of the proposed method is
that focuses on standard block ciphers that have been comprehensively and exten-
sively tested regarding their cryptographic properties. This permits the acceleration
of the user authentication procedure, simplifies its application while guaranteeing
high credibility in terms of security against attacks aiming to gain unauthorized ac-
cess to system resources.

It was proved, both theoretically and experimentally, that the proposed method,
using non â reversible Boolean transformations of block ciphers, requires for its im-
plementation fewer computational resources compared to known methods that use
modular arithmetic multiplication operations. The proposed scheme achieves an in-
crease in the speed of the calculation of an authentication cycle by three orders of
magnitude compared to the same existing techniques.

90

References

1. RSchneier B. (1995) âApplied Cryptography. Protocols. Algorithms and Source codes in Câ.
Ed.John Wiley, 1995 - 758 pp.

2. Kurosawa K., Yoshida T. (1999) âStrongly universal hasing and identification codes via chan-
nelsâ. IEEE Trans. Information theory, v.45, no.6, 1999. pp.2091-2095.

3. Seberry J., Zhang X., Zheng Y. (1995) âNonlinearity and propagation characteristics of bal-
anced Boolean functions.â Information and Computation Academic Press. 1995.-Vol. 119, â
1 -P.1-13.

4. Feige U.,Fiat A.,Shamir A. âZero knowledge proofs of identityâ // Journal of Cryptology,
Vol.1, No.2 1988, P.77-94.

5. Nikos G. Îardis, Alex Polymenopoulos., Evgenios G. Bardis, Alexander P. Markovskyy,
(2003) âMethods for Increasing the Efficiency of the Remote User Authentication in Inte-
grated Systemsâ, TRENDS IN COMPUTER SCIENCE, Volume 12 No.1, ISBN 1-59454-
065-9, Nova Science Publishers, Inc, New York, pp.99-107, 2003

6. Braz, C and Robert, J.M. (2006) âSecurity and usability: the case of the user authentication
methodsâ. Proceedings of the 18th International Conference of the Association Francophone
d’Interaction Homme-Machine. 2006, pp 199-203.

7. Wang, H., Sheng, B, Tan, C and Qun, L. (2008) âComparing Symmetric-key and Public-
key Based Security Schemes in Sensor Networks: A Case Study of User Access Controlâ.
Proceedings of the 28th International Conference on Distributed Computing Systems, 2008,
pp 11-18.

8. Jia-Lun Tsai (2008) âEfficient multi-server authentication scheme based on one-way hash
function without verification tableâ, Elsevier Computers Security, Volume 27, Issues 3-4,
2008, pp 115-121.

9. Bardis, N. G., Doukas, N. and Markovskyi, O. (2010) âTwo Level Efficient User Authentica-
tion Schemeâ. Proceedings of the 4th IEEE International Conference on Digital Ecosystems
and Technology 12-15 April 2010, Knowledge Village, Dubai, UAE.

10. Guillou L.C., Quisquater J.-J. âA Paradoxical Identity-Based Signature Schemes Resulting
from Zero Knowledgeâ // Advances of Cryptology -Crypto-88. Proceeding.- Springer-Verlag.-
1990.- P. 216-231.

11. Schnorr C.P. âEfficient Signature Generation for Smart Cardsâ // Journal of Cryptology, Vol.
4, No.3.- 1991.- pp.161-174.

12. Bardis N., Doukas N. and Markovskyi O., âFast subscriber identification based on the zero
knowledge principle for multimedia content distributionâ, International Journal of Multimedia
Intelligence and Security 2010 - Vol. 1, No.4 pp. 363 - 377, 2010.

91

Determining Whether a Given Block Cipher is a
Permutation of Another Given Block Cipher—
a Problem in Intellectual Property (Extended Abstract)

G. V. Bard1

1 The University of Wisconsin—Stout, bardg@uwstout.edu

Overview

Imagine that, in order to avoid patent fees or export restrictions, someone permutes
the plaintext bits, ciphertext bits, or key bits of a block cipher. All security properties
of the block cipher would be preserved. There are many possible such permutations
(e.g. 23116.32 for the Advanced Encryption Standard, AES). It might seem infeasible
to detect this fraud, and even harder to determine the permutation matrices used.

This paper presents a method whereby this fraud could be easily detected, by
means of a SAT-Solver—a standard off-the-shelf software package that solves small-
to-medium sized instances of the logical satisfiability problem. Moreover, this prob-
lem is intimately connected to the “isomorphism of polynomials” problem and that
connection is explored at length.

Definitions

Let {0,1}` represent the set of all binary strings of length `. We will now endeavor to
define block ciphers as a mathematical object and make explicit some of their more
relevant properties. Formally, a block cipher is a function

E : K ×P→C

with several important properties. The key k is chosen from K, the keyspace; the
plaintext message is chosen by the sender as some p ∈ P. The ciphertext, computed
by the cipher, is some c ∈C.

For practical implementation purposes, nearly all ciphers in use during the last 40
years have had all three sets K, P, and C be the set of binary strings of some fixed
length. (This enables digital circuitry to be used for the cipher.) For example, the
small and outdated cipher called the Data Encryption Standard (DES) uses {0,1}56 =

K but P = C = {0,1}64 [15, Ch. 4]. The Advanced Encryption Standard (AES) uses
P = C = {0,1}128 but the user can choose {0,1}128 = K, {0,1}192 = K, or {0,1}256 = K
[15, Ch. 5]. Beyond these trivial details, there are five crucial security requirements
for any block cipher.

92

First, it must be fast to encrypt—i.e. one can compute E(k, p) = c rapidly when
k ∈ K and p ∈ P are known. Second, it must be fast to decrypt—i.e. one can find p
such that E(k, p) = c when k ∈ K and c ∈C are known. Third, it must be computation-
ally infeasible to cryptanalyze—i.e. it should be infeasible to compute k such that
E(k, p) = c when p ∈ P and c ∈ C are known. There is a consensus in cryptography
that “computationally infeasible” means that the fastest known algorithm should be
no faster than checking all possible values of K. The set K is chosen to be extremely
large—as a necessary but insufficient condition for security.

For the fourth and fifth properties, consider that for any fixed k, we can rewrite
E(k, p) = c as Ek(p) = c, and then Ek is a function P→C. A property called unique
decodability requires that Ek be injective for all k ∈ K. Otherwise, if there existed
ks ∈ K, p1 ∈ P, and p2 ∈ P with p1 , p2 but E(ks, p1) = E(ks, p2) = cs then a receiver
who receives the ciphertext cs, and who is using key ks, will have no way of deter-
mining if the sender had intended to transmit the message p1 or the message p2. It
is universally the case that C = P as sets in practice, therefore textbooks usually say
that Ek must be bijective—however, that is not strictly necessary. The fifth and most
important criterion is that for some k ∈ K selected uniformly at random, it should
be the case that the Ek obtained is computationally indistinguishable from a random
function chosen uniformly from the set of all possible functions that map P→ C.
Formal cryptography textbooks model block ciphers by a mathematical object called
a pseudorandom permutation, for this reason.

A Note about Polynomial Time

Readers familiar with theoretical cryptography might be surprised to see that the
phrase “in polynomial time” is missing above. When we say that Gaussian Elim-
ination runs in polynomial time, we mean that if one were to take a sequence of
problems, each an n×n matrix, and measure the running time (e.g. by counting the
number of arithmetic operations), then one can upper-bound this running time as a
function n by some polynomial of n. In this case, the polynomial is cubic.

However, when working with block ciphers, this notion of polynomial time is
unavailable. Any hardware cipher has a fixed K, a fixed P, and a fixed C. There is
no limit as n goes to infinity, because n is not going to infinity—it is constant.

Permutations of a Block Cipher

With some thought, one can see that none of the requirements of a block cipher will
change after applying three permutations, represented by the permutation matrices
M1, M2, and M3, in the following sense:

Ê(K,P) = M3E(M1K, M2P)

93

In other words, if E meets all the criteria of a block cipher, then a software pirate
can fix three particular permutation matrices, and construct Ê, which will share all
of the security properties of E. However, this will not be readily apparent externally
(especially if implemented in hardware, but even if implemented with software in
the case where code-obfuscation tools have been used). Therefore the software pi-
rate can evade patent fees or cipher export controls.

It is worth noting that the number of permutations is rather large. For the outdated
DES cipher, there would be 56! choices for M1, 64! choices for M2, and 64! choices
for M3. This comes to

(56!)(64!)(64!) ≈ 2840.643 ≈ 10253.059

possibilities, and the number would be considerably larger for modern ciphers like
the AES. With the largest key setting permitted, there would be

(256!)(128!)(128!) ≈ 23116.32 ≈ 10938.106

One could sympathize with anyone who would assume that this ruse would be
undetectable. The problem of detecting this type of fraud was posed to the author
of this paper in 2009 during a coffee break at the conference CHES (Cryptographic
Hardware and Embedded Systems). Regrettably, the author does not remember the
name of the US Government employee who proposed this interesting problem—and
the proposer did wish to remain anonymous.

This paper shows a quick and efficient method of determining, when presented
with two block ciphers F and G, if one is a permutation of the other, by use of a
SAT-Solver. Moreover, it explicitly computes M1, M2, and M3, though indirectly.

References

1. Agrawal, M, and Saxena, N.: “Equivalence of F-algebras and Cubic Forms.” In: B. Du-
rand and W. Thomas (Eds.): Proc: Symposium on Theoretical Aspects of Computer Science
(STACS’06), Lecture Notes in Computer Science, Vol. 3884, Pp 115–125. Springer. (2006).

2. Bard, G.: Algebraic Cryptanalysis. Springer-Verlag. (2009).
3. Berthomieu, J., Faugère, J.-C., Perret L.: “Polynomial-time algorithms for quadratic isomor-

phism of polynomials: The regular case.” Journal of Complexity. Vol. 31. Pp. 590–616. (2015).
4. Bard, G., Courtois, N., Jefferson, C.: “Efficient methods for conversion and solution of sparse

systems of low-degree multivariate polynomials over GF(2) via SAT-Solvers.” Preprint. Cryp-
tology ePrint Archive, Report 2007/024 (2006).

5. Faugère, J.-C., and Perret, L.: “Polynomial Equivalence Problems: Algorithmic and Theoreti-
cal Aspects.” In: S. Vaudenay (Ed.): Advances in Cryptology—Proc. of EUROCRYPT, Lecture
Notes in Computer Science, Vol. 4004, pp. 30–47. Springer-Verlag (2006).

6. Geiselmann, W., Meier, W., and Steinwandt, R.: “An attack on the isomorphisms of polyno-
mials problem with one secret”. International Journal of Information Security. Vol. 2, No. 1,
(2003).

7. Goldreich, O., Micali, S., and Wigderson, A.: “Proofs that yield nothing but their validity
for all languages in NP have zero-knowledge proof systems.” Journal of the Association of
Computing Machinery, Vol. 38, No. 3, Pp. 691–729, (1991).

94

8. N. Kayal.: “Efficient Algorithms for Some Special Cases of the Polynomial Equivalence Prob-
lem.” In: Proc. of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. pp.
1409–1421. SIAM. (2011).

9. Matsumoto, T., and Imai, H.: “Public quadratic polynomial-tuples for efficient signature-
verification and message-encryption,” In: Advances in Cryptology (EUROCRYPT’88), Lecture
Notes in Computer Science, Vol. 330, Springer-Verlag, Pp. 419–453, (1988).

10. Patarin, J.: “Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new
families of asymmetric algorithms.” In: N. Koblitz (ed.) Advances in Cryptology—Proc. of
EUROCRYPT, Lecture Notes in Computer Science, Vol. 1070, pp. 33–48. Springer-Verlag
(1996).

11. Patarin, J., Goubin, L., and Courtois, N.: “Improved Algorithms for Isomorphisms of Polyno-
mials.” In: K. Nyberg (Ed.): Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes
in Computer Science, Vol. 1403, pp. 184–200. Springer-Verlag (1998).

12. Perret, L.: “A fast cryptanalysis of the isomorphism of polynomials with one secret problem.”
In: R. Cramer (Ed.): Advances in Cryptology—Proc. of EUROCRYPT, Lecture Notes in Com-
puter Science, Vol. 3495, pp. 354–370. Springer-Verlag (2005).

13. Plût, J., Fouque, P.-A., and Macario-Rat, G.: “Solving the ‘Isomorphism of Polynomials with
Two Secrets’ Problem for All Pairs of Quadratic Forms.” Preprint. (2017).

14. Saxena, N.: “Morphisms of Rings and Applications to Complexity (PhD Thesis).” Indian In-
stitute of Technology, Kanpur, 2006.

15. Trappe, W., and Washington, L.: Introduction to Cryptography with Coding Theory. 2nd Edi-
tion. Pearson, Prentice-Hall. 2006.

16. Tang, S., and Xu, L.: “Proxy signature scheme based on isomorphisms of polynomials,” In: L.
Xu, E. Bertino, Y. Mu (Eds.), In: Lecture Notes in Computer Science, vol. 7645, Springer, Pp.
113–125. (2012).

17. Tang, S., and Xu, L.: “Towards provably secure proxy signature scheme based on isomor-
phisms of polynomials.” Future Generation Computer Systems Vol. 30, Elsevier, Pp 91–97.
(2014).

18. Yang, G., Tang, S., and Yang, L.: “A Novel Group Signature Scheme based on MPKC.” In:
Bao, F., and Weng, J. (Eds.), Information Security Practice and Experience (ISPEC’11), Lec-
ture Notes in Computer Science, Vol. 6672, Springer, Pp 181–195. (2011).

19. Wolf, C., and Preneel, B.: “Equivalent keys in multivariate quadratic public key systems,”
Journal of Mathematical Cryptology, Vol. 4, No. 4, Pp. 375–415, (2011).

95

Track 3: Computer Algebra
Chairs: Rafael Sendra (Spain), Franz Winkler (Austria)

Invited Speaker: Michael Wibmer

Computing Difference Algebraic Relations Among

Solutions of Linear Differential Equations

M. Wibmer1

1 University of Pennsylvania, USA, wibmer@math.upenn.edu

Abstract

Understanding the algebraic relations among the solutions of a linear differential
equation is a classical and important problem. For example,

cos2(x)+ sin2(x) = 1 (1)

is such a relation. Often the solutions satisfy interesting relations that are not simply
algebraic relations. For example,

cos(2x) = 2cos2(x)−1, (2)

or
xJα+2(x)−2(α +1)Jα+1(x)+ xJα(x) = 0, (3)

where Jα(x) is a solution of Bessel’s differential equation

x2y′′+ xy′+(x2−α2)y = 0. (4)

These are examples of difference algebraic relations. The parameterized Picard-
Vessiot theory ([1], [2], [3], [4]) provides a comprehensive approach to the study
of these relations by associating a Galois group to the linear differential equation.
These Galois groups are defined by algebraic difference equations.

We will provide a computational perspective on how to find these groups and the
corresponding difference algebraic relations.

References

1. Ph. Cassidy and M. Singer, Galois theory of parameterized differential equations and linear

differential algebraic groups, IRMA Lect. Math. Theor. Phys., Vol. 9, pp. 113-155 (2007).

96

2. Ch. Hardouin and M. Singer, Differential Galois theory of linear difference equations, Math.
Ann. 342, 2, pp. 333-377 (2008)

3. L. Di Vizio, Ch. Hardouin and M. Wibmer, Difference Galois theory of linear differential

equations, Adv. Math. 260, pp. 1-58, 2014
4. L. Di Vizio, Ch. Hardouin and M. Wibmer, Difference algebraic relations among solutions of

linear differential equations, J. Inst. Math. Jussieu 16, 1, pp. 59-119 (2017)

97

Interpolation of syzygies for implicit matrix

representations

Ioannis Z. Emiris1,2, Konstantinos Gavriil1,3, and Christos Konaxis1,2

{emiris, ckonaxis, kgavr} @ di.uoa.gr
1Department of Informatics and Telecommunications,

National and Kapodistrian University of Athens, Greece,
2ATHENA Research Innovation Center, Maroussi, Greece
3Technische Universität Wien, Austria

Abstract

We examine matrix representations of curves and surfaces based on syzygies
and constructed by interpolation through points. They are implicit representations
of objects given as point clouds. The corresponding theory, including moving lines,
curves and surfaces, has been developed for parametric models. Our contribution is
to show how to compute the required syzygies by interpolation, when the geomet-
ric object is given by a point cloud whose sampling satisfies mild assumptions. We
focus on planar and space curves, where the theory of syzygies allows us to design
an exact algorithm yielding the optimal implicit expression. The method extends
readily to surfaces without base points defined over triangular patches. Our Maple
implementation has served to produce the examples in this paper and is available
upon demand by the authors.

Introduction

Today, one of the predominant algebraic approaches to change of representation of
geometric objects and, in particular, implicitization, is based on algebraic syzygies.
This is a very rich theory, which still motivates a large volume of fundamental work.
This paper examines the question of interpolating the syzygies of an unknown, ra-
tional parameterization, under the assumption that the given point sample is given
along with the parameter value that generated each point. Our algorithms can re-
cover the corresponding syzygies and, hence, an implicit matrix representation of
the sampled object. Moreover, the computed information is sufficient to reconstruct
the entire parameterization if needed.

Another major trend today in CAD, albeit at the engineering level, is the avail-
ability and manipulation of point clouds, essentially as a means of representing the
geometric object. This work wishes to capitalize on this trend. Therefore, besides
its theoretical interest, our work is motivated by the following practical scenarios.
The first relies on a strong hypothesis: the point sample is given along with pa-
rameter values, assuming the underlying parameterization is rational but unknown.
Our method recovers the implicit representation and may also compute the exact

98

syzygies. Another, probably more realistic scenario, is that the sampling is obtained
from an arc-length parameterization by a scanner capable of measuring the distance
it has covered when moving on the curve. In practice, this assumption can be satis-
fied when the scanner is equipped with a GPS system. When given a set of sample
points that is dense enough, the distances between consecutive points can be used to
approximate the arc length of the curve. In this case we obtain syzygies correspond-
ing to a rational parameterization that approximately interpolates the given points.
The quantification of this approximation goes beyond the realm of this work, and re-
quires some numerical analysis. Another real life example that motivates us comes
from the simulation of subtractive manufacturing processes where the computation
of swept volumes generated by a cutter that moves along a specified trajectory (tool
path). Methods based on surface reconstruction from point clouds use a discretiza-
tion of the tool’s path at certain steps at which the initial point cloud representation
of the tool is copied. This yields a suitable input for our method since in this case
the time parameter at each step is known. Lastly, one may consider a scenario where
the sample is collected by some rational parameterization, such as PH or chord pa-
rameterization, in which case our method would compute the exact syzygies and, if
needed, the parametric expressions as well.

A matrix representation of an implicit object is a single matrix, generically of
full rank, which represents the object in the sense that its rank drops precisely when
evaluated at a point lying on the object. Matrix representations are quite robust,
since they do not require computation of the implicit equation; instead, they reduce
geometric operations on the object to linear algebra. In general, existing approaches
to implicitization include Gröbner bases, resultants, moving lines/curves and sur-
faces, µ-bases and approximation complexes, as well as a number of interpolation
techniques. Today, moving lines/curves and surfaces, and µ-bases seem to offer very
competitive methods since they provide the veracity of algebraic approaches with-
out the high complexity of Gröbner bases nor the problems due to base points when
using resultants. Moving curves and surfaces have been used to construct matrix
representations of implicit objects, and this is the premise of our work.

The theory of syzygies, including moving lines, curves and surfaces, has been
developed for parametric models; it is sketched in the subsequent sections. Our con-
tribution is to show how to compute the required syzygies by interpolation, when
the input curve or surface is given by a point cloud whose sampling satisfies mild
assumptions. No information on the parametric representation of the object is given,
but the parametric expressions could be obtained from the algorithm’s output. How-
ever, our goal is a robust implicit matrix representation, and we focus on matri-
ces constructed only by linear syzygies. We illustrate our algorithms for planar and
space curves as well as triangular surfaces, all without base points. Our Maple im-
plementation is available upon demand by the authors.

Let us describe the input in the case of curves in an ambient space of arbitrary
dimension n ≥ 2; it shall be generalized in the sequel to surfaces. We assume that
the curve admits some (unknown) affine rational parameterization φ : R→ Rn; pla-
nar and space curves correspond to n = 2 and n = 3, respectively. The input is a
parametric set of points. This pointset is defined as a sequence of vectors (τk;Xk)

99

such that
φ(τk) = Xk, for all k = 1,2, . . . , where τk ∈ R,

and Xk ∈ Rn. In particular, Xk ∈ R2 or Xk ∈ R3, depending on whether we study
planar or space curves.

A related model for point clouds is considered in [FS05].
This paper is organized as follows: Section 1 overviews previous work, whereas

Section 1 contains some background in the theory of syzygies, and develops general
tools required in the sequel. Section 1 describes our method for interpolating syzy-
gies when the input is given as a set of parametric points defining a planar or space
curve. In Section 1 we extend the method to the case of triangular surfaces, given as
a parametric pointset. We conclude with future work and open questions.

1 Previous work

This section discusses the main existing approaches to implicitization, with an em-
phasis on methods constructing matrix representations of implicit objects. Besides
these methods, Gröbner bases offer a powerful and complete approach but suffer
from high complexity and numerical instability.

Resultants, and their matrix formulae, have been used to express the implicit
surface equation, e.g., in [MC92], under the assumption of no base points.

The most direct method to reduce implicitization to linear algebra is to con-
struct a square matrix M, indexed by all possible monomials in the implicit equation
(columns) and different values (rows) at which all monomials get evaluated. Then
the vector of coefficients of the implicit equation is in the kernel of M. This idea has
been extensively used, e.g. in [Dok01, EKKL13, EKK15, SY08]. The method, as
introduced in [EKKL13, EKK15], exploits sparse resultant theory so as to predict
the monomials in the implicit equation and thus build the interpolation matrix. It
handles objects with base points.

A modern method for representing implicit equations by matrices was introduced
by Sederberg and his coauthors when they rediscovered the theory of syzygies in the
context of computer science [SSQK94, SC95, SGD97]. Let us take the example of
planar curves without base points, parameterized by the homogeneous polynomials
(f1(s : t) : f2(s : t) : f3(s : t)), all of same degree d. The main idea is to define a
moving line in P2 as

h1(s : t)x+h2(s : t)y+h3(s : t)z = 0, (5)

where x,y,z are homogeneous coordinates in P2 and hi(s : t) ∈C[s, t], i = 1,2,3, are
homogeneous polynomials of same degree. The moving line follows the curve if

3

∑
i=1

hi(s : t) fi(s : t) = 0, for all (s : t) ∈ P1. (6)

100

Algebraically, the triplet (h1,h2,h3) of homogeneous polynomials hi, or, equiva-
lently, the moving line (5), is a (linear) syzygy on the polynomials fi. It is known, see
e.g. [SSQK94, Cox01], that there are d independent moving lines of degree d− 1
that follow the curve. Using these moving lines it is possible to construct a d× d

matrix whose determinant is a multiple of the implicit equation, see Proposition 1.
In the next section we provide a comprehensive discussion on syzygies. For now,

let us recall that in the case of surfaces without base points, one may also construct
a square matrix whose determinant is a power of the implicit polynomial [CGZ00],
by using d moving planes and (d2−d)/2 moving quadrics, all of degree d−1, see
Subsection 1.

If we allow orthogonal matrices, it suffices to work with linear syzygies, and this
is the main approach adopted in this work. In general, one defines the notion of
critical degree ν0, see Proposition 1, which corresponds to the degree of the linear
syzygies required to define an orthogonal matrix Mν(φ) that satisfies the following
property [BLB10]: for any point p ∈ P2 in the case of planar curves or, respectively,
p ∈ P3 in the case of space curves or surfaces, the rank of Mν(φ) evaluated at p

drops if and only if p belongs to the algebraic closure of (φ). The critical degree is,
in general, at least as large as the regularity of the map sending tuples of polyno-
mials to combinations generalizing those in expression (6). In particular, the critical
degree in the case of planar and space curves without base points is d− 1, and for
triangular surfaces it is 2(d−1).

The matrices indirectly represent implicit objects and allow for geometric opera-
tions, such as surface-surface intersection [BLB12] and, more recently, ray shooting
[SBAD16], to be reduced to linear algebra. Their advantage is that the matrices are
much smaller than interpolation matrices, and allow for inversion by an eigenprob-
lem on these matrices. They also simplify in the presence of base points while other
methods become more complicated. On the other hand, their construction is a two-
step process of matrix operations. Moreover, they are symbolic with entries linear
polynomials in the implicit variables.

2 Basic tools

This section uses known results in the theory of syzygies to develop certain tools
needed for stating our algorithms in subsequent sections. In particular we shall re-
late the degree of a given grading of the syzygy module to its dimension. For a com-
prehensive survey on the subject, we refer the interested reader to [Cox01, Cox03].

2.1 Planar curves

Consider the (homogeneous) parameterization of a planar curve C :

101

φ : P1→ P2 : (s : t) 7→ (f1(s : t) : f2(s : t) : f3(s : t)) , (7)

where fi ∈C[s, t] are homogeneous of the same degree d, and assume that gcd(f1, f2, f3)
= 1, i.e. φ has no base points.

Consider a syzygy (h1,h2,h3), where hi(s : t) ∈ C[s, t], i = 1,2,3, are homoge-
neous polynomials of same degree, as in (6):

3

∑
i=1

hi(s : t) fi(s : t) = 0, for all (s : t) ∈ P1,

This is a linear syzygy on the polynomials fi. The common degree of the h1,h2,h3

is known as the degree of this syzygy. The set of all syzygies is denoted by
Syz(f1, f2, f3), and has the structure of a graded module. By fixing a degree ν ≥ 0,
we can consider the set of syzygies of degree ν , denoted by Syz(f1, f2, f3)ν , which
is known to be a finite dimensional C-vector space. One can compute a basis
L1, . . . ,LNν of this vector space by solving a linear system, where Nν denotes the
basis cardinality.

We identify each L j = (h
(j)
1 ,h

(j)
2 ,h

(j)
3) with its moving line and we develop it in

terms of the s, t as follows:

L j :=
3

∑
k=1

h
(j)
k xk =

ν

∑
i=0

Λi, j(x,y,z)s
itν−i, j = 1, . . . ,Nν , (8)

where Λi, j(x,y,z) is a linear polynomial in C[x,y,z]. Let Mν(φ) be the (ν +1)×Nν

matrix, whose jth column contains the coefficients Λi, j(x,y,z) of L j in (8).
A fundamental result here is the following, showing that there are d indepen-

dent moving lines of degree d− 1 that follow φ . Then, Mν(φ) is a square d× d

implicitization matrix, for ν = d−1.
[CLO05, Sec.6.4],[Cox01, Thm.2.2] When the plane curve has no base points

and with the notation above, Nd−1 = d and det(Md−1(φ)) = c ·Fdeg(φ), where c ∈
C∗, F is the implicit polynomial of the curve C , and deg(φ) is the number of pre-
images of a generic point on C .

The entire module of syzygies Syz(f1, f2, f3) is a free module of rank 2. Let
P = (P1,P2,P3),Q = (Q1,Q2,Q3) be its generators of degrees µ1 ≤ µ2, respectively.
It is known that µ1 +µ2 = d.

The P,Q are called a µ-basis of Syz(f1, f2, f3). Thus, we write any syzygy
in Syz(f1, f2, f3)ν as a polynomial combination, for homogeneous p,q ∈ C[s, t],
namely:

pP+qQ, where deg(p) = ν−µ1 and deg(q) = ν−µ2, . (9)

If we identify P,Q with their moving lines, i.e., P = P1x+P2y+P3z, Q = Q1x+
Q2y+Q3z, then the Sylvester resultant of P,Q gives the implicit equation F of C :

Res(P,Q) = c ·Fdeg(φ),

102

where c,F,deg(φ) are as in Proposition 1.
We now employ (9) to compute a basis of Syz(f1, f2, f3)ν and its dimension, as

ν varies. Recall d is the homogeneous degree of f1, f2, f3. The following lemma
essentially appears in [CSC98, Cor.2,p. 811]. For the convenience of the reader we
include a self-contained and simple proof.

Lemma 1. We distinguish the following cases for the degree ν of Syz(f1, f2, f3)ν :

(a) ν ≤ µ1−1. Then dimSyz(f1, f2, f3)ν = 0.

(b) µ1−1≤ ν ≤ µ2−1. Then dimSyz(f1, f2, f3)ν = ν−µ1 +1.

(c) ν ≥ µ2−1. Then dimSyz(f1, f2, f3)ν = 2ν−d +2.

Note that the intervals of the three cases share their endpoints, hence the overall
piecewise linear curve is continuous. The lemma generalizes the fundamental result
that dimSyz(f1, f2, f3)d−1 = d, from Proposition 1.

Proof. From equation (9) we get the basis of Syz(f1, f2, f3)ν , for general ν :

B = {sitν−µ1−iP | 0≤ i≤ ν−µ1}∪{s
itν−µ2−iQ | 0≤ i≤ ν−µ2}. (10)

Then, the lemma follows straightforwardly by computing the cardinality of B for
each case (a)-(c). In particular we have:

(a) If ν ≤ µ1−1, then B = /0 because any non-trivial polynomial combination of P,Q
has total degree ≥ µ1. Hence dimSyz(f1, f2, f3)ν = 0.

(b) If µ1≤ ν ≤ µ2−1, then B= {sitν−µ1−iP | 0≤ i≤ ν−µ1} and |B|= dimSyz(f1, f2, f3)ν =
ν−µ1 +1. If ν = µ−1 this formula yields correctly 0.

(c) If ν ≥ µ2, then B is as in (10), containing both multiples of P and Q, hence |B|=
dimSyz(f1, f2, f3)ν = 2ν − d + 2, since d = µ1 + µ2. At ν = µ2− 1, the formula
yields µ2−µ1, which is also obtained at this point by the formula of case (b).

The lemma is summarized in Figure 1.

Fig. 1 The graph of the dimension Nν of Syz(f1, f2, f3)ν with respect to ν . The dashed red line
intersects the graph at point (d−1,d) corresponding to the critical degree.

2.2 Space curves

Consider the space curve parameterized homogeneously as

φ : P1→ P3 : (s : t)→ (f1(s : t) : f2(s : t) : f3(s : t) : f4(s : t)), (11)

where d is again defined as the homogeneous degree of the polynomials fi(s, t),
i = 1, . . . ,4. Suppose gcd(f1, f2, f3, f4) = 1, i.e. there are no base points.

103

The module of syzygies Syz(f1, f2, f3, f4) is a free module of rank 3. Let P =
(P1,P2,P3,P4), Q= (Q1,Q2,Q3,Q4), R= (R1,R2,R3,R4) be its generators and µ1 ≤
µ2 ≤ µ3 be their degrees respectively. It is known that µ1 +µ2 +µ3 = d.

The P,Q,R are called a µ-basis of Syz(f1, f2, f3, f4). We can write any syzygy
in Syz(f1, f2, f3, f4)ν as a polynomial combination for homogeneous polynomials
p,q,r ∈ C[s, t]:

pP+qQ+ rR, where deg(p) = ν−µ1,deg(q) = ν−µ2,deg(r) = ν−µ3. (12)

Identifying P,Q,R with their moving lines, i.e., P = P1x+P2y+P3z+P4w, Q =
Q1x+Q2y+Q3z+Q4w, R = R1x+R2y+R3z+R4w, and forming the Sylvester
resultant of every pair of P,Q,R gives one implicit equation of a surface containing
curve C ; the latter is thus defined set-theoretically as the intersection of 3 surfaces.

We can now relate the dimension of Syz(f1, f2, f3, f4)ν to ν .

Lemma 2. We distinguish the following cases for the degree ν of Syz(f1, f2, f3, f4)ν :

(a) ν ≤ µ1−1. Then dimSyz(f1, f2, f3, f4)ν = 0.

(b) µ1−1≤ ν ≤ µ2−1. Then dimSyz(f1, f2, f3, f4)ν = ν−µ1 +1.

(c) µ2−1≤ ν ≤ µ3−1. Then dimSyz(f1, f2, f3, f4)ν = 2ν−µ1−µ2 +2.

(d) µ3−1≤ ν . Then dimSyz(f1, f2, f3, f4)ν = 3ν−d +3.

The intervals of subsequent cases share their endpoints, hence the overall piece-
wise linear curve is continuous.

Proof. From equation (12) we get the basis of Syz(f1, f2, f3, f4)ν for general ν :

B = {sitν−µ1−iP | 0≤ i≤ ν−µ1}∪{s
itν−µ2−iQ | 0≤ i≤ ν−µ2}

∪{sitν−µ3−iW | 0≤ i≤ ν−µ3}. (13)

Then, the lemma follows straightforwardly by computing the cardinality of B for
each case (a)-(d). In particular we have:

(a) If ν ≤ µ1 − 1, then B = /0 because any non-trivial polynomial combination of
P,Q,W has total degree ≥ µ1. Hence dimSyz(f1, f2, f3, f4)ν = 0.

(b) If µ1≤ ν ≤ µ2−1, then B= {sitν−µ1−iP | 0≤ i≤ ν−µ1} and |B|= dimSyz(f1, f2, f3, f4)ν =
ν−µ1 +1. If ν = µ1−1 the formula yields correctly 0.

(c) If µ2 ≤ ν ≤ µ3−1, then

B = {sitν−µ1−iP | 0≤ i≤ ν−µ1}∪{s
itν−µ2−iQ | 0≤ i≤ ν−µ2}

and |B| = dimSyz(f1, f2, f3, f4)ν = 2ν − µ1− µ2 + 2. If ν = µ2− 1 the formula
yields µ2−µ1, which is also obtained from the formula of case (b).

(d) If ν ≥ µ3, then B is as in (13) and |B| = dimSyz(f1, f2, f3, f4)ν = 3ν − d + 3. If
ν = µ3− 1, the formula yields 2µ3− µ1− µ2, which agrees with the value of the
formula in case (c) at this point.

Figure 2 summarizes the lemma.

104

Fig. 2 The graph of the dimension Nν of Syz(f1, f2, f3, f4)ν with respect to ν . The dashed red line
intersects the graph at point (d−1,2d) corresponding to critical degree ν0 = d−1.

2.3 General Curves

We may unify and generalize the previous discussion by considering curves in Pn,
for any ambient dimension n≥ 2, parameterized homogeneously as

φ : P1→ Pn : (s : t)→ (f1(s : t) : . . . : fn(s : t)), (14)

where d is the homogeneous degree of the polynomials fi(s, t), i = 1, . . . ,n. By the
Hilbert Syzygy Theorem, the syzygy module Syz(f1, . . . , fn) is free of rank n, and in
particular it has a µ-basis [CSC98, Thm.1]. Let µ1 ≤ ·· · ≤ µn, be the degrees of the
polynomials in the µ-basis of the module. Hence, the previous discussion extends
to this case as well.

The derived formulae for Nν in the two Lemmas above can be unified and gener-
alized into a piecewise linear formula with n nontrivial pieces, where the equation
of the k-th segment is

Nν =
k

∑
i=1

(ν−µi+1), for µk−1≤ ν ≤ µk+1−1, k= 1,2, . . . ,n−1, or µn−1≤ ν .

Of course Nν = 0 for ν ≤ µ1−1.

2.4 Triangular surfaces

The theory of moving lines generalizes to surfaces in P3. Let us focus on the case
of surfaces without base points, parameterized by

φ : P2→ P3 : (s : t : u) 7→ (f1(s : t : u) : f2(s : t : u) : f3(s : t : u) : f4(s : t : u)) ,
(15)

where all fi are homogeneous of degree d. These are known as triangular surfaces.
The analogue of a moving line of degree ν in P3 is a moving plane:

h1(s : t : u)x+h2(s : t : u)y+h3(s : t : u)z+h4(s : t : u)w = 0, (16)

where deg(hi) = ν , i = 1, . . . ,4.
A moving quadric of degree ν is defined as:

h1x2 +h2y2 +h3z2 +h4w2 +h5xy+h6xz+h7xw+h8yz+h9yw+h10zw = 0, (17)

where where deg(hi(s : t : u)) = ν , i = 1, . . . ,7.

105

There are d linearly independent moving planes of degree d − 1 that follow
the surface (15). Moreover, there are (d2 − d)/2 linearly independent moving
quadrics of degree d− 1 that follow the surface and are not obtained from some
of the d moving planes by multiplication by x,y,z,w. The determinant of the
(d2 + d)/2× (d2 + d)/2 matrix Md−1(φ), constructed as in the planar curve case
by using the corresponding syzygies, is a power of the implicit polynomial of the
surface [CGZ00].

There exist extensions of the method above when the surface has finitely many
base points that satisfy certain assumptions, see [BCD03].

Turning our attention to the whole syzygy module Syz(f1, f2, f3, f4) of the sur-
face (15), it is not always free, and it is certainly not free when there are no base
points. However, if we dehomogenize (15), then the syzygy module is free, of rank
3. Contrary to the case of curves, the elements of the µ-basis are not the syzygies of
lowest degree nor they are unique. Moreover we do not have bounds on the degree
of the generators. Let µ3 be the maximum degree. In the case ν ≥ µ3, we shall be
able to relate ν to the dimension Nν of Syz(f1, f2, f3, f4)ν .

Let us consider the following map for certain gradings of homogeneous polyno-
mial ring C[s, t,u]:

(C[s, t,u])4
ν → C[s, t,u]ν+d : (h1,h2,h3,h4) 7→

4

∑
i=1

hi fi.

Its kernel is precisely Syz(f1, f2, f3, f4)ν . For ν ≥ ν0 = 2(d− 1), the map is of full
rank. Actually, it may be of full rank for lower ν but in constructing implicitiza-
tion matrices, we are interested in the critical degree. Given a map of full rank, we
compute dimSyz(f1, f2, f3, f4)ν as the map’s nullity:

Nν = 4

(

ν +2
2

)

−

(

ν +d +2
2

)

,

which is clearly always an integer. This establishes the following.

Lemma 3. For the degree ν of Syz(f1, f2, f3, f4)ν , ν ≥ 2(d−1) implies

dimSyz(f1, f2, f3, f4)ν =
3ν2

2
−ν(d−

9
2
)−

d(d +3)
2

+3.

2.5 Orthogonal matrix representations

If we allow for orthogonal matrices and assume that the base points are local com-

plete intersections, then we can restrict ourselves to linear syzygies and construct a
matrix Mν(φ) expressing these syzygies, for which the following holds:

[BLB10, Bus14] Let us define the following critical degrees: ν0 = d−1 for pla-
nar and space curves, and ν0 = 2(d−1) for triangular surfaces. Then, for all ν ≥ ν0,

106

matrix Mν(φ) constructed by the respective linear syzygies satisfies the following
property: for any point p ∈ P2 in the case of planar curves, or p ∈ P3 otherwise, the
rank of Mν(φ) evaluated at p drops if and only if p belongs to the algebraic closure
of (φ).

We may dehomogenize and obtain the equivalent property, that a point (X ,Y) ∈
C2 belongs to C if and only if the rank of Mν(X ,Y) drops; the latter denotes the
matrix in the non-homogeneous setting.

3 Syzygies of curves

This section describes how to interpolate the basis of the graded syzygy module of
a given degree ν for the case of planar curves, space curves and triangular surfaces.
These syzygies can be used to build a matrix as already described.

3.1 Planar curves

We describe the method for computing a basis of the linear syzygy module of de-
gree ν of a rational planar curve given by the (unknown) parameterization (7). The
dehomogenization of φ gives the rational planar curve C parameterized by

φ : C1→ C2 : t→

(

X(t) =
f1(t)

f3(t)
,Y (t) =

f2(t)

f3(t)

)

, (18)

where φ is not known. The input is a set of triplets of the form

(τ1;X1,Y1),(τ2;X2,Y2), . . .

such that φ(τk) = (Xk,Yk), for a range of k ≥ 1 to be defined below. These triplets
are assumed sufficiently generic, in particular they may be sampled following the
scenarios described in Section , e.g. when φ is an arc-length parameterization and
the triplets are sampled by a scanner following C .

Our goal is to design an algorithm for computing an implicit matrix representa-
tion of the curve C , described by this parametric set of points. The algorithm shall
try different degrees ν ≥ 0, and shall compute a C-basis for Syz(X ,Y,1)ν : since the
rational functions of X(t),Y (t) are not explicitly known, we compute the basis in
the following manner. Consider the moving line h1X +h2Y +h3 = 0. The expanded
form of each hi is

hi =
ν

∑
δ=0

hi,δ tδ ∈ C[t], i = 1,2,3, (19)

where the hi,δ are (unknown) coefficients. Hence, we can rewrite the moving line as

107

ν

∑
δ=0

tδ Xh1,δ +
ν

∑
δ=0

tδY h2,δ +
ν

∑
δ=0

tδ h3,δ = 0. (20)

Such equations are going to be used to determine the 3(ν +1) unknown coefficients
hi,δ by interpolation at the sampled triplets. For this, we define a 3(ν +1)×3(ν +1)
matrix H whose rows are indexed by evaluations t = τk, for k = 1, . . . ,3(ν +1), and
each row expresses equation (20) as follows:

[Xk,τkXk, . . . ,τ
ν
k Xk, Yk,τkYk, . . . ,τ

ν
k Yk, 1,τk, . . . ,τ

ν
k] .

Clearly, the vector of coefficients [h1,0,h1,1, . . . ,h3,ν] corresponding to any element
of Syz(X ,Y,1)ν lies in the kernel of matrix H.

We compute a basis of the kernel of matrix H and rewrite the j-th kernel basis
vector

(h
(j)
1,0, . . . ,h

(j)
1,ν ,h

(j)
2,0, . . . ,h

(j)
2,ν ,h

(j)
3,0, . . . ,h

(j)
3,ν)

as (h(j)
1 ,h

(j)
2 ,h

(j)
3) following equation (19).

Let h be the kernel dimension of matrix H. We can see that h = Nν under the
genericity assumption on the given triplets and the matrix H, because the kernel
basis of H corresponds to a C-basis of Syz(f1, f2, f3)ν .

Moreover, since every vector of coefficients of a syzygy lies in the kernel, the
vector-space basis of the kernel is a vector-space basis of the syzygy grade, because

the latter is a vector space. Then the triplets (h
(j)
1 ,h

(j)
2 ,h

(j)
3), j = 1, . . . ,Nν form a

C-basis of Syz(X ,Y,1)ν . In the case h ≥ ν + 1, the C-basis of Syz(X ,Y,1)ν yields
the matrix Mν(X ,Y), which offers a matrix representation of the implicit curve C ,
since ν verifies ν ≥ d−1.

Lemma 1 implies the following. The proof follows easily from the information
in Figure 2.

Corollary 1. Consider a rational parametric curve C of the form (18). Following

the above notation, let d be the homogeneous degree of the (unknown) fi, i = 1,2,3,

ν ≥ 0 be a fixed degree, specifying a syzygy grading, and h = dimker(H) be the

cardinality of the kernel basis of H. Then,

1. h < ν +1 if and only if ν < d−1.

2. h = ν +1 if and only if ν = d−1, then h = d.

3. h > ν +1 if and only if ν > d−1.

Corollary 1 allows us to compute d by constructing matrix H and comparing h

with the selected ν . It is clear that we can also recover the parameterization, but the
goal of this work is to obtain robust implicit representations of point cloud models.

Algorithmically, one starts with small ν , say ν = 1. While h < ν + 1, the algo-
rithm doubles ν . If h > ν +1, we perform binary search to identify the point where
h = ν + 1, and h = d. The first phase, where ν is being doubled, goes up to about
2d, hence needs O(lgd) steps. The binary search takes O(lgd) steps as well, hence
the algorithm makes overall O(lgd) corank computations for matrices of dimension
up to 2d.

108

Another possible algorithm uses two values of the syzygy grading, namely ν ′ >
ν > 0, and compute the corresponding kernel dimensions h′ > h≥ 0. The algorithm
terminates when ν ′ ≥ µ2−1, then solves h′ = 2ν ′−d+2 for d. The main step is to
compute the slope of the segment defined by the two points, namely

λ =
h′−h

ν ′−ν
∈ [0,2].

The algorithm terminates when λ > 1 because this implies ν ′ ≥ µ2− 1. If λ ≤ 1
the algorithm increases degree ν ′. This increase happens by setting ν ′ ← ν ′ + 1
then, if λ ≤ 1 again, the algorithm doubles ν ′. The algorithm requires O(lg µ2) rank
computations, which is faster than the previous one.

Rank computation, by means of Gaussian elimination or QR-decomposition, of a
m-dimensional matrix has complexity O(mω) in the exact setting, where ω < 2.373
is the exponent of matrix multiplication. Clearly, the corank computation for H can
be achieved in O(νω) operations, for a given ν . In practice, this is rather of cubic
complexity.

The matrices H constructed at various steps are very much related to each other,
since the larger ones are obtained by adding columns and rows to a smaller matrix.
The new columns and rows correspond, respectively, to higher degree monomials
in equation (20) and new interpolation points t = τk. In particular, suppose we have
constructed H for some ν , hence of matrix dimension 3(ν + 1), the corresponding
matrix H ′ constructed for ν ′ > ν has dimension 3(ν ′+ 1) and the following block
structure:

H ′ =

[

H H12

H21 H22

]

,

where [H21 |H22] corresponds to 3(ν ′−ν) new rows. Suppose the new degree ν ′ =
ν +O(1), i.e. the two degrees do not differ significantly, and suppose the corank of
H is h = ν−O(1), i.e. it is not significantly smaller than ν . Given a rank revealing
decomposition of H, we apply it to the new columns, then compute the rank of H ′

using a total of O(ν ′2) operations. We thus achieve a speedup of up to one order of
magnitude under the current assumptions.

Example 1. Consider the folium of Descartes curve affinely parameterized as:

C =

{(

3t

t3 +1
,

3t2

t3 +1

)

∈ C2 : t ∈ C

}

(21)

Notice d = 3 for curve C .
Suppose we are given a sample of random points on C for various values of the

parameter t, denoted by triplets (τk;Xk,Yk), and that we use them to construct the
matrix H as described above, with no knowledge of the parametric equation. We try
different values of ν :

For ν1 = 1, the C-basis of Syz(X ,Y)1 is {(−t,1,0)}, that is we are in case 1 of
Corollary 1 since Nν1 < ν1 +1. For ν2 = 2, the computed basis of Syz(X ,Y)2 is

109

{(−t2, t,0),(−t,1,0),(−1/3,−t2/3, t)},

that is, case 2 of Corollary 1. This is to be expected since we picked ν2 = d−1. Any
ν ≥ ν2 is a valid choice to construct an implicit representation matrix Mν(X ,Y).

For ν2 = 2, the matrix is

Mν2(X ,Y) =







−X 0 −Y/3

Y −X 1

0 Y −X/3






, (22)

whose determinant indeed yields implicit equation X3 +Y 3−3XY = 0.

3.2 Space curves

The method we have described extends naturally to the case of space curves. As-
sume an unknown parameterization in projective space:

φ : (t1 : t2)→ (f1(t1 : t2), f2(t1 : t2), f3(t1 : t2), f4(t1 : t2)), (23)

where d is again defined as the homogeneous degree of the polynomials fi(t1, t2),
i = 1, . . . ,4. In this case, the critical degree of the syzygies needed for computing the
matrix representation of Proposition 1 is d−1, same as for planar curves, meaning
ν must be ≥ d−1.

Again, we use moving lines, expressed as follows:

ν

∑
δ=0

tδ Xh1,δ +
ν

∑
δ=0

tδY h2,δ +
ν

∑
δ=0

tδ Zh3,δ +
ν

∑
δ=0

tδ h4,δ = 0.

The corresponding equations define matrix H. They contain 4(ν +1) unknown co-
efficients hi,δ , hence the dimension of matrix H constructed for some chosen degree
ν is dim(H) = 4(ν +1). Let h be the corank of matrix H.

A corollary of Lemma 2 follows, which shall let us identify the critical degree
ν0 = d−1, see Proposition 1. The proof is straightforward if one considers Figure 1.

Corollary 2. Consider a rational parametric space curve C ⊂ R3 of the form (23).

Let d be the homogeneous degree of the (unknown) fi, i = 1, . . . ,4, ν ≥ 0 be the

degree defining the grading of the syzygy, and h = dimker(H), using the above

notation. Then we have:

1. h < 2(ν +1) if and only if ν < d−1.

2. h = 2(ν +1) if and only if ν = d−1, then h = 2d.

3. h > 2(ν +1) if and only if ν > d−1.

110

We might apply Lemma 2 to establish a similar corollary distinguishing among 3
cases, with middle case h = 2ν +1. This would have been sufficient for computing
d but not enough to build an implicitization matrix from linear syzygies.

Two algorithms are now possible, analogous to those for planar curves in order to
identify d and compute the syzygies by interpolation through the parametric point
set. Corollary 2 leads to a binary search technique in order to identify the critical
degree ν0 = d−1.

Alternatively, there is an algorithm using two syzygy degrees, namely ν ′ > ν ,
and computing the slope of the coranks until ν ′ lies in the last segment of the graph
in Figure 2. For this algorithm, Lemma 2 implies the following properties for slope

λ =
N′ν −Nν

ν ′−ν
∈ [1,3].

First, λ takes an integer value if both ν ,ν ′ correspond to the same segment of the
polygonal line in Figure 2. Otherwise, we have the following cases:
– λ ∈ (1,3) iff ν ,ν ′ correspond to the first and third segments,
– λ ∈ (1,2) iff ν ,ν ′ correspond to the first and second segments,
– λ ∈ (2,3) iff ν ,ν ′ correspond to the second and third segments.

Example 2. Consider the Viviani window curve affinely parameterized as:

C =

{(

2t−2t3

(1+ t2)2 ,
4t2

(1+ t2)2 ,
1− t4

(1+ t2)2

)

∈ C3 : t ∈ C

}

(24)

The degree of curve C is d = 4.
We are again given a sample of random points on C for various values of the

parameter t, denoted by quadruplets (τk;Xk,Yk,Zk), which we use them to construct
the matrix H.

For ν1 = 1, the C-basis of Syz(X ,Y,Z)1 is {(−1,−t, t, t),(t,−1,−1,1)}, that is
we are in case 1 of Corollary 2, since Nν1 < 2(ν1 + 1). By choosing ν2 = 3, the
computed basis of Syz(X ,Y)3 consists of 8 elements, that is, case 2 of Corollary 2.
This is to be expected since we picked ν2 = d−1. Thus, any choice of ν such that
ν ≥ ν2 is a valid choice to construct an implicit representation matrix Mν(X ,Y,Z).

For ν2 = 3, the matrix is

Mν2(X ,Y,Z) =











Z +1 X/2 0 0 −X/2 0 Y 0

X 1 X/2 0 Z −X/2 2X Y

−Y 3X/2 −Y +1 X −X/2 Z −Y 2X

0 −Y −X/2 −Y −Z +1 0 −X/2 0 −Y











. (25)

111

4 Syzygies of surfaces

This section extends the applicability of our method to surfaces in R3 without base
points.

The theory of syzygies has been fully generalized to certain types of surfaces
only, namely tensor product and triangular surfaces [Cox01, sec.3-4]. In these cases,
it is known how many moving planes and moving surfaces, and of which degree, one
has to include in order to construct a matrix whose determinant corresponds to the
implicit equation. We focus on triangular surfaces because in this case it is easier to
obtain the function of the dimension Nν of the graded syzygy module with respect to
the degree ν of the syzygies. The method should extend to tensor product surfaces as
well, but then Nν is a function of the bi-degree ν = (ν1,ν2) of the parameterization.

The input is now a parametric pointset

(τk,σk;Xk), k = 1,2, . . . , where (τk,σk) ∈ R2, and Xk ∈ R3.

Let us recall triangular surfaces:

φ : P2→ P3 : (s : t : u) 7→ (f1(s : t : u) : f2(s : t : u) : f3(s : t : u) : f4(s : t : u)) ,

where homogeneous fi(t1 : t2 : t3), i = 1, . . . ,4 has degree d. To construct the matrix
representation, one has to include d moving planes of degree d−1 and (d2−d)/2
moving quadrics of degree d−1, assuming no base points exist.

To avoid interpolating quadrics and to keep the size of the interpolation ma-
trices low, we shall interpolate only linear syzygies and aim at the critical degree
ν0 = 2(d− 1) which, by Proposition 1, allows for constructing an implicit matrix
representation by employing only linear syzygies.

As before, it is possible to build an interpolation matrix H, for given degree ν ,
containing the values of the unknown syzygy monomials at the parametric set of
points. The matrix kernel yields the polynomials in the basis of the syzygy grading
of degree ν . For a sufficiently generic point sample, the matrix corank h equals the
dimension Nν .

Using Lemma 3, namely the quadratic formula Nν = 3ν2

2 −ν(d− 9
2)−

d(d+3)
2 +3,

we can design an algorithm for computing d and interpolate the syzygies beyond the
critical degree ν0, required for the implicitization matrix of Proposition 1.

The algorithm uses three positive degree values 0 < ν1 < ν2 < ν3, and computes
the 3 respective dimensions Ni, i = 1,2,3. Then, it checks whether it is possible to
fit the 3 pairs (νi,Ni) on the parabolic formula of Nν as function of ν . If this is
possible, we are certain that all 3 values νi are such that the quadratic formula for
Nν holds. Even if Nν as a function of ν is expected to be piecewise with most pieces
still known, it is impossible that these 3 points fit another piece, since all pieces
are of degree at most 2. Therefore, we can compute d and interpolate the syzygies
needed for the implicitization matrix.

Example 3. Consider the canonical Steiner surface affinely parameterized as:

112

S =

{(

2st

s2 + t2 +1
,

2t

s2 + t2 +1
,

2s

s2 + t2 +1

)

∈ C3 : t,s ∈ C

}

(26)

The degree of the surface S is d = 2.
Given random points on S for various values of the parameters t,s, denoted as

5-tuples of the form (τk,σk;Xk,Yk,Zk), we construct the matrix H.
For ν1 = 1, the C-basis of Syz(X ,Y,Z)1 is {(−1,0, t,0),(−1,s,0,0)}, that is we

have h = 2. Since we have shown that for ν = d−1 we have h = d linear syzygies,
we have successfully computed the degree of the surface, i.e. d = ν1 +1 = 2. Thus,
any choice of ν such that ν ≥ 2(d−1) = 2 is a valid choice to construct an implicit
representation matrix Mν(X ,Y,Z).

For ν2 = 2, the matrix is

Mν2(X ,Y,Z) =





















0 Z 0 0 0 0 0 −X/2 −Y/2

0 0 Z 0 Y 0 0 1 0

−Z/2 0 0 0 0 Y 0 −X/2 0

−X/2 −X 0 Z −X 0 0 0 1

1 0 −X 0 0 −X Y 0 −X/2

−Z/2 0 0 −X 0 0 −X −X/2 −Y/2





















. (27)

5 Implementation and experiments

We experimented using different curves and surfaces of different degrees including
the curves we use as examples. All experiments were implemented in Maple 18. The
experiments were executed as follows. We start by a given rational parameterization
of either a curve or a surface that has no basepoints. That is, we are given a set of
3 or 4 polynomials pols, that is the parameterization of the geometric object in
projective space. Then, for random values in the parametric domain we sample the
corresponding points on the curve or the surface. We use this parametric pointset for
our computations. The parameterization is not used explicitly in our computations
apart from verifying the results of our method.

We use this parametric pointset to construct matrix H for a given degree ν , as de-
scribed in the previous sections. After computing its kernel, we obtain the syzygies
that form a basis of the syzygies of degree ν . An example use of our implementation
is the command
> syzygiesd(pols, t, 3),
which returns a basis for the syzygies of degree 3 of the polynomials in pols,

whose parameter is t. For different values for the degree ν we look at the number
of syzygies we obtain, i.e. the dimension of syzygies of degree ν , and verify their
relation to the degree of the parameterization.

The implementation along with the examples included in this paper can be made
available upon demand from the authors.

113

6 Conclusion and future work

We provide a method for computing a matrix representation of a rational planar or
space curve, when we are only given a sufficiently large set of points on the object
sampled in such a way that the value of the parameter is known. The algorithm holds
for curves without base points in an ambient space of arbitrary dimension, as well
as for rational surfaces defined over a triangular patch, again without base points.

One obvious generalization is tensor-product surfaces of bi-degree (d1,d2), with
parameterization

φ : P1×P1→ P3 : t = (s : t;u : v)→ (f1(t), . . . , f4(t)),

where every fi is bi-homogeneous of degree d1 in (s : t) ∈ P1 and degree d2 in
(u : v) ∈ P1. In this case, the lack of tight bounds on the degree of the basis of the
syzygy module implies that only an approximation to the implicit representation
may be obtained.

Future work should involve numerical experiments for interpolating a matrix
representation: in this scenario, results are approximate and we wish to quantify
the quality of the approximate implicit matrix representation using numerical rank
computations. A similar aspect is to consider that noise corrupts the sampling: an
estimate of the necessary degree of the syzygies may be obtained in order to inter-
polate them, thus constructing a matrix approximating the implicit object.

Acknowledgments

The first and third authors are members of “AROMATH", a joint team between IN-
RIA Sophia-Antipolis (France) and National Kapodistrian University of Athens. All
authors are partially supported by the Initial Training Network “ARCADES: Alge-
braic Representations in Computer-Aided Design for Complex Shapes", 2016-2019.
This project has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie grant agreement No
675789. We also thank Laurent Busé for useful discussions during the preparation
of this manuscript.

References

[BCD03] L. Busé, D. Cox, and C. D’Andrea. Implicitization of surfaces in the projective space
in the presence of base points, 2003.

[BLB10] L. Busé and T. Luu Ba. Matrix-based implicit representations of rational algebraic
curves and applications. Computer-Aided Geometric Design, 27(9):681–699, 2010.

[BLB12] L. Busé and T. Luu Ba. The surface/surface intersection problem by means of matrix
based representations. Computer-Aided Geometric Design, 29(8):579–598, 2012.

114

[Bus14] L. Busé. Implicit matrix representations of rational Bézier curves and surfaces.
Computer-Aided Design, 46:14–24, 2014. Spec. Issue 2013 SIAM Conf. Geometric & Physi-
cal Modeling.

[CGZ00] D. Cox, R. Goldman, and M. Zhang. On the validity of implicitization by moving
quadrics for rational surfaces with no base points. J. Symb. Comput., 29(3):419–440, 2000.

[CLO05] D. Cox, J. Little, and D. O’Shea. Using Algebraic Geometry. Number 185 in GTM.
Springer, New York, 2nd edition, 2005.

[Cox01] D.A. Cox. Equations of parametric curves and surfaces via syzygies. In Symbolic Com-

putation: Solving Equations in Algebra, Geometry, and Engineering, volume 286 of Contem-

porary Mathematics, pages 1–20. AMS, 2001.
[Cox03] D.A. Cox. Curves, surfaces, and syzygies. In Topics in algebraic geometry and geometric

modeling, volume 334 of Contemporary Mathematics, pages 131–150. AMS, 2003.
[CSC98] D.A. Cox, T.W. Sederberg, and F. Chen. The moving line ideal basis of planar rational

curves. Comput. Aided Geom. Des., 15(8):803–827, September 1998.
[Dok01] T. Dokken. Approximate implicitization. In Mathematical methods for curves and sur-

faces (Oslo 2000), Innov. Appl. Math., pages 81–102. Vanderbilt Univ. Press, Nashville, 2001.
[EKK15] I.Z. Emiris, T. Kalinka, and C. Konaxis. Geometric operations using sparse interpolation

matrices. Graphical Models, 82:99–109, November 2015.
[EKKL13] I.Z. Emiris, T. Kalinka, C. Konaxis, and T. Luu Ba. Sparse implicitization by interpola-

tion: Characterizing non-exactness, and an application to computing discriminants. Computer-

Aided Design, Spec. Issue Solid & Physical Modeling, 45:252–261, 2013.
[FS05] M.S. Floater and T. Surazhsky. Parameterization for curve interpolation. In Topics in

multivariate approximation and interpolation, pages 101–115. Elsevier, 2005.
[MC92] D. Manocha and J.F. Canny. The implicit representation of rational parametric surfaces.

J. Symbolic Computation, 13:485–510, 1992.
[SBAD16] J. Shen, L. Busé, P. Alliez, and N. Dodgson. A line/trimmed NURBS surface intersec-

tion algorithm using matrix representations. Technical report, INRIA, 2016.
[SC95] T.W. Sederberg and F. Chen. Implicitization using moving curves and surfaces. In

R. Cook, editor, Proc. SIGGRAPH, pages 301–308. Addison Wesley, 1995.
[SGD97] T. Sederberg, R. Goldman, and H. Du. Implicitizing rational curves by the method of

moving algebraic curves. J. Symbolic Computation, 23(2):153–175, 1997.
[SSQK94] T.W. Sederberg, T. Saito, D. Qi, and K.S. Klimaszewski. Curve implicitization using

moving lines. Computer-Aided Geometric Design, 11(6):687–706, 1994.
[SY08] B. Sturmfels and J. Yu. Tropical implicitization and mixed fiber polytopes. In Software

for Algebraic Geometry, volume 148 of IMA Volumes in Math. & its Applic., pages 111–131.
Springer, New York, 2008.

115

Reduction in Free Modules

C. Fürst1, G. Landsmann1

1 Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC), Austria,

{cfuerst,gland}@risc.jku.at

Abstract

We present recent research results on the Theory of Gröbner Bases for modules
on rings of operators. While in the last fifteen years several concrete instances, such
as modules over rings of differential-, difference- and Ore-operators have been con-
sidered, we have formulated a theory that is applicable to a wide variety of rings in-
cluding the known results as special cases. To that end, we use the theory of Gröbner
reduction that is formulated for free modules over certain (non-commutative) rings.

As a concept, we present a general reduction concept and introduce a particular
type of term reduction. We develop a Buchberger-type theory with our generalized
reduction concept, and show how this fits into the landscape of existing theories. Let
R be a (non-commutative) ring containing a commutative ring K ⊆ R as a subring,
where elements in R are K-linear combinations of monomials Λ ⊆R. Let now F be a
free R-module generated by a finite set E, hence F consists of K-linear combinations
of monomials of the form ΛE. We consider a well-ordered set W and a map: rk :
F →W , and take the model-reduction

f −→ g :⇐⇒∃x ∈ X ⊆ F : g = f − x∧ rk(g)< rk(f) (28)

An example would be to choose rk(·) as the leading term LT, that gives the classic
theory of leading term reduction.

A further example would be to consider for elements f ,g ∈ F the support, i.e.
the set of monomials that appear in f and g with non-zero coefficient. Therefore, we
obtain for W = P f in(ΛE), this is, we consider finite sets of monomials of the form
λe ∈ΛE. We put on W a total order < defined by

supp(f)< supp(g) :⇐⇒max(supp(f)△supp(g)) ∈ supp(g).

We define the term reduction as the relation (28) and the choice rk = supp(·). It
turns out that leading term reduction can be viewn to be (properly) contained in
term reduction. We point out further characterizations of this term reduction, and
relate this to classic situations, in particular, we relate classic Buchberger theory
and Gröbner reduction under the scope of this term reduction.

References

1. C. Fürst, Axiomatic Description of Gröbner Reduction, Ph.D. Thesis, RISC (2016).
2. C. Fürst, G. Landsmann Three Examples of Gröbner Reduction over Non-Commutative Rings,

RISC Technical Report 15-16).

116

3. C. Fürst, G. Landsmann Computation of Dimension in Filtered Free Modules by Gröbner

Reduction, Proceedings of the ISSAC 2015, 181–188.
4. C. Fürst, A. Levin Relative Reduction and Buchberger’s Algorithm in Filtered Free Modules,

Proceedings of the ACA 2016 Kassel, (2017).

117

Constructing small cellular free resolutions for

monomial ideals

J. Àlvarez Montaner1, O. Fernández-Ramos2, P. Gimenez3

1 Universitat Politècnica de Catalunya, Spain, Josep.Alvarez@upc.edu
2 Universidad de Valladolid, Spain, caribefresno@gmail.com
3 Universidad de Valladolid, Spain, pgimenez@agt.uva.es

1 State of the art, objectives and methodology

Let R = K[x1, . . . ,xn] be the polynomial ring over a field K and I ⊆ R a monomial
ideal. The study of minimal free resolutions of these ideals has been a very active
area of research during the last decades. There are topological and combinatorial
formulae, as those of Hochster [11] or Gasharov, Peeva and Welker [10], to describe
their multigraded Betti numbers but, except for some specific classes of monomial
ideals (see, e.g., [3], [4] or [14]), the problem of describing a minimal multigraded
free resolution explicitly has shown to be difficult.

Another strategy is to study non-minimal free resolutions. These reveal less in-
formation than minimal free resolutions do but are often much easier to describe.
The most significant ones, that we will also comment in this paper, are the Tay-
lor resolution [16] and the Lyubeznik resolution [13], but one should also mention
the Scarf resolution of arbitrary monomial ideals obtained by deformation of expo-
nents [4] and the hull resolution [5]. An interesting feature of the Taylor and the
Lyubeznik resolutions is that they fit in the theory of simplicial resolutions intro-
duced by Bayer, Peeva and Sturmfels in [4] and further extended to regular cellular
resolutions and CW-resolutions in [5] and [12] respectively. The idea behind these
three concepts is to associate to a free resolution of a monomial ideal a simpli-
cial complex (respectively a regular cell complex, a CW-complex) that carries in
its structure the algebraic structure of the free resolution. It is worth pointing out
that Velasco proved in [17] that there exist monomial ideals whose minimal free
resolutions cannot be described by a CW-complex.

By adapting the discrete Morse theory developed by Forman [8] and Chari [6],
Batzies and Welker provided in [3] a method to reduce a given regular cellular res-
olution. In particular, they proved that the Lyubeznik resolution can be obtained in
this way from the Taylor resolution. Let’s point out that discrete Morse theory has
the inconvenient that it can’t be used iteratively. To overcome this issue, one can use
the algebraic discrete Morse theory developed independently by Sköldberg [15] and
Jöllenbeck and Welker [12].

In this work, we use a similar strategy to reduce the Taylor resolution and obtain
cellular and simplicial free resolutions that are closer to the minimal one than the

118

Lyubeznik resolution. Essentially, the information given by the Taylor resolution can
be encoded in a directed graph and the obstruction to its minimality can be observed
in some of the edges of this graph. What we will do is to remove, in a convenient
order, some of these edges to provide a smaller resolution. In some sense, we are
pruning the excess of information given by the Taylor resolution in a simple and
efficient way.

This is an extended abstract of the unpublished paper [2].

2 Main results and algorithms

Consider a monomial ideal I = 〈m1, . . . ,mr〉 ⊆ R. Recall that a CW-complex X is a
topological space obtained by attaching cells of increasing dimensions to a discrete
set of points X (0). Let X (i) denote the set of i-cells of X and consider the set of all
cells X (∗) :=

⋃

i≥0 X (i). Then, we can view X (∗) as a poset with the partial order
given by σ ′ ≤ σ if and only if σ ′ is contained in the closure of σ . We can also give
a Zn-graded structure to X by means of an order preserving map gr : X (∗) −→ Zn

≥0.

We say that a free resolution

F• : 0→ Fp
dn−→ ·· · −→ F1

d1−→ F0 −→ R/I→ 0

of R/I is cellular (or is a CW-resolution) if there exists a Zn-graded CW-complex
(X ,gr) such that, for all i≥ 1:

• there exists a basis {eσ} of Fi indexed by the (i− 1)-cells of X , such that if
eσ ∈ R(−α)βi,α then gr(σ) = α , and

• the differential di : Fi −→ Fi−1 is given by

eσ 7→ ∑
σ≥σ ′∈X(i−1)

[σ : σ ′] xgr(σ)−gr(σ ′) eσ ′ , ∀σ ∈ X (i),

where [σ : σ ′] denotes the coefficient of σ ′ in the image of σ by the differential
map in the cellular homology of X .

In the sequel, whenever we want to emphasize such a cellular structure, we will

denote the free resolution as F• = F
(X ,gr)
• . If X is a simplicial complex, we say that

the free resolution is simplicial. This is the case for two well-known examples, the
Taylor resolution ([16]) and the Lyubeznik resolution ([13]):

- The Taylor resolution: Consider the full simplicial complex on r vertices, XTaylor,
whose faces are labelled by σ ∈{0,1}r or, equivalently, by the corresponding mono-
mials mσ . We have a natural Zn-grading on XTaylor by assigning gr(σ) = α ∈ Zn

where xα = mσ . The Taylor resolution is the simplicial resolution F
(XTaylor,gr)
• .

119

- The Lyubeznik resolution: Let’s s start fixing an order m1≤ ·· ·≤mr on a generating
set of a monomial ideal I ⊆ R. Consider the simplicial subcomplex XLyub ⊆ XTaylor

whose faces of dimension s are labelled by those σ = εi0 + · · ·+ εis ∈ {0,1}
r such

that, for all t < s and all j < it

m j 6 | lcm(mit , . . . ,mis).

The Lyubeznik resolution is the simplicial resolution F
(XLyub,gr)
• .

Our algorithm that constructs, starting from the Taylor resolution, a smaller cel-
lular resolution, is based on the discrete Morse theory. Forman introduced in [8] the
discrete Morse theory as a method to reduce the number of cells in a CW-complex
without changing its homotopy type. Batzies and Welker adapted this technique in
[3] to the study of cellular resolutions; see also [18]. Indeed, they used the refor-
mulation of discrete Morse theory in terms of acyclic matchings given by Chari in
[6] in order to obtain, given a regular cellular resolution (most notably the Taylor
resolution), a reduced cellular resolution.

Let’s start recalling from [3] the preliminaries on discrete Morse theory. Consider
the directed graph GX on the set of cells of a regular Zn-graded CW-complex (X ,gr)
which edges are given by

EX = {σ −→ σ ′ | σ ′ ≤ σ , dimσ ′ = dimσ −1}.

For a given set of edges A ⊆ EX , denote by GA
X the graph obtained by reversing the

direction of the edges in A , i.e., the directed graph with edges1

EA
X = (EX \A)∪{σ ′ =⇒ σ | σ −→ σ ′ ∈A }.

When each cell of X occurs in at most one edge of A , we say that A is a matching

on X . A matching A is acyclic if the associated graph GA
X is acyclic, i.e., does not

contain any directed cycle. Given an acyclic matching A on X , the A -critical cells

of X are the cells of X that are not contained in any edge of A . Finally, an acyclic
matching A is homogeneous whenever gr(σ) = gr(σ ′) for any edge σ −→ σ ′ ∈A .

The main result in discrete Morse theory applied to free resolutions that we use
is the following:

Theorem ([3, Theorem 1.3]) Let I ⊆ R = K[x1, . . . ,xn] be a monomial ideal. As-

sume that (X ,gr) is a regular Zn-graded CW-complex that defines a cellular res-

olution F
(X ,gr)
• of R/I. Then, for a homogeneous acyclic matching A on GX , the

Zn-graded CW-complex (XA ,gr) supports a cellular resolution F
(XA ,gr)
• of R/I.

We can now present our main algorithm to construct a small cellular resolution

of I. Our starting point is the Taylor resolution F
(XTaylor,gr)
• . This resolution is, in

1 For the sake of clarity, the arrows that we reverse will be denoted by =⇒.

120

general, far from being minimal. In other words, the directed graph GXTaylor associ-
ated to XTaylor contains a lot of unnecessary information. Our goal is to prune this
excess of information in a very simple way. More precisely, we give an algorithm
that produces a homogeneous acyclic matching AP on XTaylor. Using [3, Theorem
1.3] that we recalled before, this will provide a cellular free resolution of R/I. It will
not be minimal in general, but it will be smaller than the Lyubeznik resolution.

Algorithm 1 (Pruned resolution)
INPUT: The set of edges EXTaylor .
For j from 1 to r, incrementing by 1:

(j) Prune the edge σ −→ σ + ε j for all σ ∈ {0,1}r such that σ j = 0, where ‘prune’
means remove the edge2 if it survived after step (j−1) and gr(σ) = gr(σ +ε j).

RETURN: The set AP of edges that have been pruned.

Our main result is the following:

Theorem Let AP ⊆ EXTaylor be the set of pruned edges obtained using Algorithm 1.

Then AP is a homogeneous acyclic matching on XTaylor.

As a consequence, we get our desired cellular free resolution.

Corollary Let I ⊆ R = K[x1, . . . ,xn] be a monomial ideal and AP ⊆ EXTaylor be the

set of pruned edges obtained using Algorithm 1. Then, the Zn-graded CW-complex

(XAP
,gr) supports a cellular free resolution F

(XAP
,gr)

• of R/I.

The resolution that we obtain is not simplicial in general, but we can adapt our
pruning algorithm to produce a simplicial free resolution:

Algorithm 2 (Simplicial pruned resolution)
INPUT: The set of edges EXTaylor .
For j from 1 to r, incrementing by 1:

(j) Prune the edge σ −→ σ + ε j for all σ ∈ {0,1}r such that σi = 0 , where ‘prune’
means remove the edge if it survived after step (j−1), gr(σ) = gr(σ +ε j) and
no face τ > σ survives at this step (j).

RETURN: The set AS of edges that have been pruned.

Indeed, the Lyubeznik resolution also fits into this pruning strategy:

Algorithm 3 (The Lyubeznik resolution via pruning)
INPUT: The set of edges EXTaylor .
For j from 1 to r, incrementing by 1:

2 When we remove an edge, we also remove its two vertices and all the edges passing through
these two vertices.

121

(j) Prune the edge σ −→ σ + ε j for all σ ∈ {0,1}r such that σi = 0 for all i ≤
j, where ‘prune’ means remove the edge if it survived after step (j− 1) and
gr(σ) = gr(σ + ε j).

RETURN: The set AL of edges that have been pruned.

One deduces from Algorithms 2 and 3 analogous results to the theorem and the
corollary obtained from Algorithm 1: AS and AL are acyclic matchings on XTaylor,

and the corresponding free resolutions F
(XAS

,gr)
• and F

(XAL
,gr)

• are simplicial free
resolutions of the monomial ideal I. Other variants of our method are also mentioned
in [2].

We will illustrate our results with several examples. We implemented our algo-
rithms using CoCoALib [1] for constructing pruned resolutions in some non-trivial
examples.

Finally, we will present a connection between our method and the theory of Betti
splittings introduced by Eliahou and Kervaire [3] and later developed by Francisco,
Hà and Van Tuyl [9]. We provide a sufficient condition for having a Betti splitting
by checking some prunings in our algorithm. We can use this approach to prove
that the pruned resolution obtained applying Algorithm 1 is minimal for edge ideals
associated to paths and cycles.

Aknowledgements

The first author is partially supported by the Spanish Ministerio de Economía y

Competitividad grant MTM2015-69135-P and the Generalitat de Catalunya grant
2014SGR-634. He is a member of the Barcelona Graduate School of Mathemat-
ics (BGSMath). The third author is partially supported by the Spanish Ministerio

de Economía y Competitividad grant MTM2016-78881-P. He is a member of the
Instituto de Investigación en Matemáticas (IMUVA).

References

1. J. Abbot and A. M. Bigatti, CoCoALib: a C++ library for doing Computations in Commutative
Algebra, available at http://cocoa.dima.unige.it/cocoalib.

2. J. Àlvarez Montaner, O. Fernández-Ramos and P. Gimenez, Pruned cellular free resolutions

of monomial ideals, arXiv:1701.01134, 2017.
3. E. Batzies and V. Welker, Discrete Morse theory for cellular resolutions, J. Reine Angew.

Math. 543, pp. 147–168 (2002).
4. D. Bayer, I. Peeva and B. Sturmfels, Monomial resolutions, Math. Res. Lett. 5, pp. 31–46

(1998).
5. D. Bayer and B. Sturmfels, Cellular resolutions of monomial modules, J. Reine Angew. Math.

502, pp. 123–140 (1998).

122

6. M. K. Chari, On discrete Morse functions and combinatorial decompositions, Discrete Math.
217, pp. 101–113 (2000).

7. S. Eliahou and M. Kervaire, Minimal resolutions of some monomial ideals, J. Algebra 129,
pp. 1–25 (1990).

8. R. Forman, Morse theory for cell complexes, Adv. Math. 134, pp. 90–145 (1998).
9. C. Francisco, H. T. Hà and A. Van Tuyl, Splittings of monomial ideals, Proc. Amer. Math.

Soc. 137, pp. 3271–3282 (2009).
10. V. Gasharov, I. Peeva, and V. Welker, The lcm-lattice in monomial resolutions, Math. Res.

Lett. 6, pp. 521–532 (1999).
11. M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes. In: Ring the-

ory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), Lecture Notes in Pure
and Appl. Math. 26, Dekker, New York, pp. 171–223 (1977).

12. M. Jöllenbeck and V. Welker, Minimal resolutions via algebraic discrete Morse theory, Mem.
Amer. Math. Soc. 197 (2009).

13. G. Lyubeznik, A new explicit finite free resolution of ideals generated by monomials in an

R-sequence, J. Pure and Appl. Algebra 51, pp. 193–195 (1988).
14. E. Miller, B. Sturmfels and K. Yanagawa, Generic and cogeneric monomial ideals, J. Sym-

bolic Comput. 29, pp. 691–708 (2000).
15. E. Sköldberg, Morse theory from an algebraic viewpoint, Trans. Amer. Math. Soc. 358, pp.

115–129 (2006).
16. D. Taylor, Ideals generated by an R-sequence, PhD-Thesis, University of Chicago (1966).
17. M. Velasco, Minimal free resolutions that are not supported by a CW-complex, J. Algebra

319, pp. 102–114 (2008).
18. V. Welker, Discrete Morse theory and free resolutions. In: Algebraic Combinatorics, Univer-

sitext, Springer, Berlin, pp. 81–172 (2007).

123

Low Autocorrelation Binary Sequences (LABS)

Ilias S. Kotsireas

Wilfrid Laurier University

Department of Physics

and Computer Science

75 University Avenue West

Waterloo, Ontario N2L 3C5

CANADA

e-mail: ikotsire@wlu.ca

Abstract

We will describe the LABS problem, a challenging optimization problem that
arises in mathematics, communications engineering and statistical physics. We will
discuss the state-of-the-art algorithmic techniques to solve this problem as well as
some complexity estimates derived from experimental work by various authors. The
algorithmic techniques used in the LABS problem include branch and bound meth-
ods, group theory, high-performance (parallel) computing and computer algebra.
We will also mention the open problems in the realm of LABS.

124

A Signature Based Border Basis Algorithm

J. Horáček1, M. Kreuzer1, and A.S. Messeng Ekossono1

1 Faculty of Informatics and Mathematics, University of Passau, Germany, {Jan.Horacek,

Martin.Kreuzer, Ange-Salome.MessengEkossono}@uni-passau.de

Abstract

One of the central algorithms of computer algebra is the algorithm for comput-
ing Gröbner bases introduced by B. Buchberger in 1965 (cf. [1]). Significant ef-
forts have been expended to improve its performance. The best current implemen-
tations use signature based versions of Buchberger’s algorithm, the first of which
was J.-C. Faugere’s algorithm F5 (cf. [3]). Nowadays an entire zoo of such algo-
rithms has been developed and their behavior has been studied thoroughly (see for
instance [2]).

On the other hand, the Border Basis Algorithm (BBA), a framework for which
was introduced in [6] and whose details were worked out in [5], is much less re-
searched. In [4], the authors considered some optimizations of BBA for ideals
of Boolean polynomials. However, for interesting ideals originating from crypto-
graphic attacks, these optimizations still proved to be insufficient to produce run-
ning times comparable with optimized implementations of Buchberger’s algorithm.
The main reason for this is that the current implementations of the BBA still lack
analogues of Buchberger’s criteria for avoiding unnecessary reductions of critical
pairs.

Our main goal in this presentation is to go the first step in the direction of
constructing border basis analogues to these criteria. More specifically, let I =
〈 f1, . . . , fs〉 be the 0-dimensional ideal whose border basis we are calculating, and
let V be the current tuple of polynomials generating a vector space which will con-
tain the desired border basis eventually. To each polynomial g that we have to con-
sider, we assign a signature bound which is a pair (t, i) with a term t and 1 ≤ i ≤ s

that remembers the multiple t fi of the input polynomial fi whose (linear) reduction
is g. Thus, if the same signature bound appears again, we can avoid the reduction
of g against the polynomials in V because we know that it reduces to zero. As we
shall see, in this way we avoid many repetitions and the algorithm becomes signifi-
cantly faster.

References

1. B. Buchberger, Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the basis ele-
ments of the residue class ring of a zero dimensional polynomial ideal, J. Symbolic Comput.
41 (2006), 475-511.

2. C. Eder and J.-C. Faugère, A survey on signature-based algorithms for computing Gröbner
bases, J. Symbolic Comput. 80 (2017), 719-784.

3. J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to
zero (F5), in: Proc. Conf. ISSAC 2002, ACM Press, New York 2002, pp. 75-83.

125

4. J. Horacek, M. Kreuzer, and A.-S. Messeng Ekossono, Computing Boolean border bases, Proc.
Conf. SYNASC’16, Timisoara 2016, IEEE (to appear), available at
www.sc-square.org/CSA/workshop1-papers/paper3.pdf

5. A. Kehrein and M. Kreuzer, Computing border bases, J. Pure Appl. Alg. 205 (2006), 279-295.
6. B. Mourrain, A new criterion for normal form algorithms, in: M. Fossorier, H. Imai, S. Lin,

A. Poli (eds.), Proc. Conf. AAECC-13, Honolulu 1999, LNCS 1719, Springer Verlag, Heidel-
berg 1999, pp. 440-443.

126

Gröbner reduction in modules over arbitrary rings

G. Landsmann1, C. Fürst1

1 Johannes Kepler University Linz, Research Institute for Symbolic Computation (RISC),

Austria,{landsmann,cfuerst}@risc.jku.at

Abstract

Given a pair of abelian groups N ⊆M, a reduction is a relation ρ ⊂M×M that
generates the congruence modulo N. Membership to such a relation should be de-
cidable and any chain of iterated reduction steps u1 −→ u2 −→ ·· · should terminate.

A Gröbner reduction for N ⊆ M is a reduction which induces a splitting of the
exact sequence

0−→ N −→M
π
−→M/N −→ 0 (29)

Chosen a splitting s : M/N −→ M, the endomorphism s ◦ π provides the normal
form for elements u ∈M; its image I is the group of irreducibles.

Any reduction ρ for the extension N ⊆M can be desribed by the scheme

u−→ v ⇐⇒ u− v ∈ X ∧P(u,v) (30)

where X ⊆ M is a set and P denotes a binary predicate. These are the parameters
which determine the behaviour of the reduction ρ , and for constructing ρ one has to
exploit the structure provided by the actual candidates M and N. Of course, the main
attention is layed on modules over certain rings R whose structure is rich enough to
allow algorithmically performing the construction.

The well-known classical examples over commutative Noetherian rings rely on
the existence of a recursive well-order which is the principal ingredient of the pred-
icate P. The set X consists of generators of the module N and is typically split into a
product of sets X = A ·G, with A⊂ R and G⊂ N. The set G is then called a Gröbner
basis of N.

The existence of a splitting s as well as the disposability of an appropriate well-
order is based on the presence of a set Λ of monomials in the ring R. Classically
these monomials constitute a basis of R over some central subfield K with the result
that R is an algebra over K. If then the monomials build a monoid isomorphic to
some Nn and the module M is finite free over R, the construction of G can be ac-
complished - with minor adaption - by the classical Buchberger algorithm.

There are important rings where the subfield K is not central or the set Λ is not a
monoid, e.g., Weyl algebras, Ore algebras or rings of difference-differential opera-
tors, where recent work has brought progress into the construction of Gröbner bases
for submodules of finite free modules over such rings. The - sometimes hidden -

127

spine of the construction process is always a Gröbner reduction.

But even in the absence of monomials a Gröbner reduction may be possible and
it remains the desire to gain insight into the nature of their totality.

To proceed into this direction we consider two Gröbner reductions on N ⊂M as
equivalent when they induce equal splittings. The class of all equivalence classes of
Gröbner reductions has then a natural group structure. Given an arbitrary element of
this group, we may describe the production of normal forms as a certain limit. We
will work out these ideas and illustrate their alliance to other concepts like filtrations
or Robbiano’s graded structures.

References

1. C. Fürst, Axiomatic Description of Gröbner Reduction, Ph.D. Thesis, RISC (2016).
2. C. Fürst, G. Landsmann Three Examples of Gröbner Reduction over Non-Commutative Rings,

RISC Technical Report 15-16).
3. C. Fürst, G. Landsmann Computation of Dimension in Filtered Free Modules by Gröbner

Reduction, Proceedings of the ISSAC 2015, 181–188.
4. C. Fürst, A. Levin Relative Reduction and Buchberger’s Algorithm in Filtered Free Modules,

Proceedings of the ACA 2016 Kassel, (2017).

128

The algebra of Kleene stars of the plane and

polylogarithms

G.H.E. Duchamp1,4, Hoang Ngoc Minh2,4, Q.H. Ngo3

1Université Paris 13, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France,

(gheduchamp@gmail.com).
2Université Lille 2, 1, Place Déliot, 59024 Lille, France, (hoang@univ-lille2.fr).
3University of Hai Phong, 171, Phan Dang Luu, Hai Phong, Viet Nam,

(quochoan_ngo@yahoo.com.vn).
4LIPN-UMR 7030, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.

2 Introduction

As a matter of fact, the interest of rational series, over the alphabets Y0 = {yn}n∈N,
Y = Y0 \{y0} and X = {x0,x1}, is twofold : algebraic and analytic.

Firstly, (from the algebraic point of view) they are closed under shuffle products
and the shuffle exponential of letters (and their linear combinations) is precisely
their Kleene star3. Secondly, the growth of their coefficients is tame4 [7, 17, 18] and
as such their associated polylogarithms can be rightfully computed [12, 15, 16].

Doing this, we recover many functions (as the simple polynomials), forgotten
in the straight algebra of polylogarithms, at positive indices, which are viewed as
image by the following isomorphism of algebras [13]

Li• : (C〈X〉,⊔⊔ ,1X∗)−→ (C{Liw}w∈X∗ ,×,1), x
s1−1
0 x1 . . .x

sr−1
0 x1 7−→ Lis1,...,sr ,

and, for n≥ 0,xn
0 7−→ Lixn

0
(z) = logn(z)/n! and xn

1 7−→ Lixn
1
(z) = logn((1− z)−1)/n!.

To study the multi-indexed polylogarithms, one relies on the one-to-one correspon-
dence between the multi-indices (s1, . . . ,sr), in Zr

≤0 or Nr
+, and the words ys1 . . .ysr ,

in the monoid Y ∗0 , for indexing polylogarithms by ys1 . . .ysr [5, 7, 13, 14] :

Liys1 ...ysr
= Lis1,...,sr and Li−ys1 ...ysr

= Li−s1,...,−sr .

We will explain the whole project to extend Li• over a sub algebra of rational
power series. In particular, we will study different aspects of C {Liw}w∈X∗ , where C

denotes the ring of polynomials on z,z−1 and (1− z)−1, with coefficents in C, and
we will express polylogarithms (resp. harmonic sums) at negative multi-indices as
polynomials on (1− z)−1 (resp. N), with coefficients in Z (resp. Q).

3 i.e. for any S ∈ C〈〈X〉〉 such that 〈S | 1X∗ 〉= 0, S∗ denotes the sum 1X∗ +S+S2 +S3 + . . . [1].
4 i.e. for such a rational series S over X , there exists a real K > 0 and a positive real morphism χ
such that, for any w ∈ X∗, the coefficient | 〈S | w〉 | is majorated by Kχ(w) [7, 17, 18].

129

3 Polylogarithms and algebraic combinatorial frame works

Let us, now, go into details, using the notations of [1, 20],

1. We construct the bialgebras5 (C〈Y0〉, .,∆ ,1Y ∗0
,ε), and (C〈X〉, .,∆⊔⊔ ,1X∗ ,ε) in

which, for any i = 0,1 and j ≥ 1, one has

∆ (y j) = y j⊗1Y ∗ +1Y ∗ ⊗ y j + ∑
k+l= j

yk⊗ yl . ∆⊔⊔ (xi) = xi⊗1X∗ +1X∗ ⊗ xi.

2. Let Crat〈〈X〉〉 denotes the closure of C〈X〉 by rational operations {+, ., ∗} [1]. It
is closed by shuffle. By the Kleene-Schützenberger theorem, any power series S

belongs to Crat〈〈X〉〉 if and only if it is recognizable by an automaton admitting
linear representation (β ,µ ,γ) of dimension n≥ 1, with

β ∈Mn,1(C), µ : X∗ −→Mn,n(C), γ ∈M1,n(C)

and, for any w ∈ X∗, one has 〈S | w〉= β µ(w)γ (see [1]).
3. Let us consider the following morphism of algebra

πX : (C〈Y 〉, .,1Y ∗)−→ (C〈X〉, .,1X∗), ys1 . . .ysr −→ x
s1−1
0 x1 . . .x

sr−1
0 x1.

It admits an adjoint πY for the two standard scalar products, i.e.

∀p ∈ C〈X〉, ∀q ∈ C〈Y 〉, 〈πY (p) | q〉Y = 〈p | πX (q)〉X .

One checks that πY (x
s−1
0 x1) = ys, ker(πY) = C〈X〉x0 and πY restricted to the

subalgebra (C1X∗ ⊕C〈X〉x1, .) is an isomorphism, inverse of πX .

In this work, Ω denotes the cleft plane C \ (]−∞,0]∪ [1,+∞[) and H (Ω) de-
notes the set of holomorphic functions over the simply connected domain Ω .

The principal object of the present work, as in [5, 7], is the polylogarithm well
defined, for any (s1, . . . ,sr) ∈ Cr,r ∈ N+ and for any z ∈ C such that |z |< 1, by

Lis1,...,sr(z) := ∑
n1>...>nr>0

zn1

n
s1
1 . . .nsr

r

and
Lis1,...,sr(z)

1− z
= ∑

N≥0

Hs1,...,sr(N) zN ,

where the arithmetic function Hs1,...,sr : N−→Q is expressed by

Hs1,...,sr(N) := ∑
N≥n1>...>nr>0

1
n

s1
1 . . .nsr

r

.

Here, Lis1,...,sr is obtained as iterated integrals, along the path on Ω and over the
differential forms

ω0(z) = z−1 and ω1(z) = (1− z)−1.

5 Which are all Hopf save the last one due to y0 which is infiltration-like [2].

130

After a theorem by Abel, for any r ≥ 1, if (s1, . . . ,sr) ∈Hr then

ζ (s1, . . . ,sr) := lim
z→1

Lis1,...,sr(z) = lim
N→∞

Hs1,...,sr(N),

where Hr = {(s1, . . . ,sr) ∈ Cr|∀m = 1, . . . ,r;ℜ(s1) + . . .+ℜ(sr) > m} [10, 21].
This is no more valid in the divergent cases and requires the renormalization of the
corresponding divergent polyzetas. It is already done for the case of polyzetas at
positive multi-indices [3, 4, 17] and it is done [9, 11, 19] and completed in [5, 7] for
the case of negative multi-indices.

Let us consider the following group of transformations which permutes the sin-
gularities {0,1,+∞}

G := {z 7→ z,z 7→ 1− z,z 7→ z−1,z 7→ (1− z)−1,z 7→ 1− z−1,z 7→ z(1− z)−1}.

and let us also consider the following rings :

C
′
0 := C[z−1],C ′1 := C[(1− z)−1], C0 := C[z,z−1],C1 := C[z,(1− z)−1],

C
′ := C[z−1,(1− z)−1], C := C[z,z−1,(1− z)−1],

which are differential rings, endowed with the differential operator ∂z := d/dz and
with the neutral element 1Ω : Ω −→ C, mapping z to 1Ω (z) = 1. It follows that

Lemma 4.1. For any i = 0 or 1, one has C ′i (Ci (C and C ′i (C ′ (C .

2. The differential ring C is closed under action of G :

∀G ∈ C , ∀g ∈ G , G(g(z)) ∈ C .

3. The sub-rings C0,C1 are closed by the involutions {z 7→ z−1,z 7→ 1−z}, respectively,

and are permuted by {z 7→ 1− z−1,z 7→ z(1− z)−1}, respectively.

Proposition 1. Let θ0 := z∂z and θ1 := (1− z)∂z be the differential operators.

Let ι0 and ι1 be their sections6, i.e. θ0ι0 = θ1ι1 = Id. Then

1. [θ0,θ1] = θ0 +θ1 = ∂z, [θ0ι1,θ1ι0] = 0 and (θ0ι1)(θ1ι0) = (θ1ι0)(θ0ι1) = Id.

2. If w = x
s1−1
0 x1 . . .x

sr−1
0 x1 ∈ X∗x1 and u = yt1 . . .ytr ∈ Y ∗0 then

Liw = (ιs1−1
0 ι1 . . . ι

sr−1
0 ι1)1Ω , and Li−u = (θ t1+1

0 ι1 . . .θ
tr+1
0 ι1)1Ω .

3. The algebra C {Liw}w∈X∗ is closed by {θ0,θ1, ι0, ι1}.
4. The bi-integro differential ring (C {Liw}w∈X∗ ,×,1Ω) is closed by G :

∀l ∈ C {Liw}w∈X∗ , ∀g ∈ G , l(g(z)) ∈ C {Liw}w∈X∗ .

6 i.e. take primitives for the corresponding differential operators.

131

4 Algebraic extension of Li• to (Crat〈〈X〉〉,⊔⊔,1X∗)

Under some convergent conditions, the extension of Li• over Crat〈〈X〉〉 can be done
as follows : call Dom(Li•) the set of series

S = ∑
n≥0

Sn with Sn := ∑
|w|=n

〈S | w〉w

such that ∑n≥0 LiSn converges uniformly any compact of Ω . Then

Proposition 2. One has

1. The set Dom(Li•) is closed by shuffle products.

2. For any S,T ∈ Dom(Li•), one has LiS⊔⊔ T = LiS LiT .

3. One has C〈X〉⊔⊔Crat〈〈x0〉〉⊔⊔C
rat〈〈x1〉〉 ⊂ Dom(Li•).

This extension is compatible with identities between rational series as Lazard’s

elimination, for instance :

∀S ∈ Crat〈〈S〉〉, LiS(z) = ∑
n≥0

〈S | xn
0〉

logn(z)

n!
+ ∑

k≥1
∑

w∈(x∗0x1)kx∗0

〈S | w〉Liw(z),

The morphism Li• is no more injective but {Liw}w∈X∗ is still C -linearly indepen-
dant.

We will use several times the following lemma which is characteristic-free.

Lemma 5. Let (A ,d) be a commutative differential ring without zero divisor, and

R= ker(d) be its subring of constants. Let z∈A such that d(z)= 1 and S= {eα}α∈I

be a set of eigenfunctions of d, all different (for example, take I ⊂ R) i.e., eα 6= 0 and

d(eα) = αeα ;∀α ∈ I. Then the family (eα)α∈I is R[z]-linearly free7.

Remark 1. If A is a Q-algebra or only of characteristic zero (i.e., n×1A = 0⇒ n =
0), then d(z) = 1 implies that z is transcendent over R.

First of all, let us prove

Lemma 6. Let A be a Q-algebra (associative, unital, commutative) and z an inde-

terminate, then ez ∈A [[z]] is transcendent over A [z].

Proof. It is straightforward consequence of Remark (1). Note that this can be
rephrased as [z,ez] are algebraically independant over A .

Proposition 3. Let Z = {zn}n∈N be an alphabet, then [ez0 ,ez1] is algebraically inde-

pendent on C[Z] within C[[Z]].

7 Here R[z] is understood as ring adjunction i.e. the smallest subring generated by R∪{z}.

132

Proposition 4.i. The family {x∗0,x
∗
1} is algebraically independent over (C〈X〉,⊔⊔ ,

1X∗) within (C〈〈X〉〉rat,⊔⊔ ,1X∗).
ii. The module (C〈X〉,⊔⊔ ,1X∗)[x

∗
0,x
∗
1,(−x0)

∗] is free over C〈X〉 and the family {(x∗0)
⊔⊔ k

⊔⊔(x∗1)
⊔⊔ l}(k,l)∈Z×N

is a C〈X〉-basis of it.

iii.As a consequence, {w⊔⊔(x∗0)
⊔⊔ k

⊔⊔(x∗1)
⊔⊔ l} w∈X∗

(k,l)∈Z×N
is a C-basis of it.

Proposition 5. There is a unique morphism ν , from (C〈X〉,⊔⊔ ,1X∗)[x
∗
0,(−x0)

∗,x∗1]
to H (Ω) defined by, for any w ∈ X∗, ν(w) = Liw and

ν(x∗0) = z, ν((−x0)
∗) = z−1, ν(x∗1) = (1− z)−1.

Theorem 1 ([8]). Denoting Li(1)• the morphism ν defined as in Proposition 5, it

realizes then a morphism of algebras, C〈X〉[x∗0,x
∗
1,(−x0)

∗] −→H (Ω). Moreover,

Im(Li(1)•) =C {Liw}w∈X∗ and ker(Li(1)•) is the ideal generated by x∗0 ⊔⊔ x∗1−x∗1+1X∗ .

Corollary 3 ([12]). One has

1. For x ∈ X , i ∈ N+,a ∈ C, |a |< 1,

Li(ax0)∗i
(z) = za

i−1

∑
k=0

(

i−1
k

)

(a log(z))k

k!
,

Li(ax1)∗i
(z) =

1
(1− z)a

i−1

∑
k=0

(

i−1
k

)

(a log((1− z)−1)k

k!
.

2. For any (s1, . . . ,sr) ∈ Nr
+ and (t1, . . . , tr) ∈ (C−N+)

r,

Li
(t1x0)

∗s1 x
s1−1
0 x1...(trx0)∗sr x

sr−1
0 x1

(z) = ∑
n1>...>nr>0

zn1

(n1− t1)s1 . . .(nr− tr)sr
.

In particular,

Li(t1x0)∗x1...(trx0)∗x1
(z) = ∑

n1,...,nr>0

Li
x

n1−1
0 x1...x

nr−1
0 x1

(z) t
n1−1
0 . . . tnr−1

r .

Corollary 4 ([12]). By Corollary 3, it follows that

{LiS}S∈C〈X〉⊔⊔ C[x∗0]⊔⊔ C[(−x∗0)]⊔⊔ C[x
∗
1]
= spanC

{

za

(1− z)b
Liw(z)

}a∈Z,b∈N

w∈X∗

⊂ spanC{Lis1,...,sr}s1,...,sr∈Zr

⊕spanC{z
a|a ∈ Z},

{LiS}S∈C〈X〉⊔⊔ Crat〈〈x0〉〉⊔⊔ Crat〈〈x1〉〉 = spanC

{

za

(1− z)b
Liw(z)

}a,b∈C

w∈X∗

⊂ spanC{Lis1,...,sr}s1,...,sr∈Cr

⊕spanC{z
a|a ∈ C}.

133

References

1. J. Berstel & C. Reutenauer, Rational series and their languages, Springer-Verlag, 1988.
2. Bui V. C., Duchamp G. H. E., Hoang Ngoc Minh V., Tollu C., Ngo Q. H., (Pure) transcendence

bases in φ -deformed shuffle bialgebras, arXiv:1507.01089v1 [cs.SC].
3. Costermans C., Hoang Ngoc Minh, Some Results à l’Abel Obtained by Use of Techniques à la

Hopf, “Global Integrability of Field Theories and Applications”, Daresbury, 2006.
4. Costermans C., Hoang Ngoc Minh, Noncommutative algebra, multiple harmonic sums and

applications in discrete probability, J. of Sym. Comp., 801-817, 2009.
5. Gérard H. E. Duchamp, Hoang Ngoc Minh, Ngo Quoc Hoan, Harmonic sums and polyloga-

rithms at negative multi - indices, accepted by JSC, 2015.
6. Gérard H. E. Duchamp, Tollu C., Sweedler’s duals and Schützenberger’s calculus, In K.

Ebrahimi-Fard, M. Marcolli and W. van Suijlekom (eds), Combinatorics and Physics, 67 -
78, Amer. Math. Soc. (Contemporary Mathematics, vol. 539), 2011.

7. Gérard H. E. Duchamp , Hoang Ngoc Minh, Penson K. A., Ngô Q. H., Simonnet P., Mathe-

matical renormalization in quantum electrodynamics via noncommutative generating series,
accepted by Springer Proceedings in Mathematics, Conference ACA 2015.

8. Gérard H. E. Duchamp, Hoang Ngoc Minh, Ngo Quoc Hoan, The algebra

C〈X〉⊔⊔ Crat〈〈x0〉〉⊔⊔ C
rat〈〈x1〉〉 and polylogarithms, 2015.

9. Furusho H., Komori Y., Matsumoto K., Tsumura H., Desingularization of multiple zeta-

functions of generalized Hurwitz-Lerch type, 2014.
10. Goncharov A. B., Multiple polylogarithms and mixed Tate motives, 2001.
11. Guo L., Zhang B., Renormalization of multiple zeta values, J. Alg., 319, 3770-3809, 2008.
12. Hoang Ngoc Minh, Summations of Polylogarithms via Evaluation Transform, Math. & Com-

puters in Simulations, 1336, 707-728, 1996.
13. Hoang Ngoc Minh, Jacob G., Oussous N. E. , Petitot M., Aspects combinatoires des polylog-

arithmes et des sommes d’Euler-Zagier, J. SLC, B43e, 1998.
14. Hoang Ngoc Minh & Petitot M., Lyndon words, polylogarithmic functions and the Riemann

ζ function, Discrete Math., 217, 273-292, 2000.
15. Hoang Ngoc Minh, Differential Galois groups and noncommutative generating series of poly-

logarithms, in “Automata, Combinatorics and Geometry”. 7th World Multi-conference on Sys-
temics, Cybernetics and Informatics, Florida, 2003.

16. Hoang Ngoc Minh, Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and non-

commutative rational power series, Proceedings of 4th I. C. W,232-250, Finland, 2003.
17. Hoang Ngoc Minh, Algebraic combinatoric aspects of asymptotic analysis of nonlinear dy-

namical system with singular inputs, Acta Academiae Aboensis, Ser. B 67 (2), 117-126, 2007.
18. Hoang Ngoc Minh, On a conjecture by Pierre Cartier about a group of associators, Acta

Math. Vietnamica, 38 (3), 339-398, 2010.
19. Manchon D., Paycha S., Nested sums of symbols and renormalised multiple zeta functions, Int

Math Res Notices, 24, 4628-4697, 2010.
20. Reutenauer C., Free Lie Algebras, London Math. Soc. Monographs, 1993.
21. Zhao J., Analytic continuation of multiple zeta functions, Proc. A. M. S., 128 (5), 1275 - 1283,

1999.

134

Computing The Dedekind Different Of A Smooth

Scheme And Applications

L.N. Long

Faculty of Computer Science and Mathematics, University of Passau, D-94030 Passau, Germany,

nglong16633@gmail.com

Abstract

Let K be a (computable) field, let Pn
K be the n-dimensional projective space over

K, and let X ⊆ Pn
K be a 0-dimensional smooth subscheme. We are interested in

studying the Dedekind different of the scheme X . This invariant is defined as the in-
verse ideal of the Dedekind complementary module of the homogeneous coordinate
ring R of X in the homogeneous ring of quotients of R. Here the Dedekind com-
plementary module of R can be obtained by embedding the canonical module of R

in its homogeneous ring of quotients. In this talk we want to address the problem
of computing a minimal homogeneous system of generators of the Dedekind dif-
ferent of X . Our approach is to use the Generalized Buchberger-Möller Algorithm
given in the paper [1] and is based on a description of the Dedekind complementary
module which generalizes a result of [2]. Moreover, we also apply this invariant to
characterize some uniformity conditions of X , and provide several characterizations
of schemes X with minimal Dedekind different.

References

1. J. Abbott, M. Kreuzer, L. Robbiano, Computing zero-dimensional schemes, J. Symbolic Com-
put. 39, pp. 31–49 (2005).

2. M. Kreuzer, On the canonical ideal of a set of points, Bollettino U.M.I. (8) 1-B, pp. 221–261
(2000).

135

Efficient Algorithms for Special Roots of Quaternion

Polynomials

P. Dospra1, D. Poulakis2

1 petroula.dospra@gmail.com
2 Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece

poulakis@math.auth.gr

Abstract

In this paper, polynomial deterministic algorithms are proposed for the compu-
tation of the number of distinct spherical roots, isolated complex roots and pure
quaternion roots of a quaternion polynomial. Furthermore, two deterministic algo-
rithms are presented for the computation of complex roots and pure quaternion roots
of a such polynomial, respectively.

136

Quaternion Polynomials: Roots and Their Jacobians

Takis Sakkalis

Mathematics Laboratory

Agricultural University of Athens

75 Iera Odos, Athens 11855, GREECE, stp@aua.gr

Abstract

A quaternion polynomial f (t) in the single variable t, is one whose coefficients
are in the skew field H of quaternions. f can also be thought as a transformation
from R4 → R4. In this talk we first give an elementary proof of the fact that such
an f has a root in H, Ref. [2]. In addition, the Jacobian J(f) of f is computed. As
a consequence, Cauchy-Riemman equations for f are derived. It is also shown that
the Jacobian determinant |J(f)| is non negative over H. Moreover, ζ is a single root
of f if and only if |J(f)(ζ)|> 0, Ref. [1]. The above commensurates well with the
theory of analytic functions of one complex variable.

References

1. T. Sakkalis, Jacobians of quaternion polynomials. Submitted for publication, (2017).
2. T. Sakkalis, K. Ko and G. Song, Roots of quaternion polynomials: theory and computation.

Submitted for publication, (2017).

137

Kähler Differential Algebras For 0-dimensional

Schemes

T. N. K. Linh

Research Institute for Symbolic Computation, Johannes Kepler University, A-4040 Linz, Austria,

tnkhanhlinh141@gmail.com

Abstract

In the paper [1] G. Dominicis and M. Kreuzer introduced the application of Käh-
ler differential modules to the study of 0-dimensional subschemes X in a projective
space Pn. They showed that this graded module over the homogeneous coordinate
ring RX contains numerical and algebraic information which is not readily available
from the homogeneous vanishing ideal or from RX. Later, in the paper [2] the second
author and his students extended and refined these techniques for fat point schemes
in Pn. Following the construction described in [3] it is natural to define the Kähler
differential algebra ΩRX/K of RX. In this talk, we want to take a closer look at this
algebra. More precisely, by using explicit presentations of the modules Ω m

RX/K
of

Kähler differential m-forms, we determine many values of their Hilbert functions
explicitly and bound their Hilbert polynomials and regularity indices. Detailed re-
sults are obtained for subschemes of P1, fat point schemes, and fat point schemes of
P2 supported on a non-singular conic.

References

1. G. Dominicis, M. Kreuzer, Kähler differentials for points in Pn, J. Pure Appl. Algebra 141,
pp. 153–173 (1999).

2. M. Kreuzer, T.N.K. Linh, L.N. Long, Kähler differentials and Kähler differents for fat point

schemes, J. Pure Appl. Algebra 219, pp. 4479-4509 (2015).
3. E. Kunz, Kähler Differentials, Adv. Lectures Math., Vieweg Verlag, Braunschweig, 1986.

138

Specializations of symbolic polynomials

Stephen M. Watt
David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, Canada N2L 3G1
smwatt@uwaterloo.ca

Abstract

We consider “symbolic polynomials” that generalize the usual polynomials by
allowing multivariate integer valued polynomials as exponents. We explore how
a variety of algebraic properties specialize under the evaluation of the exponent
variables.

1 Introduction

We have earlier introduced the notion of “symbolic polynomials”, these being ob-
jects that are like polynomials, but allowing symbolic expressions as the exponents.
For example, the expression x6nym2+m− 4 is a symbolic polynomial. This type of
expression occurs frequently in applications of symbolic computation, but computer
algebra systems have typically not dealt with them particularly well. Instead of mak-
ing the full specturm of algebraic algorithms available, when symbols lie in the
exponents, systems tend to fall back on naïve syntactic expression manipulation.
For example, the previous expression would not be recognized as a difference of

squares that can be factored as x6nym2+m−4 = (x3ny
m2+m

2 +2)(x3ny
m2+m

2 −2), with

the exponents m2+m
2 always giving values in N when m ∈ N.

In this paper, we review the basic ideas of symbolic polynomials and explore
properties of evaluation mappings on exponent variables. We discuss how evaluation
behaves for differential ring operations and for GCD and factorization structure. We
then present some preliminary thoughts relating to Gröbner bases.

2 Symbolic Polynomials

We define symbolic polynomials as follows.

Definition 1. The ring of symbolic polynomials in base variables x1, ...,xv and ex-
ponent variables n1, ...,np over the coefficient ring R is the ring consisting of finite
sums of the form

∑
i

cix
ei1
1 x

ei2
2 · · ·x

ein
n

where ci ∈ R and ei j ∈ Int[n1,n2,...,np](Z). Multiplication is defined by

139

c1x
e11
1 · · ·x

e1n
n × c2x

e21
1 · · ·x

e2n
n = c1c2x

e11+e21
1 · · ·xe1n+e2n

n

We denote this ring R[n1, . . . ,np;x1, . . . ,xv].

We make use of integer-valued polynomials, Int[n1,...np](D). For an integral do-
main D with quotient field K, univariate integer-valued polynomials, usually de-
noted Int(D), may be defined as

Int[X](D) = { f (X) | f (X) ∈ K[X] and f (a) ∈ D, for all a ∈ D}

For example 1
2 n2+ 1

2 n ∈ Int[n](Z). Integer-valued polynomials have been studied by
Ostrowski [1] and Pólya [2], and we take the obvious multivariate generalization.
Note that we could alternatively define symbolic polynomials as given by an algebra
of terms with monomials and a finite number of ring operations.

These objects are both theoretically interesting and useful in applications of com-
puter algebra. The usual operations of ring arithmentic and diffierential algebra (+,
−, ×, ∂/∂xi) are straightforward. By restricting the exponents to be integer-valued
polynomials, we find effective algebraic algorithms for greatest common divisor and
factorization [3] and functional decomposition [4].

3 Evaluation

With 1, we have natural evaluation maps to Laurent polynomials,

σ : Zp→ R[n1, . . . ,np;x1, . . . ,xv]→ R[x±1 . . . ,x±v]

where σ(a1, . . . ,ap) evaluates ni at ai. For example, σ(−2,4) :Z[n1,n2;x]→Q[x,x−1]

evaluates the symbolic polynomial 2xn2
1+n2 + x3n1+n2 to the Laurent polynomial

2x8+x−2. It is possible to work with evaluation homomorphisms that produce poly-
nomial values in R[x1, . . . ,xv], but this requires that the σ(a1, . . . ,ap) be partial and
keeping track of the domains of definition is typically more difficult that working
with Laurent polynomials. Working with total evaluation maps does require, how-
ever, extending certain polynomial algorithms, see e.g. [5].

The evaluation maps are easily seen to be differential ring homomorphisms, i.e.

when σ = σ(b1, . . . ,bp) for any values bi,

σ0 = 0

σ1 = 1 if R has unity

σ(u+ v) = σu+σv

σ(u× v) = σu×σv

σ(∂u/∂xi) = ∂σu/∂xi.

140

4 Specialization

We have seen [3] that R[n1, . . . ,np;x1, . . . ,xv] is a GCD domain if R[x1, . . . ,xv] is a
GCD domain and likewise R[n1, . . . ,np;x1, . . . ,xv] is a UFD (unique factorization
domain) if R[x1, . . . ,xv] is a UFD. Note that R[n1, . . . ,np;x1, . . . ,xv] and R[x±1 . . . ,x±v]
have more units than R[x1, . . . ,xv] since any monomial with unit coefficient in R is a
unit in the larger rings.

The GCDs and complete factorizations in R[n1, . . . ,np;x1, . . . ,xv] do not neces-
sarily give GCDs and complete factorizations in R[x±1 . . . ,x±v] under σ , but they are
closely related.

Theorem 2 (Symbolic GCD Specialization). Suppose R[x1, . . . ,xv] is a GCD do-

main and u,v∈R[n1, . . . ,np;x1, . . . ,xv]. Then, for all evaluation maps σ =σ(b1, . . . ,bp),

σ gcd(u,v) | gcd(σu,σv) ∈ R[x±1 . . . ,x±v].

Thus the evaluation of a symbolic polynomial GCD will give a common divisor of
the corresponding symbolic polynomials, but not necessarily the greatest common
divisor. The evaluation of the symbolic polynomial GCD will, however, be maximal
in the sense that (up to units) it is the “greatest” symbolic polynomial whose image
divides the GCD under all evaluations.

A similar property holds for factorization:

Theorem 3 (Symbolic Factorization Specialization). Suppose R[x1, . . . ,xv] is a

UFD and u ∈ R[n1, . . . ,np;x1, . . . ,xv] with complete factorization

u = f1×·· ·× fk.

Then, for all evaluation maps σ = σ(b1, . . . ,bp),

σ fi | σu ∈ R[x±1 . . . ,x±v].

Similarly to the case of symbolic polynomial GCDs, the evaluation of a complete
factorization of a symbolic polynomial is a factorization of the original polynomial
evaluated, but it is not necessarily a complete factorization. That is, some of the σ fi

may factor further in R[x±1 . . . ,x±v]. The evaluation of the symbolic polynomial com-
plete factorization will, however, be the “most complete” factorization for which
every factor divides the original polynomial under all evaluations.

5 Toward Gröbner Bases

A natural next topic is about the ideals of R[n1, . . . ,np;x1, . . . ,xv] and how they relate
to the ideals of R[x1, . . . ,xv]. We are therefore motivated to ask whehter Gröbner
bases exist for symbolic polynomials, and, if so, to explore their behaviour under
specialization.

141

We begin by noting that the existence and construction of Gröebner bases for
Laurent polynomials has been addressed earlier [6]. This work introduces a notion
of generalized term orders based on conic decompositions. It finds application, for
example, in computing elementary ideals of Alexander matrices [7]. Examples of
generalized term orders given by [6] for monomials x

i1
1 · · · · · x

iv
v use gradings such as

|i1|+ · · ·+ |iv|, −min{0, i1, . . . , iv}, and i1 + · · ·+ iv− (v+1)min{0, i1, . . . , iv}.
We are currently exploring the use of polynomial norms on the exponents of

symbolic polynomials to give gradings on symbolic monomial ideals. Gröbner bases
based on derived term orders should find useful application.

We note, though, that such term orders will not necessarily specialize under eval-
uation to term orders in the ring of Laurent polynomials. Consider two monomials,
xp1 and xp2 . For different evaluation maps, we may have p1 < p2, p1 = p2 or p1 > p2

in Z, affecting the relative order of the two monomials in any term order. An poten-
tial approach to relating term orders for symbolic polynomials to term orders for
Laurent polynomials would be to compute cylindrical algebraic decompositions on
the sets of exponent polynomials for each base variable. This could be used to iden-
tify regions of exponent evaluation where monomials maintain their relative order.
This is an ongoing topic of investigation.

Conclusion

We have seen that many algebraic properties of symbolic polynomials are preserved
completely, or in a weaker form, under evaluation of the exponent variables. For
Gröbner basis computation, it is an ongoing topic of investigation to relate term
orders for symbolic polynomials to term orders under evaluation of the exponents.

References

1. A. Ostrowski, Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew.
Math., 149 (1919), 117-124.

2. G. Pólya, Über ganzwertige Polynome in algebraischen Zahlköpern, J. Reine Angew. Math.,
149 (1919), 97-116.

3. Stephen M. Watt, Two Families of Algorithms for Symbolic Polynomials, in Computer Algebra
2006: Latest Advances in Symbolic Algorithms—Proceedings of the Waterloo Workshop, I.
Kotsireas and E. Zima (editors), World Scientific.

4. Stephen M. Watt, Functional Decomposition of Symbolic Polynomials, Proc. International
Conference on Computational Science and Its Applications (ICCSA 2008), IEEE Computer
Society, 193–210.

5. Stephen M. Watt, Algorithms for the Functional Decomposition of Laurent Polynomials, Proc
Conferences on Intelligent Computer Mathematics 2009, Springer Verlag LNAI 5625, 186–
200.

6. Franz Pauer and Andreas Unterkircher, Gröbner Bases for Ideas in Laurent Rings and their
Application to Systems of Difference Equations, Applicable Algebra in Engineering, Com-
munication and Computing, 9 (1999), 271–291.

142

7. Jesús Gago-Vargas, Isabel Hartillo-Hermoso and José Maria Ucha-Enríquez, Algorithmic In-
variants for Alexander Modules, Proc. Computer Algebra in Symbolic Computation, Springer-
Verlag LNCS 4194, 149–154.

143

Track 4: Design Theory
Chair: Lucia Moura (Canada) and Dimitris Simos (Austria)

Invited Speaker: Charlie Colburn

Computational and Recursive Constructions of Per-
fect Hash Families

Arizona State University

Abstract

A perfect hash family (N;k,w, t) is an N×k array on w symbols, in which in every

N × t subarray, at least one row consists of distinct symbols (and hence separates

the t columns). Perfect hash families arise in combinatorial cryptography and in

constructions of covering arrays; one wants to minimize the number N of rows given

that the has k columns, w symbols, and strength t. Although direct constructions

from codes, designs, finite geometries, and arithmetic sequences are known, the

construction of specific s needed in applications remains challenging.

We focus on the case when the number of rows is less than the strength. First

we review a clever construction method due to Blackburn. Then we generalize his

method using perfect hash families with N = t that are heterogeneous (allow differ-

ing numbers of symbols in rows) and fractal (for 1 ≤ ρ ≤ N, every ρ rows form

a perfect hash family of strength ρ). Blackburn’s method constructs s of larger

strength from ingredients of smaller strength. Hence direct constructions and com-

putational searches for heterogeneous, fractal s of ‘small’ strength may improve

upon smallest previously known sizes for ‘large’ strengths. We describe (1) a col-

umn exchange algorithm based on the deterministic Lovász local lemma; (2) a

greedy column extension technique inspired by column exchange; and (3) a condi-

tional expectation algorithm. Finally we produce many small ingredients and apply

the generalization of Blackburn’s approach, to establish numerous improvements on

the smallest s previously known.

144

New Constant Weight Codes and Packing Numbers

I. Bluskov1

1 University of Northern British Columbia, Canada, bluskovi@unbc.ca

The constant A(n,d,w) is the maximum number of words in an (n,d,w) binary

code, that is, a code of minimal distance d, with words of length n and weight w.

We improve the best known lower bounds on A(n,d,w) for three sets of parameters

by using optimization; in particular, we show that A(29,8,5)≥ 36, A(30,8,5)≥ 41,

and A(32,8,5) = 44 by explicitly giving the respective codes. The (32,8,5) code

is optimal and leads to eight more new optimal codes. We show this by improving

the known result on the problem of finding the packing number P(v,5,2) for v ≡ 12

(mod 20).

145

Kochen-Specker sets and Hadamard matrices

P. Lisoněk

Simon Fraser University, Burnaby, Canada, plisonek@sfu.ca

Kochen-Specker sets considered in this talk are pairs consisting of a finite set V

of vectors in Cn and a list B = (B1, . . . ,Bk) of orthogonal bases of Cn, where k is

odd, Bi ⊂ V for each i, and for each v ∈V the number of i such that v ∈ Bi is even.

Kochen-Specker sets are important objects in quantum mechanics. They demon-

strate the contextuality of quantum mechanics, which is one of its properties that

may become crucial in quantum information theory. We use generalized Hadamard

matrices to construct infinite families of Kochen-Specker sets. We show that the re-

cently discovered simplest Kochen-Specker set is the initial member of one of these

infinite families. We introduce a new class of complex Hadamard matrices which

have not been studied previously and we show that they can be used to construct

Kochen-Specker sets.

146

AGC, t−designs and partition sets

Cristina Martínez and Alberto Besana

1 University of Maynooth, Ireland, {cristina.martinezramirez@nuim.ie}

AG codes correspond geometrically to points in the Grassmannian of k-planes in

an n-dimensional projective space PG(n,Fq) defined over a finite field Fq of q ele-

ments. We study the special case of cyclic codes. We prove that invariant subgrass-

mannians by the action of a triangle group hold a t-design of determined parameters.

References

[Go] Goppa, V. D.: Codes on algebraic curves (Russian). Dokl. Akad. Nauk. SSSR 259, 1289-

1290 (1981).

[KK] R. Kötter, F. R. Kschischang, Coding for errors and erasures in random Network Coding,

IEEE Transactions on Information Theory, Vol. 54, no. 8, 2008.

[MWS] F.J. Mac Williams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland.

147

The Lovász Local Lemma and Variable Strength
Covering Arrays

Lucia Moura1, Sebastian Raaphorst2, Brett Stevens3

1 Electrical Eng. and Computer Science, University of Ottawa, Canada, lucia@eecs.uottawa.ca
2 Gemini Observatory, La Serena, Chile, sraaphorst@gmail.com
3 Mathematics and Statistics, Carleton University, Canada, brett@math.carleton.ca

Covering arrays are well studied combinatorial designs that are useful in soft-

ware interaction testing. Here, we focus on a recent covering array generalization

called variable strength covering array (VCA)[2, 3], which can be used when cer-

tain parameters of the system under test are known to not interact or to interact

with different strengths. Let H = (V (H),E(H)) be a hypergraph and let k = |V (H)|.
A variable-strength covering array, denoted VCA(n;H,v), is an n× k array filled

from Zv such that for any e = {v0, . . . ,vt−1} ∈ E(H), the n× t subarray of columns

indexed by e is covered, that is, it has every possible t-tuple in (Zv)
t as a row at least

once. The variable-strength covering array number, written VCAN(H,v), is the

smallest n such that a VCA(n;H,v) exists. We use the Lovász Local Lemma [1, 4],

to obtain the following upper bound for the minimum size of a VCA.

Theorem 1. Let H = (V,E) be a hypergraph with rank(H) = t ≥ 1, and let d be an

integer such that no edge of H intersects more than d other edges of H. Then, for

any v ≥ 2, we have: VCAN(H,v)≤

⌈

ln(d+1)+t lnv+1

ln vt

vt−1

⌉

≤ ⌈vt (ln(d +1)+ t lnv+1)⌉ .

The paper focuses on comparing the upper bound given by Theorem 1, which we

call the probabilistic bound, with a constructive upper bound for VCAs obtained

by a density-based greedy algorithm, which we call the greedy bound, introduced

in [2]. If nothing is known about the hypergraph H except the number of edges m

and the rank t, then we can substitute d ≤ m−1, and both bounds are very close. In

the rest of the article, we show several classes of hypergraphs for which we know

better estimates on d and the probabilistic bound outperforms the density bound.

References

1. P. ErdHos and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related

questions, in Infinite and finite sets 11, Coll. Math. Soc. J. Bolyai, 609-627, 1975.
2. S. Raaphorst, Variable strength covering arrays, PhD thesis, University of Ottawa, 2012.
3. S. Raaphorst, L. Moura and B. Stevens, Variable strength covering arrays, submitted to J.

Comb. Des., 2016.
4. J. Spencer, Asymptotic lower bounds for Ramsey functions, Discrete Math. 20, 1, pp. 69-76

(1977).

148

Number of t-tuples in arrays from LFSRs

D. Panario1, B. Stevens1, G. Tzanakis1

1 Carleton University, Canada, {daniel,brett,gtzanaki}@math.carleton.ca

Let M be an N × k array with entries from an alphabet A of cardinality v. A

t-set of columns of M is covered if each of the vt possible t-sets in At appears

in at least one row of the N × t sub-array defined by these columns. If each of

the
(

k
t

)

possible t-sets of columns of M is covered, then M is a covering array of

strength t and size N, denoted CA(N; t,k,v). Covering arrays are used in areas such

as software development and manufacturing to test systems for which exhaustive

testing is infeasible.

Let t > 2 be an integer, q be a prime power, v ≥ 2 be a divisor of q − 1, α
be a primitive element of Fqt and TrFqt /Fq

be the trace of Fqt over Fq. Define the

(qt −1)× (qt −1) arrays

Li j = TrFqt /Fq
(α i+ j)

and

Mi j =

{

0, if Li j = 0;

logα(Li j) mod v, otherwise.

The authors have recently shown that if columns from M are selected based on

an AMDS code and q
t
2−2(q− tv) ≥ vt−1, then the result is a strength t covering

array [2]; see also [1]. This is shown using a character sum argument; evidence

is presented that these bounds are likely to be weak, that is, covering arrays are

produced for q substantially smaller than this bound.

In this talk, after revising the existing constructions related to linear feedback

shift registers and primitive polynomials over finite fields, we determine bounds on

the number of rows that contain a t-tuple.

References

1. G. TZANAKIS, L. MOURA, D. PANARIO, AND B. STEVENS. Constructing new covering ar-

rays from LFSR sequences over finite fields. Discrete Mathematics, 339(3):1158–1171, 2016.

2. G. TZANAKIS, L. MOURA, D. PANARIO, AND B. STEVENS. Covering arrays from m-

sequences and character sums. Designs, Codes and Cryptography, to appear, 2017.

149

Covering Arrays as Set Covers

Ludwig Kampel, Bernhard Garn, Dimitris E. Simos

SBA Research, Vienna A-1040, Austria, {lkampel, bgarn, dsimos}@sba-research.org

In this work, we review and contrast covering array problems with their con-

nections to set cover or integer programming problems. We detail the correspon-

dence between discrete structures, based on a mapping between these structures

upon which also problems can be translated. Subsequently, we exemplify this con-

nection with the pairing of corresponding problems from the covering array domain

and the set cover domain. Finally, we detail common structural properties of algo-

rithms from different domains, pointing to similarities and differences, and empha-

size where results obtained in isolation in each domain can be combined.

References

1. V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of operations re-

search 4, 3, pp. 233-235 (1979).
2. N. Sloane, Covering arrays and intersecting codes, Journal of combinatorial designs 1, 1, pp.

51-63 (1993).
3. D. M. Cohen and S. R. Dalal and M. L. Fredman and G. C. Patton, The AETG system: An ap-

proach to testing based on combinatorial design, IEEE Transactions on Software Engineering

23, 7, pp. 437-444 (1997).
4. E. Balas and M. W. Padberg, Set partitioning: A survey, SIAM review 18, 4, pp. 710-760

(1976).

150

Disjoint q-Steiner systems in dimension 13

Michael Braun1, Alfred Wassermann2

1 Darmstadt University of Applied Sciences, Darmstadt, Germany, michael.braun@h-da.de
2 University of Bayreuth, Bayreuth, Germany, alfred.wassermann@uni-bayreuth.de

Let V be a vector space of dimension v over a finite field GF(q). For simplicity, a

subspace of V of dimension k will be called a k-subspace.

A (simple) t-(v,k,λ)q subspace design D = (V,B) consists of a set B of k-

subspaces of V , called blocks, such that each t-subspace of V lies in exactly λ
blocks. This notion is a vector space analog of combinatorial t-designs on finite sets.

For that reason, subspace designs are also called q-analogs of designs. In the special

case of λ = 1, t-(v,k,1)q subspace designs are called q-Steiner systems S(t,k,v)q.

We report the computer construction of 1316 mutually disjoint 2-(13,3,1)2 sub-

space designs. By combining disjoint designs and using supplementary subspace

designs we conclude that 2-(13,3,λ)2 subspace designs exist for all possible values

1 ≤ λ ≤ 2047.

The technical report [1] contains a list of all 1316 q-Steiner systems.

References

1. M. Braun, A. Wassermann, Disjoint q-Steiner systems in dimension 13, Tech. rep., Universität

Bayreuth, Bayreuth (April 2017). http://dx.doi.org/urn:nbn:de:bvb:703-epub-3291-7.

151

Track 5: Natural and Quantum
Computing

Chair: Mika Hirvensalo (Finland)

Invited Speaker: Lila Kari

Was Pegasus a mammal or a bird? – or – How to

measure and visualize (real or synthetic) species’

relatedness?

Lila Kari1

1 School of Computer Science, University of Waterloo, Canada, lila.kari@uwo.ca

Abstract

Phylogenetic trees have been the traditional means to represent evolutionary his-

tory and species classification, but there is a growing realization that some type of

graphs or networks rather than trees are often needed, to take into account phe-

nomena such as recombination, hybridization, horizontal gene transfer, and conver-

gent evolution. At the same time, alignment-free methods have been proposed to

complement conventional morphological or sequence-alignment-based methods for

phylogenetic analysis. Combining features of both these approaches, we propose

Molecular Distance Maps (MoDMaps), a novel alignment-free method for comput-

ing and displaying sequence and species’ relatedness. MoDMaps compute pairwise

distances between Chaos Game Representations (CGR) of all input DNA sequences,

and visualize the interrelationships thus obtained as an interactive map in three-

dimensional Euclidean space: Each point on a map represents a DNA sequence,

and the spatial proximity between any two points reflects the degree of structural

similarity between the corresponding sequences.

The graphical representation of DNA sequences utilized, Chaos Game Repre-

sentation, has been shown to be genome- and species-specific and can thus act as a

genomic signature. Consequently, Molecular Distance Maps could inform species

identification, taxonomic classifications and, to a certain extent, evolutionary his-

tory. In addition, MoDMaps is a general-purpose method that can compute and

display the interrelationships within any set of sequences, biological, simulated,

synthetic or computer-generated, sequences that closely related or completely unre-

lated, of the same length or of different lengths, several kilo-basepair-long or com-

plete genomes. For example, this method positions a mythological Pegasus genome

(part swan and part horse mitochondrial genome) halfway between the bird and the

mammalian cluster.

152

153

Interference as a Computational Resource

Mika Hirvensalo1

1 Department of Mathematics and Statistics, University of Turku, Finland, mikhirve@utu.fi

Interference is obviously familiar to anyone having watched at the waves propa-

gating on a water surface. Sometimes the wave crests amplify each other, but some-

times the wave crest and hollow cancel each other, forming patterns which a single

wave propagation never creates. This is exactly how the interference in wave prop-

agation is understood: The waves may interfere with each other.

Quantum mechanical description of the physical world involves the idea of wave-

particle dualism: All physical objects describable as particles may be portrayed as

waves, as well. Applying this principle to the physical systems that bear the infor-

mation and carry out the computation, it is possible to design algorithms that greatly

benefit from interference: the undesired computational paths may cancel each other,

but the desired ones may amplify. This phenomenon is generally believed to be the

very source of the power of quantum computing.

Here we are not going to refute the aforesaid picture about the power source of

quantum computing. Instead, we are going to highlight some notable interference

patterns used in famous quantum algorithms, but also to point out that the phe-

nomenon itself – interference – has been used as a computational resource even

before the quantum computing era.

154

Resistance Analysis of Quantum Hashing

F. Ablayev1, M. Latypov1, A. Vasiliev1, A. Vasilov1

1 Kazan Federal University, Russia,

{fablayev,gogen.marat,alexander.ksu,vasilovartur}@gmail.com

1 Introduction

Recently we have defined a notion of the quantum hash function which is quantum

one-way and quantum collision resistant function [1]. Quantum hash functions can

be used as a quantum one-way function in the quantum digital signature protocol

[2]. They also can also be used in different quantum computational models as a ba-

sis for efficient algorithms [3] and communication protocols [4]. The further gener-

alizations can be used for constructing quantum hash-based message authentication

codes [5].

We have analyzed the key properties of quantum hash functions and shown that

one-way property and collision resistance property are correlated for a quantum

hash function [6]. The more the function is one-way the less it is collision resistant

and vice versa. We showed that such a correlation can be balanced.

In [5], [7] we have presented an approach for constructing quantum hash func-

tions by establishing a connection with small biased sets [8]: we prove that small

sized ε-biased sets allow to generate balanced quantum hash functions.

In this paper we investigate the pre-image resistance of this function. Previously,

we have proved the bound on the amount of accessible information about the input

using the well-known Holevo theorem [9]. Since no more than O(s) classical bits of

information can be extracted from s qubits and the original message contains n ≫ s

bits, it is impossible to restore the input from the quantum hash. However, using the

results of [10] and the properties of ε-biased sets here we show that the quantum

hash function reveals only O(1) bits of information about the input.

Additionally, we use several heuristic algorithms to explicitly construct ε-biased

sets of a certain size, thus supporting the collision resistance of our hash function.

2 Preliminaries

In this section we recall the notion of the quantum hashing, as well as the definition

of the small-bias sets used in its construction.

155

2.1 Small-bias Sets

The construction of a quantum hash function in this paper relies on the notion of the

ε-biased sets. We use the definition given in [11].

Let G be a finite abelian group and let χa be the characters of G, indexed by

a ∈ G.

Definition 1. A set S = {s1,s2, . . . ,sd} ⊆ G is called ε-biased, if for any nontrivial

character χa

1

|S|

∣

∣

∣

∣

∣

|S|
∑
j=1

χa(s j)

∣

∣

∣

∣

∣

≤ ε . (1)

It follows from the Alon–Roichman theorem [12] that a set S of O(log |G|/ε2)
elements selected uniformly at random from G is ε-biased with nonzero probability.

2.2 Quantum Hashing for Finite Abelian Groups

In [7] we have proposed the notion of a quantum hash function, which is defined for

arbitrary finite abelian groups.

Let G be a finite abelian group with characters χa, indexed by a ∈ G. Let S ⊆ G

be an ε-biased set for some ε ∈ (0,1).

Definition 2. We define a quantum hash function ψS : G → (H 2)⊗ log |S| as follow-

ing:

|ψS(a)〉=
1
√

|S|

|S|
∑
j=1

χa(s j)| j〉. (2)

We have shown that ψS has all the properties of a cryptographic quantum hash

function (i.e. it is quantum one-way and collision resistant), which are entirely de-

termined by the ε-biased set S ⊆ G.

We also note, that the size of the quantum hash above is asymptotically optimal

because of the known lower bound by Buhrman et al. [13] for the size of the sets of

pairwise-distinguishable states: to construct a set of 2k quantum states with pairwise

inner products below ε one will need at least Ω(log(k/ε)) qubits. This implies the

lower bound on the size of quantum hash of Ω(log log |G|− logε).
There are two known special cases of the quantum hashing for specific finite

abelian groups. In particular, we are interested in hashing binary strings and thus

it is natural to consider G = Zn
2 and G = Z2n (or, more generally, any cyclic group

Zq).

156

2.3 Hashing the Elements of the Boolean Cube

For G = Zn
2 its characters can be written in the form χa(x) = (−1)(a,x), and quantum

hash function is the following

|ψS(a)〉=
1
√

|S|

|S|
∑
j=1

(−1)(a,s j)| j〉. (3)

The resulting hash function is exactly the quantum fingerprinting by Buhrman et

al. [13], once we consider an error-correcting code, whose matrix is built from the

elements of S.

2.4 Hashing the Elements of the Cyclic Group

For G = Zq its characters can be written as χa(x) = exp(2πiax/q), and quantum

hash function is given by

|ψS(a)〉=
1
√

|S|

|S|
∑
j=1

e
2πias j

q | j〉. (4)

The above quantum hash function is essentially equivalent to the one we have de-

fined earlier in [1], which is in turn based on the quantum fingerprinting function

from [14].

3 Pre-image Resistance of Quantum Hashing

In this section we analyze the quantum hash function defined above and prove it has

a strong pre-image resistance.

In [10] authors defined a quantum scheme which is based on quasi-linear codes

and maps binary strings to a quantum state. If a scheme uses pure states, accessible

information does not exceed O(1) bits. We prove similar properties of a general

quantum hash function ψS for an arbitrary finite abelian group G and its ε-biased

subset S ⊂ G.

For a ∈ G we denote density operator of normalized state ρa = |ψS(a)〉〈ψS(a)|
and non-normalized state ρ ′

a = 2d

|G|ρa. Furthermore, for any |ν〉 ∈ H 2d
we define

a probability distribution µν(a) = 〈ν |ρ ′
a|ν〉, that corresponds to measurement with

outcome |ν〉〈ν |.
The following lemma allows us to estimate the relative entropy between µν(a) =

〈ν |ρ ′
a|ν〉 and uniform probability distribution over G.

157

Lemma 1. Let |ν〉 ∈H 2d
be a unit vector and a ∈ G is randomly chosen according

to uniform distribution. Then

E[max{0,µν(a) ln(|G|µν(a))}]<
23

|G| . (5)

Proof. For all s ∈ S we define random variables

Xs = χa(s)νs (6)

Then µν(a) =
1
|G| (∑s∈S Xs)

2. E[χa(s)] = 0 and |χa(s)| ≤ 1 follows from the proper-

ties of finite abelian group characters. Then for all t > 0

Pr

[

µν(a)≥
t

|G|

]

= Pr

[∣

∣

∣

∣

∣

∑
s∈S

Xs

∣

∣

∣

∣

∣

≥
∣

∣

√
t
∣

∣

]

≤ 4exp
(

− t

4

)

, (7)

where the last inequality follows from Lemma 2.2 from [10] and from ‖ν‖= 1.

Define g(x) = max{0,x ln(x)} and let µ̃ be a random variable, whose probability

distribution is Pr[µ̃ ≥ t] = 4exp(− t
4
) = f (t) for t > 8ln2. Then

E[max{0,µν(a) ln(|G|µν(a))}]≥
1

|G|E[g(|G|µν(a))]≥
1

|G|E[g(µ̃)], (8)

where the first inequality follows from the defnition of g(x) and the second one is

true by Lemma 2.3 [10].

Therefore,

E[g(µ̃)] =
∫ ∞

8ln2
x ln(x)

(

−d f

dx

)

dx =
∫ ∞

8ln2
exp
(

ln(x)+ ln(ln(x))− x

4

)

dx < 23,

(9)

as required.

Definition 3. For random variables P and Q having a discrete probability distribu-

tion the Kullback-Leibler divergence is given as follows

DKL(P ‖ Q) = ∑
i

P(i) ln
P(i)

Q(i)
. (10)

The following lemma shows that if we use ε-biased sets in our scheme, diver-

gence between µν(a) and a random variable x uniformly distributed over G is given

by DKL(µν ||x) and takes small values.

Lemma 2. Let |ν〉 ∈ H 2d
be a unit vector. Then

∑
a∈G

µν(a) ln(|G|µν(a))< 23. (11)

Proof. We define a random variable

158

µ̃(a) = max{0,µν(a) ln(|G|µν(a))}. (12)

By Lemma 1 E[µ̃(a)]< 23
|G| . Therefore,

∑
a∈G

µν(a) ln(|G|µν(a))< ∑
a∈G

µ̃(a) = |G|E[µ̃(a)]< 23. (13)

In [10] the accessible information Iacc about input was considered based on the

measurement of the quantum state representing this input. It was defined as Iacc =
H(J)−H(J|A), where A is a random variable describing the choice of input data, J

is a random variable that describes the result of measuring the quantum state.

Lemma 3. Let a be chosen randomly according to uniform distribution over G, then

accessible information Iacc of ensemble (ρa) does not exceed

max
|ν〉 ∑

a∈G

µν(a) ln(|G|µν(a))< 23. (14)

This lemma rephrases the Lemma 3.12 from [10] with using ε-biased set over

finite abelian group and is given without proof.

Thus, the above statements prove the follow theorem.

Theorem 1. Let S ⊂ G be an ε-biased set, ψS be a quantum hash function based

on S. Then the amount of accessible information about pre-image of ψS is of order

O(1).

4 Explicit Constructions of ε-biased Sets

We know that for any ε ∈ (0,1) there exists an ε-biased set over group G of size

O(log |G|/ε2). But there is no explicit algorithm to construct such a set. Existing

explicit constructions give asymptotically bigger sets (see [15] for G = Zn
2 and [16]

for G = Zq). Moreover, these algorithms give asymptotically good solutions, which

means they are applicable for sufficiently large inputs (the resulting quantum hash

function would still be collision resistant, but not pre-image resistant due to the hash

size). If we want to create a cryptographic quantum hash function, we must solve

this problem. Here we propose to use stochastic optimization algorithms.

4.1 Random Search Algorithms

It is easy to see, that exhaustive search is not applicable in practice. That is why we

can use the random search [17] instead. We can generate a random set and check

if it is ε-biased, i.e. the resulting quantum hash function is ε-resistant to quantum

collisions. If ε is not very small, this algorithm can possibly find a good solution

159

quite fast. But of course there is no guarantee for that. In fact, if we want the optimal

solution, the random search will be even worse than exhaustive search. So, we need

to optimize the random search.

In the naive solution above we don’t use the results of the previous iterations. But

if we do, we can use the function evaluations in some points to select the next point

according to some algorithm.

Improved random search.

Here is a small improvement of the random search algorithm [18]:

1. Select a random set from the search space.

2. On each iteration of the algorithm we evaluate the bias of the set. After that we

create a hypersphere with fixed radius. We select a new point (a set) from this

sphere. Then:

a. If the new set is better (is less biased) then it becomes a new candidate for

solution, and we repeat the step 2 again.

b. Otherwise we select a new point on the sphere.

3. This algorithm continues until the good enough result is achieved or the number

of iterations is exceeded.

This algorithm is more effective and it is rather suitable for the purpose of global

optimization. But from the construction of the algorithm we can easily see that it

could get stuck in local optima (since sphere has a fixed size). And there are many

ways to solve this problem, e.g. an adaptive random search algorithm [19].

Adaptive random search.

Here we increase the size of a step (if needed) instead of fixing it. The algorithm

description may look like this:

1. Select a random set from the search space.

2. On each iteration of algorithm we evaluate the bias of the set. After that we

create two hyperspheres: the first one with the current radius r, the second one

with r′, where r′ > r. On each hypersphere we select a point and if the point

from the second sphere improves the current result more than the first one then

we increase the current radius: r = r′.
3. In other cases the algorithm is the same as the previous one.

There is one more popular variation of the random search algorithm – a greedy

adaptive random search algorithm [20].

160

Greedy adaptive random search.

This algorithm is based on two following steps:

1. Using any greedy algorithm we select a set of candidates for solution.

2. With local search [21] we find the best solution from this set.

Brownlee [22] provides more detailed description with possible implementation.

It is worth noting, that all the described random search algorithms are not good

enough in finding the global optima.

4.2 Iterated Local Search

Many random search algorithms use the local search procedure [21]. This procedure

can also be used for optimization problems, but it may not find the global optima and

get stuck in local optima. There are some techniques that help solving this problem,

one of them is called iterated local search algorithm.

The problem of getting stuck in local optima implies that the best local value may

be far from the optimal one and there is no neighbor to continue the search. That

is why iterated local search uses a multi-restart paradigm. Whenever the algorithm

stops at some point and this point is clearly not the best one, a new iteration of

algorithm is (re-)started from a point found with large enough perturbation or even

from any random point [22]. For the local search we can implement any algorithm,

usually it is some heuristic.

We can describe iterated local search procedure as following:

1. Set any point as the current best value. It could be a random point or point from

some explicit construction or heuristic.

2. Create a new set of points using perturbation of current best point. Perturbations

for points should be rather different.

3. Use the local search procedure for set from step 2 and find the best value.

4. If the value found on step 3 is better than the current best value and it is accept-

able, update the current best value.

Algorithm of perturbation can be chosen arbitrarily, but it is better to use some

adaptive algorithm. The same is true for the acceptance criteria (used in step 4). The

algorithm of perturbation and acceptance criteria are the procedures that prevent

getting stuck in local optima.

161

4.3 Summary of Stochastic Algorithms

Random search algorithms work well enough and at the same time their imple-

mentation is very simple. They don’t require any assumptions about the input data,

problem size or even result format.

However, these algorithms are not the optimal ones in terms of effectively finding

solution. They may be used in low-dimensional problems or in very large problems,

where no other algorithm can possibly find the solution. We can also use the random

search algorithms for some initial tests or to find the start point for another heuristic

algorithms.

It is also important, that random search algorithms are independent and can be

executed in parallel from different start points or in different parts of the search

space. So, there are a lot of ways for local optimization.

And we have one more benefit of random algorithms – they could be applied to

any function. Since there is no substantial difference between generating random

numbers and random n-bits strings, we can use random search algorithms for quan-

tum hashing over Zn
2, Zq, or any other appropriately encoded finite abelian group.

Acknowledgments.

The work is performed according to the Russian Government Program of Competi-

tive Growth of Kazan Federal University. Work was in part supported by the Russian

Foundation for Basic Research (under the grant 17-07-01606).

References

1. F M Ablayev and A V Vasiliev. Cryptographic quantum hashing. Laser Physics Letters,

11(2):025202, 2014.

2. Daniel Gottesman and Isaac Chuang. Quantum digital signatures. Technical Report

arXiv:quant-ph/0105032, Cornell University Library, Nov 2001.

3. Farid Ablayev and Alexander Vasiliev. Computing Boolean Functions via Quantum Hash-

ing. In Cristian S Calude, Rusins Freivalds, and Iwama Kazuo, editors, Computing with New

Resources, Lecture Notes in Computer Science, pages 149–160. Springer International Pub-

lishing, 2014.

4. Alexander Vasiliev. Quantum communications based on quantum hashing. International

Journal of Applied Engineering Research, 10(12):31415–31426, 2015.

5. Farid Ablayev, Marat Ablayev, Alexander Vasiliev, and Mansur Ziatdinov. Quantum finger-

printing and quantum hashing. computational and cryptographical aspects. Baltic Journal of

Modern Computing, 4(4):860–875, 2016.

6. F Ablayev, M Ablayev, and A Vasiliev. On the balanced quantum hashing. Journal of Physics:

Conference Series, 681(1):012019, 2016.

7. Alexander Vasiliev. Quantum hashing for finite abelian groups. Lobachevskii Journal of

Mathematics, 37(6):751–754, 2016.

162

8. Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-

cations. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of Comput-

ing, STOC ’90, pages 213–223, New York, NY, USA, 1990. ACM.

9. Alexander S. Holevo. Some estimates of the information transmitted by quantum communi-

cation channel (russian). Probl. Pered. Inform. [Probl. Inf. Transm.], 9(3):3–11, 1973.

10. Dmitry Gavinsky and Tsuyoshi Ito. Quantum fingerprints that keep secrets. Technical report,

2010.

11. Sixia Chen, Cristopher Moore, and Alexander Russell. Small-bias sets for nonabelian groups.

In Prasad Raghavendra, Sofya Raskhodnikova, Klaus Jansen, and Jose D.P. Rolim, editors, Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

volume 8096 of Lecture Notes in Computer Science, pages 436–451. Springer Berlin Heidel-

berg, 2013.

12. Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random Structures

& Algorithms, 5(2):271–284, 1994.

13. Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting.

Phys. Rev. Lett., 87(16):167902, Sep 2001.

14. Farid Ablayev and Alexander Vasiliev. Algorithms for quantum branching programs based on

fingerprinting. Electronic Proceedings in Theoretical Computer Science, 9:1–11, 2009.

15. A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-geometric codes.

In Foundations of Computer Science, 2009. FOCS ’09. 50th Annual IEEE Symposium on,

pages 191–197, Oct 2009.

16. Alexander A. Razborov, Endre Szemeredi, and Avi Wigderson. Constructing small sets that

are uniform in arithmetic progressions. Combinatorics, Probability & Computing, 2:513–518,

1993.

17. Roger J-B. Wets Francisco J. Solis. Minimization by random search techniques. Mathematics

of Operations Research, 6(1):19–30, 1981.

18. Michael A. Schumer and Kenneth Steiglitz. Adaptive step size random search. IEEE Trans-

actions on Automatic Control, 13(3):270–276, 1968.

19. Zelda B. Zabinsky. Stochastic adaptive search for global optimization, volume 72 of Noncon-

vex optimization and its applications. Springer, 2003.

20. Thomas A. Feo and Mauricio G. C. Resende. Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6(2):109–133, 1995.

21. Holger H. Hoos and Thomas Stutzle. Stochastic Local Search: Foundations & Applications.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

22. Jason Brownlee. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu.com, 1st

edition, 2011.

163

Branching Program Complexity of Quantum Hashing

F. Ablayev1, M. Ablayev2,

1 Kazan Federal University, Russia, fablayev@gmail.com
2 Kazan Federal University, Russia, mablayev@gmail.com

Abstract

We investigate Branching Program complexity measure of quantum hashing.

Quantum (δ ,ε)-hash function ψ : Fq → (H 2)⊗s hashes elements of finite field Fq

into s-qubit quantum states. This function is one-way δ -resistant and is collision

ε-resistant.

We consider two complexity measures for Quantum Branching Program (QBP):

a number Width(Q) of QBP Q qubits and a number Time(Q) of QBP Q compu-

tational steps. We show that quantum (δ ,ε)-hash function can be computed effec-

tively. Namely, we present QBP Q for quantum (δ ,ε)-hash function with the fol-

lowing complexity characteristics: Width(Q) = O(log logq) and Time(Q) = logq.

We prove that such QBP construction is optimal. That is, we prove lower bounds

Ω(log logq) of QBP width and Ω(logq) of QBP time for quantum (δ ,ε)-hash func-

tion computation.

1 Introduction

In [2] we explicitly defined a notion of quantum hashing as a generalization of clas-

sical hashing and presented examples of quantum hash functions. It appeared that

Gottesman-Chuang quantum signature schemes [4] are based on functions which are

actually quantum hash functions. Those functions have “unconditionally one-way”

property based on Holevo Theorem [5]. More information on the role of quantum

hashing for the post quantum cryptography, possible application of quantum hash-

ing for quantum signature protocols, and technological expectations for realization

of quantum signature schemes are presented in [6].

Recall that in the classical setting a cryptographic hash function h should be com-

puted effectively and should have the following properties (see for example [7]).

(1) Pre-image resistance: Given h(x), it should be difficult to find x, that is, these

hash functions are one-way functions. (2) Second pre-image resistance: Given x1, it

should be difficult to find an x2, such that h(x1) = h(x2). (3) Collision resistance: It

should be difficult to find any pair of distinct x1, x2, such that h(x1) = h(x2). Note,

that there are no one-way functions that are known to be provably more difficult to

invert than to compute, the security of cryptographic hash functions is “computa-

tionally conditional”.

In the paper we consider quantum (δ ,ε)-hash functions construction based on ε-

biased sets. Such quantum (δ ,ε)-hash function ψ : Fq → (H 2)⊗s hashes elements

of finite field Fq into s-qubit quantum states. The notion of (δ ,ε)-hash function

164

combines together a notion of pre-image (one-way) quantum δ -resistance prop-

erty and the notion of quantum collision ε-resistance properties. These properties

are quantum generalization of classical one-way resistance and collision resistance

properties required for classical hash functions.

Important property for hash function is a computational effectiveness. In the pa-

per we show that considered construction of quantum (δ ,ε)-hash function is com-

puted effectively in the model of Quantum Branching Programs [3]. We consider

two complexity measures: a number Width(Q) of qubits that QBP Q uses for com-

putation and a number Time(Q) of computational steps of QBP Q. Such QBP Q is

of Width(Q) = O(log logq) and Time(Q) = logq.

We prove that such QBP construction is optimal. That is, we prove lower bounds

Ω(log logq) for QBP width and Ω(logq) for QBP time for quantum (δ ,ε)-hash

function presentation.

2 Preliminaries

Recall that mathematically a qubit is described as a unit vector in the two-dimensional

Hilbert complex space H 2. Let s ≥ 1. Let (H 2)⊗s be the 2s-dimensional Hilbert

space, describing the states of s qubits. For an integer j ∈ {0, . . . ,2s − 1} let

σ = σ1 . . .σs be a binary presentation of j. We use (as usual) notations | j〉 and

|σ〉 to denote quantum state |σ1〉 · · · |σs〉= |σ1〉⊗ · · ·⊗ |σs〉.
We let q to be a prime and Fq be a finite field of order q. Let Σ k be a set of words

of length k over a finite alphabet Σ . Let X be a finite set. In the paper we let X= Σ k,

or X = Fq. In the last case we will also consider that X is a set {0,1}k of binary

sequences of length k = logq.

We define classical-quantum (or just quantum) function ψ to be a function

ψ : X→ (H 2)⊗s.

One-way resistance.

We present the following definition of quantum one-way δ -resistant function. Let

“information extracting” mechanism M be a function M : (H 2)⊗s → X. Infor-

mally speaking mechanism M makes some measurement to state |ψ〉 ∈ (H 2)⊗s

and decode the result of measurement to X.

Definition 4. Let X be random variable distributed over X {Pr[X = w] : w ∈ X}.

Let ψ : X→ (H 2)⊗s be a quantum function. Let Y is any random variable over X

obtained by some mechanism M making measurement to the encoding ψ of X and

decoding the result of measurement to X. Let δ > 0. We call a quantum function ψ
a one-way δ -resistant function if for any mechanism M , the probability Pr[Y = X]
that M successfully decodes Y is bounded by δ

165

Pr[Y = X]≤ δ .

For the cryptographic purposes it is natural to expect (and we do this in the rest

of the paper) that random variable X is uniformly distributed.

A quantum state of s ≥ 1 qubits can “carry” an infinite amount of information.

On the other hand, fundamental result of quantum informatics known as Holevo’s

Theorem [5] states that a quantum measurement can only give s bits of information

about the state. We will use here the following particular version [10] of Holevo’s

Theorem.

Property 1. Let X be random variable uniformly distributed over a k bit binary words

{0,1}k. Let ψ : {0,1}k → (H 2)⊗s be a quantum function. Let Y be a random vari-

able over X obtained by some mechanism M making some measurement of the

encoding ψ of X and decoding the result of measurement to {0,1}k. Then our prob-

ability of correct decoding is given by

Pr[Y = X]≤ 2s

2k
.

Collision resistance.

The following definition was presented in [1].

Definition 5. Let δ > 0. We call a quantum function ψ : X → (H 2)⊗s a collision

ε-resistant function if for any pair w,w′ of different elements,

∣

∣〈ψ(w) |ψ(w′)〉
∣

∣≤ ε .

Note that the above inequality means almost orthogonality (ε orthogonality) of

quantum states |ψ(w)〉 and |ψ(w′)〉. Well known that orthogonality of quantum

states provides distinguishability of these states. In content of collision notion al-

most orthogonality means good collision resistant property. That is, let us denote

PrM [v = w] a probability that some test M having quantum hashes |ψ(v)〉 and

|ψ(w)〉 outputs the result “v = w” (outputs the result “|ψ(v)〉 = |ψ(w)〉”). For ex-

ample, known SWAP-test [4] provides

Prswap[v = w]≤ 1

2
(1+ ε2).

The REVERSE-test [4, 1] provides

Prreverse[v = w]≤ ε2.

The above two definitions and considerations lead to the following formalization

of the quantum cryptographic (one-way and collision resistant) function

166

Definition 6. Let K = |X| and s ≥ 1. Let δ > 0 and ε > 0. We call a function ψ :

X→ (H 2)⊗s a quantum (δ ,ε)-hash function if ψ is a one-way δ -resistant and is a

collision ε-resistant function.

1 Computing a quantum hash |ψS(x)〉 by QBP

Quantum hash functions construction via small-biased sets.

For an a ∈ Fq a character χa of Fq is a homomorphism χa : Fq → µq, where µq is the

(multiplicative) group of complex q-th roots of unity, χa(x) = ωax. Here ω = e
2πi
q is

a primitive complex qth root of unity. A character χ0 ≡ 1 is called a trivial character.

• A set S ⊆ Fq is called ε-biased, if for any nontrivial character χ ∈ {χa : a ∈ Fq}
1
|S| |∑x∈S χ(x)| ≤ ε .

We present the result of [11] in the following form.

Property 2. Let S ⊆ Fq be an ε-biased set. Let HS = {ha(x) = ax (mod q), a∈ S}.

Then a quantum function ψS : Fq → (H 2)⊗ log |S|

∣

∣ψHS
(x)
〉

=
1
√

|S| ∑
a∈S

ωha(x)|a〉

is quantum (δ ,ε)-hash function, where δ ≤ |S|/(q logq).

• In the content of the definition of quantum hash generator [1] and the above

consideration it is natural to call the set HS of functions (formed from ε-biased

set S) a uniform quantum (δ ,ε)-hash generator for δ = O(|S|/(q logq)) .

Note that ε-biased sets are interesting when |S| ≪ |Fq| (as S = Fq is 0-biased).

The seminal paper of Naor and Naor [9] defined these small-biased sets, gave the

first explicit constructions of such sets, and demonstrated the power of small-biased

sets for several applications.

• Note that a set S of O(logq/ε2) elements selected uniformly at random from Fq

is ε-biased with a positive probability > 0 [8].

Many other constructions of small-biased sets followed during the last decades (see

for example [8]).

As a corollary from Property 2 and the above consideration we can state the

following.

Property 3. For a small size ε-biased set S= {a1, . . . ,aT}⊂Fq with T =O(logq/ε2),
for s = logT , for δ = O(1/(qε2)) a quantum uniform (δ ,ε)-hash generator HS gen-

erates quantum (δ ,ε)-hash function

167

ψHS
: Fq → (H 2)⊗s (15)

∣

∣ψHS
(x)
〉

=
1√
T

T−1

∑
j=0

ωa jx| j〉. (16)

QBP for quantum hash function ψHS
.

We use a QBP model defined in [3].

A Quantum Branching Program Q over the Hilbert space (H 2)⊗s is defined as

Q = 〈T, |ψ0〉〉,

where T is a sequence of l instructions: Tj =
(

xi j
,U j(0),U j(1)

)

is determined by

the variable xi j
tested on the step j, and U j(0), U j(1) are unitary transformations in

(H 2)⊗s.

Vectors |ψ〉 ∈ (H 2)⊗s are called states (state vectors) of Q, |ψ0〉 ∈ (H 2)⊗s is

the initial state of Q.

We define a computation of Q on an input σ = σ1 . . .σn ∈ {0,1}n as follows:

1. A computation of Q starts from the initial state |ψ0〉;
2. The j-th instruction of Q reads the input symbol σi j

(the value of xi j
) and applies

the transition matrix U j = U j(σi j
) to the current state |ψ〉 to obtain the state

|ψ ′〉=U j(σi j
)|ψ〉;

3. The final state is

|ψ(σ)〉=
(

1

∏
j=l

U j(σi j
)

)

|ψ0〉.

Theorem 2. Quantum (δ ,ε)-hash function (15)

ψHS
: Fq → (H 2)⊗s

can be computed by quantum branching program Q composed from s = O(log logq)
qubits in logq steps.

Proof. Quantum function ψHS
(15) for an input x ∈ Fq determines quantum states

(16)
∣

∣ψHS
(x)
〉

=
1√
T

T−1

∑
j=0

ωa jx| j〉

which is a result of quantum Fourier transformation (QFT) of the initial state

|ψ0〉=
1√
T

T−1

∑
j=0

| j〉.

Such a QFT is controlled by the input x. QBP Q for for computing quantum hash
∣

∣ψHS
(x)
〉

determined as follows. We represent an integer x ∈ {0, . . . ,q− 1} as the

168

bit-string x = x0 . . .xlogq−1 that is, x = x0 +21x1 + · · ·+2logq−1xlogq−1. For a binary

string x = x0 . . .xlogq−1 a Quantum Branching Program Q over the space (H 2)⊗s

for computing |ψS(x)〉 (composed of s = logT qubits) is defined as

Q = 〈T, |ψ0〉〉,

where |ψ0〉 is the initial state and T is a sequence of logq instructions:

T j = (x j,U j(0),U j(1))

is determined by the variable x j tested on the step j, and U j(0), U j(1) are unitary

transformations in (H 2)⊗s. More precise U j(0) is T ×T identity matrix. U j(1) is

the T ×T diagonal matrix whose diagonal entries are ωa02 j
,ωa12 j

, . . . , ωaT−12 j
and

the off-diagonal elements are all zero. That is,

U j(1) =













ωa02 j

ωa12 j

. . .

ωaT−12 j













.

We define a computation of Q on an input x = x0 . . .xlogq−1 ∈ {0,1}logq as fol-

lows:

1. A computation of Q starts from the initial state |ψ0〉;
2. The j-th instruction of Q reads the input symbol x j (the value of x) and applies

the transition matrix U j(x j) to the current state |ψ〉 to obtain the state |ψ ′〉 =
U j(x j)|ψ〉;

3. The final state is

|ψS(x)〉=
(

logq−1

∏
j=0

U j(x j)

)

|ψ0〉.

✷

Consider the following notations. For the QBP Q from Theorem 2 we let

Width(Q) = s and Time(Q) = |T|. Next for quantum hash function ψHS
(15) we

let

Width(ψHS
) = minWidth(Q), Time(ψHS

) = minTime(Q)

where minimum is taken over all QBPs that compute ψHS
. Then from Theorem 2

we have

Width(ψHS
) = O(log logq), (17)

Time(ψHS
) = O(logq). (18)

169

Lower bounds.

We present here the following

Theorem 3.

Width(ψHS
) = Ω(log logq), (19)

Time(ψHS
) = Ω(logq). (20)

QBP Q is a procedure for the function ψHS
computation. ψHS

can be presented

as follows

ψHS
: {|ψ0〉}×{0,1}logq → (H 2)⊗s.

The proof of the lower bound (19) is the immediate corollary from the following

statement [1]. We present its proof for completeness.

Lemma 4. Let ψ : X→ (H 2)⊗s be a collision ε-resistant function. Then

s ≥ log log |X|− log log
(

1+
√

2/(1− ε)
)

−1.

Proof. First we observe, that from the definition |||ψ〉|| =
√

〈ψ |ψ〉 of the norm

it follows that

|||ψ〉−
∣

∣ψ ′〉||2 = |||ψ〉||2 + ||
∣

∣ψ ′〉||2 −2〈ψ |ψ ′〉.

Hence for arbitrary pair w,w′ of different elements from X we have that

|||ψ(w)〉−
∣

∣ψ(w′)
〉

|| ≥
√

2(1− ε) (21)

We let ∆ =
√

2(1− ε). For short we let (H 2)⊗s = V in this proof. Consider a

set Φ = {|ψ(w)〉 : w ∈ X}. If we draw a sphere of the radius ∆/2 with the center

|ψ〉 ∈ Φ then all such spheres do not intersect pairwise. All these K (K = |X|)
spheres are in large sphere of radius 1+∆/2. The volume of a sphere of a radius r

in V is cr2s+1
for the complex space V . Constant c depends on the metric of V . From

this we have, that the number K is bonded by the number of “small spheres” in the

“large sphere”

K ≤ c(1+∆/2)2s+1

c(∆/2)2s+1
.

Hence

s ≥ log logK − log log
(

1+
√

2/(1− ε)
)

−1.

✷

The proof of the lower bound (20) for Time(ψHS
) follows from the proof of

Lemma 4. The assumption that QBP Q for ψHS
can test less than logq (not all

logq) variables of inputs x ∈ Fq means existence of (at least) two different inputs

170

w,w′ ∈ Fq such that Q produces the same quantum hashes for w and w′, that is,

|ψ(w)〉= |ψ(w′)〉= |ψ〉. The last contradicts (21).

References

1. F. Ablayev and M. Ablayev, Quantum hashing via ε-universal hashing constructions and

Freivalds’ fingerprinting schemas. 16th DCFS 2014, Turku. Lecture Notes in Computer Sci-

ence 8614, pp. 42–52, (2014).

2. F. Ablayev and A. Vasiliev, Cryptographic quantum hashing, Laser Phys. Lett, 11(2):025202,

(2013).

3. F. Ablayev and A. Vasiliev, Computing Boolean functions via quantum hashing, Computing

with New Resources, Lecture Notes in Computer Science 8808, pp. 149–160 (2014).

4. D. Gottesman and I. Chuang, Quantum digital signatures, arXiv:quantph/0105032, (2001).

5. A. Holevo, Some estimates of the information transmitted by quantum communication channel

(russian), Probl. Pered. Inform. [Probl. Inf. Transm.], 9(3):311, (1973).

6. A. Korol’kov, About some applied aspects of quantum cryptography in the context of devel-

opment of quantum computations and emergense of quantum computations and emergence of

quantum computers (russian). Voprosy kiberbezopasnosty, 1(9), (2015).

7. R. Amiri and E. Andersson, Unconditionally Secure Quantum Signature, Entropy, 17: pp.

5635–5659, (2015).

8. A. Ben-Aroya and A. Ta-Shma, Constructing Small-Bias Sets from Algebraic-Geometric

Codes, Theory of Computing 9: pp. 253-272 (2013).

9. J. Naor and M. Naor, Small-bias probability spaces: Efficient constructions and applications,

Proceedings of the twenty-second annual ACM symposium on Theory of computing, pp. 213–

223 (1990).

10. A. Nayak, Optimal Lower Bounds for Quantum Automata and Random Access Codes,

arXiv:quant-ph/9904093v3, (1999).

11. A. Vasiliev, Quantum Hashing for Finite Abelian Groups, arXiv:1603.02209 [quant-ph],

(2016).

