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Problem

A classic Artificial Intelligence (Al) Problem is N-Queens. Here, the goal is to place N
Queens on an NxN board in such a position where none are able to attack each other.
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Figure 1. Example: Valid Solution for 8x8 Board

Problem Size

Finding a solution through pure brute force (trying all possible board configurations) has
a runtime complexity of O(n!). This approach is highly inefficient and quickly becomes
infeasible for larger boards.

Moreover, storing the board state also consumes significant space, making it both im-
practical and expensive. At n = 1 Billion, the memory requirement alone would exceed
125 Petabytes!

Basic Optimizations

= Avalid board can only have one queen per column, so instead of storing the entire
board, we store only the row position of each queen per column. This reduces space
complexity from O(n?) to O(n). Example: The board in Figure 1 can be represented
as [7,1,4,2,0,6,3,5].

= Previously, checking conflicts for a given square took O(n) time, but this can be
reduced to O(1). By maintaining arrays tracking queen conflicts in each row, left
diagonal, and right diagonal, conflicts can be checked in constant time. For any given
cell you can determine its left diagonal constraint by (row - column + n - 1) and the
right more simply with (row + column).

Min Conflicts

Instead of blindly guessing board configurations, the Min Conflicts algorithm makes
informed decisions by selecting placements with the least conflicts. Repeatedly ap-
plying this algorithm leads to a solved board, though only a subset of boards can be
solved within an efficient time frame.
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Figure 2. Finding a New Position for a Conflicting Queen Using Min Conflicts

While useful, Min Conflicts becomes impractically slow for larger boards, as it checks
all cells in a given column—even those that are clearly unlikely to vield a conflict-free
solution. For instance, rows already containing queens need not be checked as they
are guaranteed to yield a minimum of 1 conflict.

Row Queue: To address this, a circular gueue maintains a list of viable rows, rotating
through options. This drastically reduces the search space and minimizes redundancy.

However, Even when leveraging Min Conflicts and the Row Queue, alongside other
optimizations, some randomly generated boards still lead to extremely long or infinite
run-times.

Golden Boards

For any board size, there exist well-structured configurations—dubbed Golden
Boards—that can reach a solution within 50 steps. Using these significantly reduces
solve times while increasing consistency.

However, randomly generating Golden Boards is unreliable, as their occurrence is rare
and non-deterministic. The larger the board, the harder it is to randomly generate
one.

A Greedy Solution

To consistently generate Golden Boards, randomness must be removed. Previously, us-
ing Min Conflicts for this task required O(n?), making it infeasible for large N. However,
the Row Queue reduces this to just O(n?)! This is achieved in three ways:

1. By maintaining a shortlist of rows, the search space is reduced based on knowledge
from previously solved columns—cutting it roughly in half on average.

2. The Row Queue enforces a stop condition that limits row attempts per column. This
prevents exhaustive searches on difficult columns, deferring them until the full board
is populated, allowing more informed decisions. This alone reduces runtime to
O(C -n)=0O(n)

3. Mathematically, certain patterns emerge when building a Greedy Board sequentially
(left to right, top to bottom). If column C has a queen at row R, then column C + 1
cannot place queens at R + 1, R - 1, or R. Furthermore, rows between R+ 2 and R + S
+ 2 (where S is the stop condition) have a higher probability of yielding valid solutions
than those before. Since the Row Queue is circular, it enables easy and automatic
rotation of starting search point to R + 2, optimizing search space.
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Figure 3. Row Availability in Column 2 After Greedy Placementin O 1.

As a greedy approach, this method makes the best choice at each step using prior knowl-
edge. While not always perfect, astonishingly, for any N up to infinity, a stop condition
of 50 attempts results in a board with only 2-6 conflicts - generally solvable within 50
steps!

Finding A Solution

Given a greedily-found Golden Board from the previous step, we can now solve it effi-
ciently—usually within 50 steps. Since the Row Queue tracks all used rows, the exhaus-
tive searches at this stage are minimal and easily fall within the stop condition.

The function begins by applying the min-conflicts algorithm to a randomly selected un-
solved columns. This slight randomness improves efficiency. If Min Conflicts cannot find
a conflict-free (O-conflict) row, the function switches to a modified version of the algo-
rithm that prioritizes 1-conflict solutions, stopping early if one is found, and otherwise
considering 2-conflict solutions as a last resort.

After placing a queen, all conflicting columns are reset: they are marked unsolved, and
their previous row (if applicable) is re-added to the Row Queue.
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Figure 4. Queen Placement Has 2 Conflicts; The Conflicting Queens Are Therefore Removed

The process then repeats. While this approach almost always converges within 50 steps,
a secondary stop condition acts as a safeguard, terminating the solution if it takes too
long.

Checking Validity

Once a solution is found, an external function is used to verify correctness. Given the
raw board array, it reconstructs all constraints tallying total conflicts for each. It then
iteratively checks all Queens to calculate total conflicts - if any conflicts remain on the
board, the function returns "Failure”; otherwise, it confirms "Vvalid.”

Runtime

With both stopping conditions set < n, the runtime of generating the Greedy Board takes
O(S1-n) and the runtime of Min Conflict Solution is O(S1-52) (Where S1 = Min Conflict
Stop Condition; S2 = Solution Guard Rail). Therefore the total runtime of N-Queens is
O((n) + (1)) = O(n). This allows linear runtime results, which could theoretically scale
to Infinity:

N = Runtime Average(Seconds)
1,000,000 0.25s
10,000,000 1s
50,000,000 4s
100,000,000 11s
1,000,000,000 160s*

Table 1. Tests Ran with i7-9700 - 64 GB RAM. Larger N slowed due to physical memory constraints.



